
Speci�cation and Validation of Control Intensive ICs in hopCP

VENKATESH AKELLA �akella�cs�utah�edu�
GANESH GOPALAKRISHNAN �ganesh�bliss�utah�edu�

Dept� of Computer Science

University of Utah

Salt Lake City� Utah �����

Keywords� asynchrony� behavioral simulation� formal methods� hardware description languages� formal speci�cation
and validation

Abstract� Control intensive ICs pose a signi�cant challenge to the users of formal methods in designing hardware�
These ICs have to support a wide variety of requirements including synchronous and asynchronous operations� polling
and interrupt�driven modes of operation� multiple concurrent threads of execution� non�trivial computational require�
ments� and programmability� In this paper� we illustrate the use of formal methods in the design of a control intensive
IC called the �Intel ��	
� Universal Synchronous�Asynchronous Receiver�Transmitter �USART�� using our hardware
description language
hopCP�� A feature of hopCP is that it supports communication via asynchronous ports in addition
to synchronousmessage passing� Asynchronous ports are distributed shared variables writable by exactly one process�
We show the usefulness of this combination of communication constructs� We outline algorithms to determine safe
usages of asynchronous ports� and also to discover other static properties of the speci�cation� We discuss a compiled�
code concurrent functional simulator called CFSIM� as well as the use of concurrent testers for driving CFSIM� The
use of a semantically well speci�ed and simple language� and the associated analysis�simulation tools helps conquer
the complexity of specifying and validating control intensive ICs�

� Introduction

Over the last two decades� VLSI technology has advanced by leaps and bounds� and has contributed
to a rapidly increasing performance�price ratio of hardware� With these improvements� however� have
come a variety of new problems� Although the speed and the scale of VLSI systems continues to
grow� their functional complexity may not scale at the same rate� unless some of the problems that
have begun to creep up at the level of system design are properly tackled and solved�

There are many sources for the problems encountered at the system level of hardware design�
Many of these are problems of scale akin to those found in the design of large software systems�
The more serious of these problems are� however� due to the concurrent nature of hardware� and
because of the large number of complex features that hardware designers are trying to support in
VLSI systems they are currently building�

We can illustrate many of the above mentioned problems� as well as possible solutions� through
one example� the Intel ���� Universal Synchronous�Asynchronous Receiver�Transmitter �USART	

���� Integrated circuits �ICs	 such as the ���� USART exhibit diverse behaviors� They typically
possess independent threads of execution� have coexistent synchronous �clocked	 and asynchronous
�unclocked	 subcomponents� support multiple modes of operation� such as the interrupt�driven and
the polled modes� They are programmable to set the baud rate� the number of stop bits� start
bits� error
ags� and the synchronization scheme etc�� They can perform computations� such as
error�checking� assembling and disassembling of data� and code�conversion� Such ICs are commonly
classi�ed as �control intensive�� There are very many control intensive ICs in day�to�day use today�
we selected the ���� because it has been widely used in the past as a benchmark for comparing

� VENKATESH AKELLA� GANESH GOPALAKRISHNAN

high�level synthesis tools and their associated hardware description languages �HDLs	�

We wish to contribute to the current state of the art of specifying� verifying� and ultimately� of
synthesizing control intensive ICs� Currently� control intensive ICs are most commonly described
through a combination of natural language descriptions� timing diagrams� state�charts� etc� These
informal descriptions are prone to misinterpretations� and are not machine readable� They cannot
be used as a basis for design validation�

Lately� such ICs are being speci�ed in HDLs� For example� the ���� USART has been speci�ed
in many HDLs such as ISPS
��� VHDL
���� and Verilog
��� ���� However� when studied from a
formal point of view� these HDLs have many shortcomings� None of the currently popular HDLs
�such as referred to above	 have a well speci�ed and simple formal semantics� The advantages
of providing formal semantic de�nitions needs no emphasis� it helps describe language constructs
precisely� put the language concepts to precise tests �e�g� exhibiting semantic properties	� and makes
it easy to develop veri�cation�validation procedures for the language� In this paper� we develop the
speci�cation of the ���� in our HDL hopCP�a semantically well speci�ed and simple language
���

The design of control intensive hardware systems has a lot in common with the speci�cation and
veri�cation of concurrent software systems� Several veri�cation techniques for concurrent software
have been widely studied
��� Research prototypes embodying some of these techniques �such as
the Concurrency Workbench
��� and COSPAN
���	 are also available� In addition� formalisms
such as trace theory
��� and Temporal Logic
��� have been applied for the veri�cation of speed
independent asynchronous circuits
��� as well as for verifying concurrent protocols such as cache
coherence protocols� These tools have also been used by us in our past work
��� ���� However�
few of these tools or techniques have been applied for the veri�cation of real�world control intensive
hardware systems where one has to address data dependent control
ows� exception handling� and
similar issues�

In this paper� we do not attempt to formally verify the requirements speci�cation of the ����
against the proposed design speci�cation of the ���� in hopCP� instead� we demonstrate the applica�
tion of formal methods in the design of the ����� centered around hopCP� We do this by presenting
the hopCP language� outlining its operational semantics �detailed in
��	� and present tools and
techniques that help validate hopCP descriptions� As Hall points out
���� even without conduct�
ing formal veri�cation at all levels of design representation� the application of formal methods can
enhance the degree of con�dence in a design� help discover design
aws� and promote overall un�
derstanding of the design� Also� by presenting the description of the ���� in a semantically well
speci�ed notation� we believe that some of the di�culties of formally verifying such systems will be
brought to the surface�

Currently there is a growing trend towards applying formal methods in the design of real�world
hardware systems
��� ��� ���� Most of the current e�orts do not address ICs that� in addition to
exhibiting control intensive behavior also support non�trivial computations� Our contributions in this
paper include the following� �i	 the design of a semantically well speci�ed and simple HDL tailored
for the speci�cation of ICs that exhibit control intensive behavior as well as support non�trivial
computations� �ii	 the design of tools for validating the design speci�cations� that can ultimately
lead to the veri�cation and �correct by construction� synthesis of these ICs� We now examine these
features of our work�

SPECIFICATION AND VALIDATION OF CONTROL INTENSIVE ICS IN HOPCP �

��� HDL Features

����� Synchronous Communication Primitives

The task of specifying and designing complex control intensive ICs is as hard as that of writing
parallel programs� It is well known that without the support of high�level concurrency primitives�
concurrent programming can be a nightmare� Virtually all the popular HDLs available today either
omit concurrent process modeling primitives altogether� or provide only very low level primitives�
For example� none of the languages ISPS� VHDL� or Verilog provide a high level synchronization
primitive� Synchronizations between various communicating processes are� in fact� implemented
using explicit handshakes� This can make descriptions in these HDLs hard to follow� It also makes
it easier to accidentally introduce deadlocks or other errors� A description of the ���� in a language
that provides a high level synchronization primitive is� on the other hand� much more readable�

hopCP supports multiway rendezvous� This means that the sender and all the receivers on a
synchronous port wait for each other� and the value put out by the sender is copied by all the
receivers before all the processes participating in the multiway rendezvous can proceed� Synchronous
ports could be inputs or outputs which are distinguished by the last character of the portname� �
for input� and � for output� It is possible to employ synchronous ports which deal only with control
and do not have data�

Multiway rendezvous is a powerful notion which facilitates the speci�cation of a wide variety of
concurrent algorithms very naturally
���� It subsumes broadcast style of communication �point to
multipoint communication	 which is very natural in hardware� but not supported by many popular
HDLs currently being used for synthesis� It does not mean that these situations are impossible to
specify without multiway rendezvous� but it becomes awkward to model them in terms of two�way
rendezvous�

����� A Multi Paradigm HDL

Many HDLs with a well speci�ed and simple formal semantic de�nition are available today� These
HDLs are designed based on a single paradigm� for example� many of these HDLs adopt a purely
functional view of computations
��� ���� many adopt a formal process model
��� ��� while others are
based on special theories like the Trace theory
���� An HDL based on a single paradigm �e�g� func�
tional view of computations	 is well suited for a limited class of circuits �e�g� computation oriented	�
but fares poorly when it comes to dealing with both computations and control�communication ac�
tivities� Our solution is to adopt a multi�paradigm language that amalgamates features from process
oriented languages �e�g� CSP	 to model control�communication and functional languages to model
computations�

����� Use of Asynchronous Ports

Design seldom proceeds through top�down re�nement� in practice� This is especially true in the
area of hardware design where a designer often makes decisions based on his�her knowledge of the
underlying circuitry or the geometry of the design� In other situations� a hardware designer is forced
to design around existing parts� To express design intent in this richer domain� lower level primitives
are often required�

As an example of the need for lower level primitives� consider an example� A binary counter
supports the operations load and increment and its output is connected to a module M � The act of
incrementing the counter causes the counter to put out a new value on its output port� This happens
in the lower level implementation of the counter whether the external world is �interested� in this

� VENKATESH AKELLA� GANESH GOPALAKRISHNAN

value or not�

How do we model this detailed behavior using a CSP�like language� If the value production by
the counter is modeled through rendezvous communication� we run into the following problem� the
value may be of �no interest� to M at this time� We would thus be forced to write a speci�cation in
which module M picks up and then discards this value�

Another use of asynchronous ports is to model status signals that can be set many times before
being read� as well as read many times after being set� This style of process interaction is very
di�cult�if not impossible to specify�using synchronous communication �i�e� rendezvous	 alone� In
short� hardware designers often wish to unbundle the synchronization and the value�communication
aspects of a rendezvous� In hopCP� we provide a construct known as asynchronous ports to model
such situations�

Asynchronous ports are distributed single�writer multiple�reader shared variables� Other HDL
users also have felt the need for asynchronous ports� For example� the ��rst asynchronous micropro�
cessor�
��� is generally considered to be speci�ed in a CSP�like language� yet� asynchronous port
assignments are extensively used in the speci�cation� In short� without using asynchronous ports�
many hardware systems become very di�cult to describe�

��� Speci�cation�design Validation Tools

����� Seriality Checking

Asynchronous ports must be used with caution� They must not be concurrently read and written
by two di�erent threads of execution� In hopCP we provide support for safe usage of asynchronous
ports through seriality checking� as will be described later� Although it is in principle possible to
allow asynchronous ports to be concurrently read and written through the use of special synchronizers
such as Q�
ops
���� we do not currently support this capability in hopCP� Though asynchronous
ports are used in
���� no support for the safe usage of asynchronous ports is o�ered in their system�
thus making it users� responsibility to use asynchronous ports safely�

����� Compiled Code Simulation

A high�level speci�cation is not very useful unless it is supported by a methodology to validate

it� We provide a simulation environment called CFSIM to validate hopCP speci�cations� CFSIM
is compiled�code concurrent functional simulator obtained by translating hopCP speci�cations into
CML �Concurrent ML	 source code� CML facilitates building concurrent�programming abstractions
and is implemented e�ciently capitalizing on the continuation�passing style technology of the SML of
New Jersey compiler
�� ���� CML is a practical language tested in a variety of large�scale projects like
eXene �a muti�threaded interface to X protocol	� distributed ML and distributed Nuprl �a theorem
proving environment	 implementations�

����� High Level Validation using Testers

The behavioral speci�cation of complex control intensive ICs can be hard to follow� even if such
ICs are described in a modern concurrent HDL� such as Occam
��� ��� ��� or hopCP� Although
a simulator can help �animate� the speci�cation for selected scenarios� output waveform traces
produced by typical simulation runs o�er very little help in understanding or debugging complex
control intensive ICs� In the hopCP system� high level validation is supported in two ways� In
the �rst approach� the designer can write tester processes that can simulate the environment of the
process being validated� For example� if a communications chip C with a send and a receive channel
is being simulated� two tester processes T� and T� can be written� one to continuously send messages

SPECIFICATION AND VALIDATION OF CONTROL INTENSIVE ICS IN HOPCP �

into the send channel� and another to continuously receive messages from the receive channel� T� and
T� can then be run in parallel with C� thereby getting the e�ect of concurrently sending messages and
reading messages from C� This e�ect is virtually impossible to achieve using traditional simulation
methods� In the second approach to high level validation� C� T�� and T� can be interconnected and
subject to the parComp algorithm� parComp will obtain a single process� CT � whose behavior is
equivalent to that of C k T� k T�� Process CT can be analyzed to reveal general properties of the
composite system �e�g�� �are two actions serial so that they can share a resource��	� These two
methods of debugging speci�cations have proved to be quite valuable� for example� in debugging the
Intel ���� USART speci�cation� The testers that we wrote actually proved to be very readable and
succinct speci�cations of the system being debugged�

Organization

The remainder of this paper is organized as follows� In section �� we provide an overview of
hopCP� In section �� we provide an informal description of the ����� In section �� we provide
a formal description of the ���� in hopCP� In section �� we present details of the hopCP design
environment� including details of the behavioral inference algorithm parComp� a static analysis tool
to detect seriality� the compiled code functional simulator CFSIM� and the use of tester processes
for debugging� We then provide concluding remarks and outline ongoing work in section �� An
Appendix is also provided� containing deferred details�

� Overview of hopCP

hopCP is a notation for describing concurrent�state transition systems based on a functional lan�
guage augmented with features to express synchronous and asynchronous value communication� The
basic unit of description is a MODULE which consists of a set of communication ports and a
behavioral description called the HFG �hopCP Flow Graph	�

A hopCP speci�cation has six sections described below out of which only the MODULE and the
BEHAVIOR sections are mandatory�

�i	 MODULE section introduces the name of the module being described�

�ii	 TYPES section introduces the datatypes of the communication ports used in the module�
Types can be de�ned in terms of bit and bitvector which are primitive types�

�iii	 SYNCPORT section declares all the synchronous communication ports used in the speci�cation�
A synchronous port allows rendezvous style communication� as in CSP�� hopCP�s rendezvous is
multiway� the sender and all the receivers on a synchronous port synchronize �waiting for each
other	� the sent value is copied by all the receivers� and they all proceed� Synchronous ports
could be inputs or outputs which are distinguished by the last character of the portname� �
for input� and � for output�

�iv	 ASYNCPORT section declares all the asynchronous communication ports used in the spec�
i�cation� An asynchronous port is a shared variable which provides communication without
explicit synchronization� Asynchronous ports can be written by only one module�its owner�
They can be read in any number of other modules than the owner module� The ownership of
asynchronous ports is �xed i�e� it cannot be changed dynamically during the execution of the
system�

�we use �port� and �channel� interchangeably

� VENKATESH AKELLA� GANESH GOPALAKRISHNAN

�v	 FUNCTION section contains the user�de�ned functions used in the speci�cation� The functions
are written in a �rst�order functional language�

�vi	 BEHAVIOR section describes the state�transition system which captures the behavior of the
hardware system being speci�ed� The state�transition system being described is called HFG�
and is described next�

��� hopCP Flow Graph

A HFG consists of a set of states� a set of actions and a set of transitions� States in hopCP
are �control� data	 state pairs where control states are like �nite�state machine �FSM	 states� and
data states capture the contents of internal storage locations� An action in hopCP is either a
communication action or the evaluation of an expression� There are three types of communication
actions�

�� Data Query and Data Assertion� These involve value communication and synchronization� For
example� p�x called data query denotes synchronizing on input port p and receiving a value
denoted by x while p�e called data assertion denote synchronization on the output port p and
sending the value denoted by expression e�

�� Synchronous Control Actions� These involve only synchronization no value communication� For
example� p� denotes an input synchronization action on input port p while p� denotes an output
synchronization on output port p�

�� Assignment Actions� Assignment actions provide asynchronous communication via shared vari�
ables� For example� a �� e is an assignment action which involves writing the value denoted
by expression e into the shared variable denoting the asynchronous port a�

A transition tr � Transition is a triple �pre�tr	� act�tr	� post�tr		 where pre�tr	 denotes a set of
states called precondition of the transition� post�tr	 denotes a set of states called postcondition of the
transition� and act�tr	 denotes the action of the transition�

The execution semantics of a HFG are similar to that of a Petri net� Let tr � Transition� if tr is
enabled �i�e� execution reaches pre�tr		 then the system performs actions act�tr	 and the execution
reaches post�tr	� Note that no notion of clocks or time is being associated with the performance of
the actions act�tr	� Also note that if more than one tr � Transition is enabled� they can perform
their respective actions concurrently�

We shall illustrate behavioral description in hopCP using the following examples�

Example �

Figure � describes a module ex� which declares TxRDY as an output asynchronous channel and
a� and b� as synchronous channels� f is a user�de�ned function used in the behavioral description�
f is speci�ed in a �rst�order functional language augmented with bit�vector manipulation routines�
Informally� module ex� starts in a state �Q�
x�	� engages in an data query a�y� and depending on
whether the input value y is even or odd it proceeds to perform the data assertion b��f x y	 and
an asynchronous output action TxRDY �� � and goes back to its initial control state Q with its
datapath state modi�ed to the value denoted by y � � or performs c��subvector�y� �� �		 and returns
to the initial control state Q with y as its datapath state� The behavior has the following features�

�� Assignment Action� apo �� expr where apo � AsyncPort is an assignment action� In module
ex�� TxRDY �� � an assignment action which denotes the evaluation of the expression expr

SPECIFICATION AND VALIDATION OF CONTROL INTENSIVE ICS IN HOPCP �

MODULE ex�

SYNCPORTS

a��b� � byte�

c� � byte

ASYNCPORT

TxRDY� � bit

FUNCTION

fun f a b � if �index�a��	��	 then update�b�
��	 else b�

BEHAVIOR

Q �x�
� a�y �� ��even y	 �� �b��f x y	� TxRDY �� �	 �� Q �y���	

� ��odd y	 �� c��subvector�y����		 �� Q �y�	

END

Figure �� Illustrating Alternate Behavior and Assignment Actions

�which is � in our example	 and updating the asynchronous port TxRDY � An assignment
action does not have to synchronize with a receiver before transmitting the value� In this
sense� it is asynchronous� Applications of this style of communication include outputting status

information and modeling system initialization �reset	� It is characterized by the absence of an
rendezvous or handshake unlike synchronous communication� Indiscreet use of asynchronous
communication could lead to undesired behavior like metastability and deadlock� In hopCP
framework� unsafe usage of asynchronous communication actions is checked by static analysis
of the underlying HFGs and appropriate warnings are issued�

�� Compound Actions� A tuple of actions a�� a�� � � � � am constitutes a compound action and is
characterized by the following features�

�i	 a�� a�� � � � � am could denote data queries� data assertions� input control actions� output
control actions or assignment actions with the restriction that all ai and aj should be
non�interfering� i�e� no two ai and aj should use the same channel or try to update the
same variable� For example the compound actions �a�x� a�y� � � �	 and �a�x� b�x� � � �	 are
not permitted�

�ii	 Let �s� �a�� a�� � � � � am	� s
�

	 � Transition� the execution of the system in a state s cor�
responds to performing actions �a�� a�� � � � � am	 concurrently and going to state s

�

� The
execution of the system via a compound action is analogous to that of the cobegin�coend

statement of concurrent programming languages�

In ex�� �b��f x y	� TxRDY �� �	 denotes a compound action�

�� Choice� In hopCP conditional behavior is captured by guards and choice construct �represented
by j� in the textual syntax of hopCP	� Guards are either boolean expressions� data queries �or
input control actions	 or both� We do not allow data assertions� output control actions� or
assignment actions in guards� The informal semantics of the choice construct is as follows� all
the guards are evaluated in parallel� the guard which succeeds �a guards succeeds if its boolean
expression evaluates to true and if the input communication action succeeds	 is picked and the
execution moves to the corresponding state� If none of the guards succeeds� it denotes a error

in the speci�cation� and� the system halts� If more than one guard succeeds� any one of them
can be picked� This introduces nondeterminism in hopCP�

� VENKATESH AKELLA� GANESH GOPALAKRISHNAN

MODULE ex

SYNCPORT

a��b� � byte�

b��c� � byte

FUNCTION

fun f a b � if �index�a��	��	 then update�b�
��	 else b�

fun g a b � if �index�a��	��	 then update�b�
��	 else a�

BEHAVIOR

�P �x��
� a�y� �� b��f x� y�	 �� P �y��	

��

�Q �x
�
� b�y
 �� c��g x
 y
	 �� Q �y
�	

END

Figure �� hopCP Speci�cation Illustrating Parallel Behavior

In the above example� �even y	 and �odd y	 are the guards which control the system behavior�
Expression guards can be speci�ed with the help of user�de�ned functions in the FUNCTION
section of the speci�cation�

Example �

The previous example was basically sequential in nature except for the restricted form of concur�
rency introduced by compound actions� Figure � is a hopCP speci�cation of a concurrent system
with synchronization and value communication� It captures two independent threads of activities
corresponding to two stages of a pipeline coupled by a rendezvous on the synchronous communi�
cation channel b� The stage described by P is capable of performing an data query a�y� and a
data assertion b��f x� y�	 while the stage described by Q can �rst engage in a data query b�y� and
then perform a data assertion on channel c� The actions a�y� and c��g x� y�	 can be performed
independently �hence concurrently	 while the actions b�y� and b��f x� y�	 have to be performed
synchronously� This is captured in the HFG shown in �gure ��

The initial states �P�
x��	 and �Q�
x��	 are marked by arrows� Initially� a�y� can be performed
by stage P while Q waits on action b�y�� Once a�y� is completed� both stages Q and P can engage
in b�y� and b��f x� y�	 which results in the datapath variable y� in stage Q getting a value denoted
by the expression �f x� y�	 �referred to as value communication	� Once this synchronous activity is
complete� stage Q can engage in c��g x� y�	 and stage P can engage in a�y� concurrently�

This illustrates synchronization and value communication between two agents via two�way ren�

dezvous� Multiway rendezvous is said to occur when there is more than one agent willing to perform
a data query corresponding to a data assertion� �The converse of the situation�more than one
agent asserting a value on the same channel�is not supported in hopCP�	 Multiway rendezvous is
a powerful notion which facilitates the speci�cation of a wide variety of concurrent algorithms very
naturally
���� It subsumes broadcast style of communication �point to multipoint communication	
which is very natural in hardware� Multiway rendezvous is not supported by most HDLs currently
being used for high level synthesis� Without multiway rendezvous� many situations become awkward
to model� Figure � shows a hopCP speci�cation �just the behavior section is shown for convenience	�
It illustrates multiway rendezvous on channel b�

Initially� only the stage P can make any progress by engaging in a�y�� Once this is complete� a
multiway rendezvous on channel b is possible� This involves agents P � Q and R waiting for each other
and once all the of them arrive� agent P transmits the value denoted by the expression �f x� y�	

SPECIFICATION AND VALIDATION OF CONTROL INTENSIVE ICS IN HOPCP �

���
���
����
���
���
����
��
�
��
�
��
�
��
�
��
�
�
��

��
��
��
��
��
�
��
��
��
�
��
�
��
�
��
�
��
�
��
�
��
��
��
��
�
��
��
��
��
��
��
��
�
��
��
��
��
��
��
���
��
��
��
���
��
��
���
���
���
���
���
���
���
����
����
�����
�

������
������

����������������������
����

��
���
���
���
���
���
��
���
��
���
��
���
��
��
���
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
�
��
��
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
��
�
��
��
��
�
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
�
��
��
�
��
��
�
��
��
�
��
�
��
�
��
�
��
�
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
��
���
��
��
��
��
���
��
��
���
��
���
��
���
���
��
��

��������������������
��
��
��
�
��
��
��
�
��
��

��
��������

�������
�����
�����
����
����
����
���
����
���
���
���
��
���
���
��
���
��
��
���
��
��
��
���
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
�
��
��
��
�
��
��
�
��
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
���
��
��
��
���
��
���
��
���
��
���
���
���
���
���
���
����
���
����
�����
�����
������
�������
������������
��

��������������������
��
��
��
��
��
��
��
��
��

���
��������

������
�����
�����
����
����
����
���
���
���
���
���
���
���
��
���
��
���
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
��
�
��
��
�
��
��
��
�
��
��
��
�
��
��
��
��
��
��
��
�
��
��
��
��
��
��
���
��
��
��
��
���
��
���
��
���
��
���
���
���
���
���
���
����
���
����
����
�����
�����
�������
����������
��

�����
������

�������
������
��������������

��
���
���
���
���
���
���
��
���
���
��
���
��
��
���
��
��
��
��
���
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
�
��
��
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
��
�
��
��
��
�
��
��
��
��
��
�
��
��
��
�
��
��
��
��
��
��
��
�
��
��
��
�
��
��
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
��
�
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
�
��
��
��
�
��
��
�
��
�
��
�
��
��
�
��
��
��
�
��
��
��
�
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
���
��
���
��
���
���
��
���
���
�

���
���
����
���
���
����
��
�
��
�
��
�
��
�
��
�
�
��

��
��
��
��
��
�
��
��
��
�
��
�
��
�
��
�
��
�
��
��
��
�
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
���
��
���
���
��
���
���
���
����
���
����
�����
���

�
�
��
�
��
�
��
�
��
��
�
��
��
��
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
��
���
���
���
���
����
�������

��
������
���
���
���
��
��
���
�
��
��
��
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
��
�
��
��
��
���
��
���
���
����
�������
��

�����
����
���
���
��
��
���
��
��
��
��
��
��
��
��
��
�
��
�
��
��
��
��
��
��
�
��
��
�
��
��
�
��
�
��
�
�

�
��
�
��
�
��
��
�
��
�
��
��
��
�
��
��
��
�
��
��
�
��
�
��
�
��
��
��
��
��
��
��
���
��
���
���
���
�����
�������

���
�����
����
��
���
��
��
��
��
��
��
��
�
��
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
��
�
��
��
��
���
��
���
���
����
��

�����
����
���
���
���
��
��
��
��
��
��
��
�
��
��
�
��
�
��
�
��
��
��
��
��
��
��
��
�
��
�
��
��
�
��
�
��
�

�
�
��
�
��
�
��
��
�
��
��
�
��
��
��
��
��
��
��
�
��
�
��
�
��
��
�
��
��
��
��
��
��
���
��
���
����
����
������

���
����
����
��
���
��
��
��
��
��
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
��
��
��
��
��
���
���
���
����
��

�����
����
����
���
��
���
��
��
��
��
��
��
��
��
��
��
��
�
��
��
�
��
��
��
��
�
��
��
�
��
��
�
��
�
��
�
��

�
�
��
�
��
�
��
�
��
��
�
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
���
���
���
����
�����

��
�����
���
���
��
��
��
��
��
��
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
��
��
��
��
��
���
���
���
�����
��

������
����
����
���
��
���
��
��
��
��
��
�
��
��
�
��
��
��
�
��
��
��
��
�
�
��
��
��
��
�
��
�
��
�
��
��
�
��

P Q

s�
s�

a�y� c��g x� y�	b��f x� y�	

x��y��
x��y��

x��
x��

Figure �� HFG of hopCP Speci�cation in Example �

BEHAVIOR

�P �x��
� a�y� �� b��f x� y�	 �� P �y��	

��

��Q �x
�
� b�y
 �� c��f x
 y
	 �� Q �y
�	

��

�R �x��
� b�y� �� d��f x� y�	 �� R �y��	

	

END

Figure �� hopCP Speci�cation Illustrating Multiway Rendezvous

�	 VENKATESH AKELLA� GANESH GOPALAKRISHNAN

on channel b which is received by agents Q and R and bound to their internal variable y� and y�
respectively and then P � Q and R proceed to perform their next actions�

The multiway rendezvous advocated in hopCP is simpler than that in the protocol speci�cation
language LOTOS
���� in the sense that the multiway rendezvous and its participants can be statically
determined by a simple analysis� This is because we do not have dynamic process creation in hopCP�

� An Informal Description of ����

In this section we present the functional description of Intel ���� USART� We begin by pointing
out some of the essential di�culties of specifying a system such as the ����� We then provide the
details� almost verbatim from the manual pages
����

Intel ���� is a USART designed for data communication with Intel�s microprocessor families� It
possess independent threads of execution� has coexistent synchronous �clocked	 and asynchronous

�unclocked	 subcomponents� and supports multiple modes of operation� such as the interrupt�driven
and the polled modes� It can be programmed for various baud rates� the number of start�stop
bits� error conditions� as well as the synchronization scheme� It can perform computations such as
error�checking� assembling and disassembling of data� and code�conversion� Such ICs are commonly
classi�ed as �control intensive�� A single language with a compositional formal semantics that can
specify all these aspects of control intensive ICs has not been designed to date� It may even be
impossible to develop such a language because of the disparate modes of behavior embodied in
control intensive ICs�

There are two approaches to specifying control intensive ICs� The most prevalent approach is to
describe the detailed implementation of a control intensive IC in a language such as VHDL
����
Such descriptions are well suited for simulation� Various aspects of the behavior of these ICs can be
revealed by applying suitable simulation vectors and observing the responses� on a case by case basis�
However such descriptions are not well suited for studying general properties of control intensive ICs
because of the lack of a compositional semantics by means of which the overall behavior can be
inferred from the behaviors of the parts and the interconnections among the parts� The alternative
approach involves developing a language in which one can specify many �if not all	 the aspects of
control intensive ICs in a compositional manner� hopCP is a language of the latter type� Although a
language such as hopCP cannot be used to describe all the operational aspects of a control intensive
IC� it is well suited for writing high�level descriptions that make the global properties of interest
quite explicit� Given the increasing prevalence of high�level synthesis tools
��� �� ���� descriptions
such as written in hopCP can be compiled to derive large portions of the silicon implementation of
control intensive ICs�

We now proceed to describe the ���� in great detail� The ���� can be programmed by the CPU to
operate under many serial data transmission schemes� The USART accepts data characters from the
CPU in a parallel format and converts them into a continuous serial data stream for transmission�
Simultaneously� it can receive serial data streams and convert them into parallel data characters for
the CPU� The USART will signal the CPU whenever it can accept a new character for transmission
or whenever it has received a character for the CPU� The CPU can read the complete status of the
USART at any time� These include data transmission errors� and control signals such as SYNDET

and TxEMPTY� Figure � shows the block diagram and the pin con�guration of the Intel �����

The ���� is programmable by the system software� A set of control words �called mode and
command	 must be sent out by the CPU to initialize the ���� to support the desired communication
format� These control words will program the baud rate� character length� number of stop bits�

SPECIFICATION AND VALIDATION OF CONTROL INTENSIVE ICS IN HOPCP ��

�����
�����
����
������
�����
�����

�����
���

�����
�����
����
������
�����
�����

�����
���

�����
�����
����
������
�����
�����

�����
���

�����
�����
����
������
�����
�����

�����
���

�������������������������������������� �����
�����
����
������
�����

�����
�����
���

��������������������������������������

���
�����
����
�����
������
�����

����
�����
�

��������������������������������������

��������������������������������������

�����
�����
����
������
�����

�����
�����
���

���
�����
����
�����
������
�����

����
�����
�

�����
����
�����
������
�����

�����
����
����

����
����
�����
�����
������

�����
����
�����

���
�����
����
�����
������
�����

����
�����

�

�����
�����
����
������
�����
�����

�����
���

�����
�����
����
������
�����
�����

�����
���

�����
�����
����
������
�����
�����

�����
���

�
��
�
��
�
��
�
��
�
��
�
��
��
��
�
��
�
��
�
��
�
��
�
��
�

�
��
�
��
�
��
�
��
�
��
�
��
��
��
�
��
�
��
�
��
�
��
�
��
�

��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��

���
�����
����
�����
������
�����

����
�����
�

�
��
�
��
�
��
�
��
�
��
�
��
��
��
�
��
�
��
�
��
�
��
�
��
�

�
��
�
��
�
��
�
��
�
��
�
��
��
��
�
��
�
��
�
��
�
��
�
��
�

��������������������������������������

�����
�����
����
������
�����

�����
�����
���

�� �����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
������

�����
����
�����
�����
�����
�����
�����
�����
�����

�����
��

�� �����
�����
�����
�����
�����
�����
����
�����
�����
�����
�����
������
�����

�����
�����
����
�����

�����
�����
�����
�����
�����

���

�� �����
�����
�����
�����
�����
�����
����
�����
�����
�����
�����
������
�����

�����
�����
����
�����

�����
�����
�����
�����
�����

���

�� �����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
������
�����
����
�����
�����
�����
�����
�����

�����
�����
�����
��

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
������
�����
����
�����
�����
�����
�����
�����
�����
�����

�����
��

��

d��d�

SYNDET

RxC

RxRDY

RxD

TxC

TxE

TxRDY

TxD

DATABUS

INTERNAL

RTS

CTS

DTR

DSR

CS

C�D

WR
RD

CLK

RESET

bu�er

transmit

control

transmit

bu�er

receive

control

receive

control

modem

logic
control

read�write

bu�er

bus

data

Figure �� Intel ���� Block Diagram and Pin Con�guration

�� VENKATESH AKELLA� GANESH GOPALAKRISHNAN

synchronous or asynchronous operation� even�odd�no parity� etc� In the synchronous mode� options
are also provided to select between internal and external character synchronization�

Once programmed� the USART is ready to perform its communication functions� The TxRDY

output is raised high to signal the CPU that the USART is ready to receive a data character from
the CPU� This output�TxRDY	 is reset automatically when the CPU writes a character into the
����� On the other hand� the ���� receives serial data from the MODEM or I�O device� Upon
receiving an entire character� the RxRDY output is raised high to signal the CPU that the ���� has
a complete character ready for the CPU to fetch� RxRDY is reset automatically upon the CPU data
read operation� The ���� cannot begin transmission until the TxEnable�Transmitter Enable	 bit
is set in the command word and its has received a Clear To Send �CTS	 input� The TxD output
will be held in the marking state upon reset� Next let us examine the detailed requirements of the
synchronous and asynchronous modes of transmission and reception�

��� Asynchronous Mode �Transmission�

Whenever a data character is sent by the CPU the ���� automatically adds a Start bit �low level	
followed by the data bits �least signi�cant bit �rst	� and the programmed number of Stop bits to
each character� Also� an even or odd Parity is inserted prior to the Stop bit�s	 as de�ned by the
mode instruction� The character is then transmitted as a serial data stream on the TxD output� The
serial data is shifted out on the falling edge of the TxC as de�ned by the mode instruction� When
no data characters have been loaded into the ����� TxD output remains high�

��� Asynchronous Mode �Receive�

The RxD line is normally high� A falling edge on this line triggers the beginning of a START bit�
The validity of this START bit is checked by again strobing this bit at its nominal center� If a low
is detected again� it is a valid START bit� and the bit counter will start counting� The bit counter
thus locates the center of the data bits� the parity bit �if it exists	 and the stop bits� If a parity error
occurs� the Parity Error
ag is set� If a low is detected as the STOP bit� the Framing Error
ag is
set� The STOP bit signals end of a character� The character is then loaded into the parallel I�O
bu�er of the ���� and the RxRDY pin is raised to signal the CPU that a character is ready to be
fetched� If a previous character has not been fetched by the CPU� the present character replaces it in
the I�O bu�er and the Overrun Error
ag is set �and the previous character is lost	� The occurrence
of any of these errors will not a�ect the operation of the �����

��� Synchronous Mode �Transmission�

The TxD output is continuously high until the CPU sends its �rst character to the ���� which
usually is a sync character� When the CTS line goes low� the �rst character is serially transmitted
out� All characters are shifted out on the falling edge of the TxC� Data is shifted out at the same rate
as the TxC� Once the transmission has started� the data stream at the TxD output must continue at
the TxC rate� If the CPU does not provide a character before the transmitter bu�er becomes empty�
sync characters will be automatically inserted in the TxD output stream and TxEMPTY pin is set high
to indicate the same�

��� Synchronous Mode �Receive�

In this mode� character synchronization can be internally or externally achieved� If the sync mode
has been programmed� ENTER HUNT command should be included in the the �rst command word�

SPECIFICATION AND VALIDATION OF CONTROL INTENSIVE ICS IN HOPCP ��

Data on the RxD pin is sampled on the rising edge of RxC� The Receiver Bu�er is compared at every
bit boundary with the �rst sync character until a match occurs� If the ���� is programmed with
two sync characters� then the subsequent received character is also compared� when both sync

characters match� the USART ends the HUNT mode and is in character synchronization� The
SYNDET pin is set high and is reset by subsequent STATUS read operation� In the external sync
mode� synchronization is achieved by applying a high level on the SYNDET pin� thus forcing the ����
out of the HUNT mode� Parity and Overrun errors are checked in the same way as above�

The command word controls the actual operation of the ���� by issuing commands like Enable
Transmit�Receive� Error Reset and Modem Control and Internal Reset� The command instruction
can be issued anywhere during data transmission while the mode instruction can be issued only
after an internal or external reset� In a data communication environment it is necessary to examine
the �status� of the active device to ascertain if errors have occurred or other conditions that require
the processor�s attention� The ���� has facilities that allow the programmer to �read� the status of
the device at any time during the functional operation� Some of the bits of the STATUS word have
identical meaning to the external output pins so that the ���� can be used in a completely polled or
interrupt�driven environment� the TxRDY signal is an exception�

� Formal Description in hopCP

The above informal speci�cation makes it clear that unless a precise and succinct notation is
employed� the overall behavior of the ���� will not be comprehensible for a user� We now discuss a
suitable logical organization of a hopCP speci�cation of the �����

��� Logical Organization of the Speci�cation of 	�
�

The speci�cation of the Intel ���� in hopCP raises the following issues�

� Partitioning�

It is not very useful to specify the whole ���� as one monolithic hopCP module� It would
not capture the concurrency in the behavior accurately� Therefore we model it as a collection
of three independent processes� main which handles the CPU interface and the modem con�
trol� xmit which describes the transmitter section which includes both the synchronous and
asynchronous transmission modes and the associated status information� and rcvr which de�
scribes the receiver section which includes both the synchronous and the asynchronous modes
of behavior�

� Logical Channels�

The xmit� rcvr and main execute concurrently and communicate with each other using syn�
chronous and asynchronous ports� The communication channels used in the hopCP speci�ca�
tion and the electrical pins of the ���� �shown in �gure �	 are not in direct correspondence�
Hence� we call the communication ports used in hopCP speci�cation as logical channels� Sev�
eral logical channels can be mapped into the same set of physical wire�s	� This is useful in
two ways��i	 it helps us to model bidirectional buses as two separate unidirectional logical
channels since bidirectional buses are not allowed in hopCP and �ii	 A time�shared bus like
�D�� D�� � � � � D�	 which is used to communicate data� status� and control from�to the CPU�
is modeled as four separate logical �unidirectional	 channels� This makes the speci�cation
clearer� Time�shared implementation can be derived in hopCP as an optimization� Derivation
of circuits from hopCP is not discussed further in this paper�

�� VENKATESH AKELLA� GANESH GOPALAKRISHNAN

� Handling Shared State�

command� mode� status and sync characters are variables common to xmit�rcvr� and main

processes� command� mode� and sync characters are written by the CPU and read by all the
three processes while status is read by the CPU and written by xmit and rcvr processes� In
hopCP� shared variables like command� mode� and sync characters are handled by keeping
local copies of each variable in all the processes which read it and maintaining the consistency
of the data by using multiway rendezvous� Multiway rendezvous ensures data consistency
because value is sent to all the processes participating in the multiway rendezvous at the same
time� status is handled by keeping only one copy in the main process and having xmit and
rcvr processes send their individual status information to the main processes which does the
update�

� Status Signals and Interrupt�driven Mode

Status signals like TxRDY �which announces that the transmitter section is ready to receive
the next character	 and RxRDY �announcing the availability of next character	 are modeled
in hopCP using asynchronous channels� Asynchronous communication actions do not need
synchronization� they involve asserting a value on the associated channel� This enables us to
model interrupt�driven modes of behavior� because TxRDY�RxRDY could be connected to the in�
terrupt lines of the CPU� If so� a status output on TxRDY�RxRDY could trigger the corresponding
interrupt�handler in the CPU�

xmit�rcvr� and main are implemented by the hopCP modules XMIT� RCVR� and MAIN modules�
which are discussed in detail next� The logical interconnection of the three modules is shown in
�gure ��

��� Main Module

The speci�cation has six sections as described earlier�

Module MAIN

Type

byte� vector � of bit�

Bit� vector � of bit

The �rst two sections shown above specify the name of the module and the types of the various
communication channels�

SyncPort

indata�� inctrl��rcvrmain�� rcvrstatus� � byte�

broadcastdata�� broadcastctrl�� out�� xmitmain� � byte�

indata�� inctrl�� rcvrmain�� readdata�� readstatus��rcvrstatus� � byte�

readdata�� readstatus�� intReset� � Bit

AsyncPort

reset� � Bit�

reset� � Bit�

TxRDY�� RxRDY� � Bit�

XmitBufferEmpty�� ReceiverBufferEmpty��extReset� � Bit

SPECIFICATION AND VALIDATION OF CONTROL INTENSIVE ICS IN HOPCP ��

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�
��
�
��
�
��
��
��
�
��
�
��
�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
� �

��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
������������ ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ����������

�����
�����
����
������
�����
����
�����
����

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
����������� ����������

����
�����
�����
������
����
�����
�����
����

����
�����
�����
������
����
�����
�����
����

����
�����
�����
������
����
�����
�����
����

����
�����
�����
������
����
�����
�����
����

�
��
�
��
�
��
�
��
�
��
�
��
��
��
�
��
�
��
�
��
�
��
�
��
�

�����
�����
�����
������
����
�����
�����
���

�����
�����
�����
������
����
�����
�����
���

�����
�����
����
������
�����
����
�����
����

��������������������������������������

�
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��
�
��
�
��
�

�
��

��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��

���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� �������

�
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
�

��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��

�
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
��
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
�

��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��

���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������

���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���
Asynchronous Point�to�Point Channel

Synchronous Point�to�Point Channel

Asynchronous Broadcast Channel

Synchronous Broadcast Channel

MAIN

RCVR

XMIT

broadcastctrl�

InternalReset�

broadcastdata�

xmitmain�

XmitBufferEmpty

TxD�

SYNDET�

RxD�

ReceiverBufferEmpty

rcvrstatus�

out�

RxRDY�

TxRDY�

readstatus�

readdata�

inctrl�
indata�

reset

Figure �� Logical Interconnection of XMIT� RCVR and MAIN modules

�� VENKATESH AKELLA� GANESH GOPALAKRISHNAN

The SyncPort section describes the synchronous communication channels used in the speci�cation�
indata��inctrl� are input channels which carry data and control information from the CPU while
out� is the output channel which carries data and status information to the CPU� readdata� and
readstatus� are input control channels �only synchronization� no value communication	 through
which the CPU initiates a data or status read operation� broadcastdata and broadcastctrl are
internal channels which broadcast mode and command words to XMIT and RCVR modules using
multiway rendezvous� rcvrmain and xmitmain are internal channel to receive status information
from RCVR module and send data to XMIT module respectively� The AsyncPort section describes
the asynchronous channels �shared variables	 used in the speci�cation� reset and status outputs
RxRDY and TxRDY are modeled as bit�valued asynchronous ports� XmitBufferEmpty� intReset�

extReset� ReceiverBufferEmpty are internal asynchronous ports which are written by the MAIN
module and read by the XMIT and RCVR modules�

Function

fun IsTrue x � if �x��	 then true else false endif�

fun IsFalse x � if �x�
	 then true else false endif�

fun SyncMode x � if �subvector�x�
��	 �
	 then true else false endif�

fun ReadSync� x � if �subvector�x����	 �
	 then true else false endif�

fun InternalReset y � if �subvector �y�
�
	 � �	 then true else false endif�

fun UpdateStatus status new�st � orb�status� new�st	

The function section describes the user�de�ned functions used in the speci�cation� They capture
the decoding of the mode words and assembling the status words based on their format in
����
Note that the functions are expressed in a �rst�order functional language with built�in routines for
bit�level manipulations� subvector�x�y�z� returns the value of the integer formed by the bits from
y to z from the bitvector denoted by x while orb does a simple bitwise OR operation� For example�
subvector�������� 	
� and orb����� 	 ��

The Behavior section describes the underlying state�transition system whose initial control state
is MAIN INITIATE�

MAIN�INITIATE �� �� ���IsTrue reset	 �� �extReset �� �	 �� MAIN�IDLE ��	

� �not�IsTrue reset		 �� MAIN�INITIATE ��	�

In MAIN INITIATE� the module waits for the reset input to go high� once reset� the module asserts
a � on the extReset output �an assignment action	 which is a signal internal to the USART to reset
the XMIT and RCVR modules and proceeds to an idle control state called MAIN IDLE�

MAIN�IDLE �� �� indata�mode �� broadcastdata�mode �� READ�SYNC�CHAR �mode��

READSYNCCHAR �m� �� ���SyncMode m	 �� indata�sync� �� broadcastdata�sync�

�� OPTIONAL�SYNC�READ �m� sync��	

���not�SyncMode m		 �� READ�CMD�WORD �m�
�
�		�

OPTIONAL�SYNC�READ �m� s�� �� ���ReadSync� m	 �� indata�sync� ��

broadcastdata�sync� �� READ�CMD�WORD �m�s��sync��	

� ��not�ReadSync� m		 �� READ�CMD�WORD �m�s��
�		�

READCMDWORD �m� s�� s�� �� inctrl�ctrl �� broadcastctrl�ctrl �� MAINEXECUTE �
�
��

SPECIFICATION AND VALIDATION OF CONTROL INTENSIVE ICS IN HOPCP ��

In MAIN IDLE� the module receives the mode word and broadcasts it to XMIT and RCVR modules
and enters a state called READ SYNC CHAR where it checks if the current mode is synchronous or
asynchronous by invoking the function SyncMode� If the USART has been programmed to operate in
the synchronous mode it reads one or two sync characters depending on the mode words�determined
by the function ReadSync
	 and branches to the control state READ CMD WORD to read the command
word and broadcast it to the XMIT and RCVR modules using multiway rendezvous mechanism of
hopCP� If the USART has been programmed to operate in the asynchronous mode it directly proceeds
to READ CMD WORD� Note that� state READ CMD WORD is annotated with variables m�s
�s
 which re
ect
the fact that the internal datapath of the module is updated to contain the mode words and the
sync characters� This describes the initialization sequence�

MAIN�EXECUTE �status� d� �� �indata�x �� �XmitBufferEmpty ��
� TxRDY ��
	 ��

xmitmain�x �� �XmitBufferEmpty �� ��TxRDY �� �	

�� MAIN�EXECUTE �status�d�	

� �inctrl�y �� ���InternalReset y	 �� intReset� �� MAIN�IDLE��	

���not�InternalReset y		 �� broadcastctrl�y ��

MAIN�EXECUTE �status�d�			

� �rcvrmain�data �� �ReceiverBufferEmpty ��
� RxRDY �� �	 ��

MAIN�EXECUTE ��update�status����		�data�	

� �readdata� �� out�d �� �ReceiverBufferEmpty �� �� RxRDY ��
	 ��

MAIN�EXECUTE �update�status����	�d�	

� �readstatus� �� out�status �� MAIN�EXECUTE �status� d�	

� �rcvrstatus�st �� MAIN�EXECUTE ��UpdateStatus status st	�d�	

� ��IsFalse reset	 �� extReset ��
 �� MAIN�INITIATE ��	

The fragment of hopCP code shown above� denotes the execution loop of the USART� It is ex�
pressed using the choice construct of hopCP� In the state MAIN EXECUTE� the USART either receives
the data from the CPU and transmits to the XMIT module� or receives a request to read status or
data from the CPU wherein it sends the available data or status on out channel� It is also capable
of receiving status updates from the RCVR module and receiving further command words from the
CPU� If the internal reset command is issued by the CPU anytime� the module resets the XMIT and
RCVR modules through the intReset channel and branches back to MAIN IDLE�

��� Rcvr Module

The behavior section of the Rcvr module is described next� It captures the synchronous and
asynchronous receive operations

RCVR�START �� �� ��IsTrue extReset	 �� RCVR�INITIATE ��	

���not�IsTrue extReset		 �� RCVR�START ��	�

RCVR�INITIATE �� �� �broadcastdata�m ��

��SyncMode m	 �� broadcastdata�s� �� RCVR�READ�SYNC� � m� s��	

���not�SyncMode m		 �� RCVR�EXECUTE �m�
�
� 		�

RCVR�READ�SYNC� �m�s�� �� ��ReadSync� m	 �� broadcastdata�s� ��

RCVR�EXECUTE �m� s�� s��	

� ��not �ReadSync� m		 �� RCVR�EXECUTE �m� s��
�	�

Initially �when the power is switched on	� the RCVR is in a state RCVR START where it waits for
the extReset asynchronous input to go high following which it goes to state RCVR INITIATE� In this

�� VENKATESH AKELLA� GANESH GOPALAKRISHNAN

state� it receives the mode word from the MAIN module �via multiway rendezvous with XMIT and
MAIN modules	� If the mode is synchronous� RCVR module proceeds to receive one or two sync
characters and proceeds to the control state RCVR EXECUTE with the mode and sync characters as
the internal datapath state� If the mode is asynchronous it proceeds directly to RCVR EXECUTE�

RCVR�EXECUTE �m� s�� s�� ��

��IsFalse extReset	 �� RCVR�START ��	

�� intReset� �� RCVR�INITIATE ��	

��broadcastctrl�ctrl ��

��ReceiveEnable ctrl	 ��

��SyncMode m	���SYNDET��
	 �� ENTER�HUNT �m�s��s��ctrl�
�	

� ��not �SyncMode m		 �� RCVR�ASYNC �m��BitsPerChar m	�
�		

���not�ReceiveEnable ctrl		 �� RCVR�EXECUTE �m� s�� s��		�

In RCVR EXECUTE� it receives the command word �again via multiway rendezvous	 and either
enters a synchronous or an asynchronous receive mode� In the state RCVR EXECUTE� RCVR module
is capable of handling an internal reset �via the command word	 or an external �hard	 reset�

ENTER�HUNT �mode� syn�� syn�� ctrl� rxbuffer� �� RxD�din ��

CHECK�FOR�SYNC�CHAR� �mode� syn�� syn�� ctrl�

�AccumulateSerialData rxbuffer din	��

ENTER�HUNT� �mode� syn�� syn�� ctrl� rxbuffer� �� RxD�din ��

CHECK�FOR�SYNC�CHAR� �mode� syn�� syn�� ctrl�

�AccumulateSerialData rxbuffer din	��

CHECK�FOR�SYNC�CHAR� �m� s�� s�� ctrl� rxb� ��

��IsFalse extReset	 �� RCVR�START ��	

��intReset� �� RCVR�INITIATE ��	

���rxb�s�	 ��

��ReadSync� m	 �� ENTER�HUNT� �m� s�� s�� ctrl�
�	

���not �ReadSync� m		 �� SYNDET �� � ��

RCVR�ASYNC �m� �BitsPerChar m	�
�		

���not �rxb�s�		 �� ENTER�HUNT �m� s�� s�� ctrl� rxb�	�

CHECK�FOR�SYNC�CHAR� �m� s�� s�� ctrl� rxb� ��

��IsFalse extReset	 �� RCVRSTART ��	

��intReset� �� RCVRINITIATE ��	

���rxb�s�	�� SYNDET����� RCVRASYNC�m��BitsPerChar m	�
�	

���not �rxb�s�		 �� ENTER�HUNT� �m� s�� s�� ctrl� rxb�	

In the synchronous receive mode� the module �rst enters a huntmode where it scans the incom�
ing data for the synchronization characters and then proceeds to the control state RCVR ASYNC to
receive the serial data� In the asynchronous receive mode� it directly proceeds to the control state
RCVR ASYNC�

SPECIFICATION AND VALIDATION OF CONTROL INTENSIVE ICS IN HOPCP ��

RCVR�ASYNC �mo� size� data� ��

��not�size�
		 �� RxD�y ��

RCVR�ASYNC �mo� �Decrement size	� �AccumulateSerialData data y	�	

���size �
	 �� RxD�pin ��

RCVR�PROCESS�DATA �mo� data� �CheckParityError data mo pin	�	�

RCVR�PROCESS�DATA �mo� data� perror� ��

��IsFalse extReset	 �� RCVR�START ��	

��intReset� �� RCVR�INITIATE ��	

��RxD�sb ����sb�
	 �� SEND�DATA�TO�MAIN �mo� data� perror� ��	

���sb��	 �� SEND�DATA�TO�MAIN �mo� data� perror�
�		�

SEND�DATA�TO�MAIN �mode� data� pe� fe� ��

��IsFalse extReset	 �� RCVR�START ��	

��intReset� �� RCVR�INITIATE ��	

���IsTrue ReceiverBufferEmpty	 ��

rcvrstatus��MakeAsyncStatus pe fe
 �	

�� rcvrmain�data �� RCVR�EXECUTE �mode�
�
�	

� ��not�IsTrue ReceiverBufferEmpty		 ��

rcvrstatus��MakeAsyncStatus pe fe � �	

�� rcvrmain�data �� RCVR�EXECUTE �mode�
�
�	�

In RCVR ASYNC� RCVR module receives the speci�ed number of bits serially on the RxD input� The
number of bits is programmable by the CPU and is computed by the function Bitsperchar� The
received serial data is checked for framing and parity errors as dictated by the command and mode
words� Then the data is sent to the MAIN module in parallel via a data assertion on the internal
channel rcvrmain�� In the process it checks for overrun error� Note that we use the same mechanism
to perform the synchronous and asynchronous receive operations� This is because in hopCP only
the sequence�domain relationships between a set of actions is speci�ed� no speci�c timing discipline
�except causality	 is advocated� This makes hopCP speci�cations smaller and more abstract� After
transmitting the data to the MAIN module� the RCVR module assembles the status information �the
state of fe�oe�pe�RxRDY bits	� and sends it to the MAIN module using the rcvrstatus channel�
The MAIN module can communicate the status information to the CPU�

��� Xmit Module

The detailed hopCP speci�cation of the XMIT module is presented in the appendix �to conserve
space	� The behavior section resembles that of the RCVR module� Initially� XMIT module is in state
XMIT START where it waits for a reset signal �from the MAIN module	 and then receives the mode
word and command �via multiway rendezvous with RCVR and MAIN modules	� If the current
operating mode is synchronous� XMIT module receive one or two synchronization �depending on the
output of the ReadSync
 function	� receives the input character from the MAIN module �in parallel	
on the xmitmain channel and transmits it serially on the output port TxD� If a new character is
not received at the end of transmission of the current character� TxEMPTY pin is set high and SYNC
characters are transmitted on TxD� In the asynchronous mode� the input character is received from
the MAIN module� padded with start and stop bits and shifted out serially �least signi�cant bit �rst	
on the TxD output at a rate determined by the baud rate setting in the mode word�

��
 Comparison With Existing Work

Intel ���� has been speci�ed in HardwareC
��� and a variant of ISPS
���� The speci�cations are
available with the distribution of high�level synthesis benchmarks� In this section we will compare
the hopCP speci�cation of the ���� with its HardwareC and ISPS speci�cations� We will also touch

�	 VENKATESH AKELLA� GANESH GOPALAKRISHNAN

upon the drawbacks of describing the ���� in a language like Occam
��� which has been advocated
for the speci�cation of asynchronous circuits�

��
�� ISPS

ISPS is a procedural language augmented with constructs to describe synchronous hardware� The
signi�cant di�erences between hopCP and ISPS speci�cations are that the ISPS speci�cation �i	 lacks
abstraction in the sense that it describes on particular implementation of the ����� based on syn�
chronization
ip�
ops �ii	 does not have constructs to expressing parallel behavior explicitly� �iii	
the computation is described in a imperative language�

��
�� HardwareC

The language hardwareC
��� comes closest to hopCP in terms of the communication constructs
it uses� This is encouraging because starting from similar motivations about the real�world scenarios
that we wish to model� we have independently ended up selecting the same set of communication
constructs in our respective HDLs� However� hardwareC is currently used to capture synchronous
computations only� In addition� hopCP is much simpler and is semantically well speci�ed� Some of
the key di�erences between hardwareC and hopCP are as follows�

�i	 HardwareC is a synchronous hardware description language� so it does not provide the same
temporal abstraction as hopCP� Speci�cations in hopCP can be implemented as purely synchronous
circuits� purely asynchronous circuits or a mixture of both� In addition� in a hopCP speci�cation we
do not make any assumptions about the representation of the electrical signals i�e� we allow both
transition based or level�based implementations�two popular styles of implementing asynchronous
circuits
����

�ii	 HardwareC is based on an imperative language to specify computation where parallelism has
to be extracted from sequential descriptions �during synthesis	 while hopCP is based on a functional
language the parallelism is implicit in the program �i�e� it is much easier to extract	� In addition� the
referential transparency of functional languages facilitates formal reasoning and proving properties
about the system which are generally di�cult in imperative languages� However� HardwareC has
the ability to specify resource and timing constraints which are not provided in hopCP� at present�

��
�� CSP based Languages

CSP based languages like Occam used in
��� and Trace Theory used in
��� have the disadvantage
of supporting only synchronous message passing� It is awkward to model asynchronous phenomena
like interrupts and status and reset operations in such languages which makes them restrictive for
hardware speci�cation� There are operators suggested in
��� to correct this de�ciency but they are
yet to appear in a realistic HDL�

� Tools for Analysis of hopCP Speci�cations

High�Level speci�cations of complex protocols are of little use if they are not adequately supported
by tools to analyze them and reason about them� In the hopCP design environment we provide three
di�erent types of tools to support high�level speci�cation�

� A suite of static analysis tools to perform reachability and seriality analysis on the HFGs �

� A behavioral inference tool called parComp which infers the composite behavior of a collection
of hopCP modules�

SPECIFICATION AND VALIDATION OF CONTROL INTENSIVE ICS IN HOPCP ��

� A compiled�code behavioral simulator to establish functional correctness of the hopCP speci�
�cations�

In section ���� we introduce the algorithm parComp� In section ���� we will brie
y introduce
the seriality�checking algorithm� These algorithms have been detailed in
��� Section ��� presents
the compiled code functional simulator that can be used to debug hopCP descriptions� Section ���
presents how hopCP speci�cations are debugged using tester processes�

�� Behavioral Inference via Parallel Composition

In this section we will brie
y introduce parComp and discuss its performance on the USART
example� We speci�ed the USART as a collection of three independent modules MAIN� XMIT and
RCVR� It is useful to have the composite �also known as inferred behavior	 of the complete USART
for several reasons� Inferred behavior can be used in high�level simulation�
ow analysis of the hopCP
speci�cations� and in formal veri�cation� In this section we will describe a tool called parComp to
derive the composite behavior of a set of modules speci�ed in hopCP� Modules in hopCP interact
via communication actions �data assertions and data queries	� parComp infers the behavior of a
collection of hopCP modules by composing the individual transitions in the HFGs of the constituent
modules� Composing transitions involves checking for synchronization and performing value commu�
nication� Transitions t� � �fs�g� a�� fs

�

�g	 and t� � �fs�g� a�� fs
�

�g	 are said to synchronize if �i	 a�
and a� are mutually complementary �i�e� one is a data assertion and the other is a data query	 and
�ii	 they use the same communication port� For example� if a� � b�x and a� � b�e� t� and t� will
synchronize and the resultant transition is t� � �fs�� s�g� a�� fs

��

�
� s

�

�
g	 where the s

��

�
� s

�

�

E
e��x� �E
e�

denotes the value of the expression e evaluated in s�	� The latter illustrates value communication�

If a� and a� do not synchronize� then transitions t� and t� are retained in the inferred behavior�
This is a signi�cant di�erence compared to the other option of handling concurrent actions� namely�
nondeterministic interleaving of the actions a� and a� in the inferred behavior� The interleaving of
actions a� and a� results in having transitions t�t� and t�t� in the inferred behavior which has the
capability of performing a� and a� in any order� This approach is taken in CSP and CSP based
languages� Our approach to handling concurrency results in a very e�cient �both in time and space	
implementation of parComp when compared to the interleaved mode� On an average� the number
of states in the inferred behavior is a linear function of the number of states in the input HFGs �

Note that� in the above example a� and a� are primitive actions� The notion of synchronization
and value communication can be extended in a similar way to compound actions� The details of
semantics of parComp are presented in
��� parComp has been implemented in Standard ML of New
Jersey
�� in the prototype hopCP design environment on a SUN sparcstation� It exhibits acceptable
runtimes of the order of seconds on the ���� USART example�

�� Seriality Checking and its Uses

Determining whether two speci�c actions of an HFG are serial or are potentially concurrent has
numerous applications� This check can be used to warn if the asynchronous ports are not being used
safely i�e� if there are con
icting reads�writes on the shared registers implementing the asynchronous
ports� The seriality checking procedure can also be used to establish determinacy of guards in some
situations and reveal opportunities for resource sharing� These optimization hints can be used in the
high�level synthesis of VLSI circuits from hopCP speci�cations�

However� in a distributed environment with several concurrent processes� determining whether two
actions are potentially concurrent or not� automatically� is often di�cult to formulate and computa�

�� VENKATESH AKELLA� GANESH GOPALAKRISHNAN

tionally expensive� There are essentially two problems�

Naive approaches to the detection of seriality can either lead to combinatorial explosion or can miss
many opportunities to detect serial usage� Combinatorial explosion can result because many of the
techniques to detect seriality are centered around reachability analysis paradigm� These problems are
tackled in the hopCP framework by restricting the hopCP
ow graphs to be one�safe and employing
a heuristic�based pruning of the composite hopCP
ow graphs�

The second� and a more serious problem underlying the feasibility of the above optimizations� is
that unless the context �environment	 of a module is known� it is not possible to tell if two actions
within the module de�nition are serial or not� For this to be done properly� we need a tool to analyze
the combined executions of a collection of processes that constitutes the system description� and

that� perhaps� even includes a process to model the abstracted environment� The algorithm parComp
outlined in the previous section is appropriate for this task�

Brie
y� our seriality�checking procedure involves three phases� First� we invoke parComp to infer
the composite behavior of the collection of hopCP modules� Then we derive an abstract HFG by
invoking the pruning heuristic on the inferred behavior with respect to the actions in question�
The pruning heuristic removes uninteresting states and transitions with respect to the actions in
question� The third phase involves computing the set of reachable con�gurations from the initial
states and determining if the two actions in questions can be enabled simultaneously or not� All
the phases of the seriality�checking procedure have been formalized and implemented in the hopCP
design environment� The details are presented in
���

This procedure was particularly useful on the USART speci�cation because of its complexity�
Several errors in the unsafe usage of the asynchronous ports were revealed� In addition we also
discovered that the in practice we do not need separate channels for indata�� inctrl�� readdata�

and readstatus� because they are never used concurrently� So� in an actual circuit implementation
one could use a single multiplexed bidirectional channel to implement these four channels� This
optimization is almost impossible to detect by manually analyzing the speci�cations of the XMIT�
MAIN and RCVR modules� Typical running times of the seriality�checking procedure are less than
ten seconds for most of the subcomponents of the ���� USART�

We also discovered that a slight modi�cation of the seriality�checking procedure could be used to
detect the liveness of the speci�cation� Dead�states can be
agged during the generation of reachable
con�gurations�

�� CFSIM� A compiled�code concurrent functional simulator

A high�level speci�cation is not very useful unless it is supported by a methodology to validate
it� There are usually two ways of validating a speci�cation� �i	 prove liveness and safety properties
of the speci�cation
���� and �ii	 high�level simulation� We follow the second approach� We provide
a simulation environment called CFSIM to validate hopCP speci�cations� In this section we will
brie
y outline the design of CFSIM and bring out some of its advantages and in the next section we
describe how some of the modes of behavior of the USART speci�cation are validated using CFSIM�

CFSIM is compiled�code concurrent functional simulator for hopCP speci�cations obtained by
translating HFGs into CML �Concurrent ML	 source code� The details of CFSIM are described
in
��� CML is an extension to Standard ML of New Jersey to support �rst�class synchronous
operations
���� CML being higher�order facilitates building concurrent�programming abstractions
and is implemented e�ciently capitalizing on the continuation�passing style technology of the SML
of New Jersey compiler
���

SPECIFICATION AND VALIDATION OF CONTROL INTENSIVE ICS IN HOPCP ��

The �rst step in the generation of the simulator in CML is to decompose the hopCP speci�cations
into sequential HFGs � A sequential HFG is one which all transitions are of the form �S� a� S

�

	
where j S j � j S

�

j � �� In otherwords� a sequential HFG is one that is speci�ed by only
� and
� operators in hopCP� Each sequential HFG is modeled as an independent thread in CML which
can communicate with other threads by explicit message�passing through synchronous channels or
through shared�variables� The constituent transitions of a sequential HFG are modeled as a set of
mutually recursive function de�nitions� The control state name of the precondition of the transition
becomes the name of the function and the corresponding datapath state variables are modeled as the
formal parameters of the function� The postcondition of a transition is modeled as a function�call�
The actions in the transition are translated into CML code fragments such that the execution of the
code simulates the execution of the hardware module via the action in question� Figure �� shows the
CML translation of the speci�cation shown in �gure �

Synchronous communication actions in hopCP �data queries� data assertions� input and output
control actions	 are directly implemented by the send and accept primitives in CML� Assignment
action is implemented by a one�place bu�er abstraction with non�blocking reads and writes� It is
realized by the ML structure AsyncBarrier and its associated operations newPort and multicast�

The
�� operator is implemented by choose combinator in CML and the �� operator is imple�
mented by directly in SML� The crux of the simulator is in implementing compound actions and
multiway rendezvous whose implementation is discussed in
���

Some of the salient features of CFSIM are�

� E�ciency� The size of the simulator is proportional to the number of transitions in the HFG

which is usually small because we initially eliminate the k operator by decomposing the HFGs
into sequential HFGs �

� Static Checks� Since we translate the HFGs into CML source code and execute them in Stan�
dard ML environment� most of the static checks like consistency of types of the variables� name
clashes� unde�ned variables and function names etc� are detected during compilation� This is
facilitated by the strong typing o�ered by Standard ML�

� Interactive� CFSIM generates interactive simulators wherein the user can step�through the
execution of the module by controlling the input to the system� This is facilitated by directing
all the unsynchronized output actions in a HFG to the standard output and the unsynchronized
input actions to the standard input�

�� Testers and High�Level Debugging of hopCP Speci�cations

In this section� we will describe how we validate the hopCP speci�cation of the USART through
CFSIM� Validation of speci�cations via CFSIM involves two phases� �i	 identi�cation of interesting
modes of behavior of the system being modeled and �ii	 constructing high�level simulation vectors�
which enable the chosen mode of behavior� The simulation vectors are expressed in hopCP itself� A
hopCP speci�cation which enables a particular mode of behavior is called a tester module� Identi�ca�
tion of interesting modes of behavior and construction of tester modules are illustrated with respect
to the USART speci�cation discussed earlier�

���� Tester Modules and Modes of Behavior

There is a close analogy between the design validation strategy suggested here and the conventional
VLSI test generation� Modes of behavior are like faults and tester modules are like physical tester
vectors �sequences of binary inputs	�

�� VENKATESH AKELLA� GANESH GOPALAKRISHNAN

fun m� �	 �

let

val TxRDY � AsyncBarrier�mChannel

val TxRDY��� � AsyncBarrier�newPort TxRDY

val c � channel �	

val b � channel �	

val a � channel �	

fun Q x � �CIO�print� �Waiting for Input on Channel a� �n�	�

let

val y � input�int�sync�CIO�input�line std�in		

in

CIO�print��Received ���Integer�makestring y	�� on channel a��n�	�

s��� x y

end	

and

s��� x y �

let

val � �

in

if ��odd y		 then �s��� x y � �		

else

if ��even y		 then �s��� x y � �		

else

�raise ChoiceError� �		

end

and

s��� x y �

let

val s�����chan � channel �	

fun s�����fun x y �

� �CIO�print �� Output on Channel b���Integer�makestring���f x	 y		���n�	�

send �s�����chan�
			

val s�����chan � channel �	

fun s�����fun x y �

��AsyncBarrier�multicast�TxRDY�� 	 � send �s�����chan�
			

in

�spawn � fn �	 �� s�����fun x y 	�

spawn � fn �	 �� s�����fun x y 	�

let

val � � accept s�����chan

val � � accept s�����chan

in

Q �y � �	 end 	

end

and

s��� x y � � �CIO�print �� Output on Channel c���Integer�makestring� �subvector�y�
��		 	���n�	�

Q y 		

in

spawn �fn �	 �� Q � 	�

�	

end�

Figure �� Simulator for Example in Figure � obtained by CFSIM

SPECIFICATION AND VALIDATION OF CONTROL INTENSIVE ICS IN HOPCP ��

��
�
��
��
�
��

��
�
��
��
�
��

��
�
��
��
�
��

��
�
��
��
�
��

��
�
��
��
�
��

��
�
��
��
�
��

��
�
��
��
�
��

��
�
��
��
�
��

��
�
��
��
�
��

��
�
��
��
�
��

��
�
��
�
��
��

��
�
��
�
��
��

��
�
��
�
��
�
�

��
�
��
�
��
�
�

��
�
��
�
��
�
�

��
�
��
�
��
�
�

��
�
��
�
��
�
�

��
�
��
�
��
�
�

��
�
��
�
��
�
�

��
�
��
�
��
�
�

��
�
��
�
��
�
�

��
�
��
�
��
�
�

��
�
��
�
��
�
�

��
�
��
�
��
�
�

��
�
��
�
��
�
�

��
�
��
�
��
�
�

��
�
��
�
��
�
�

��
�
��
�
��
�
�

��
�
��
�
��
�
�

��
�
��
�
��
�
�

��
�
��
�
��
�
�

��
�
��
�
��
�
�

��
�
��
�
��
�
�

��
�
��
�
��
�
�

��
�
��
�
��
�
�

��
�
��
�
��
�
�

��
�
��
�
��
�
�

��
�
��
�
��
�
�

��
�
��
�
��
�
�

��
�
��
�
��
�
�

��
�
��
�
��
�
�

��
�
��
�
��
�
�

��
�
��
�
��
�
�

��
�
��
�
��
�
�

��
�

��������������������������������������

����
�����
�����
������
�����
����
�����

����

��������������������������������������

����
�����
����
�����
������
����
�����
�����

����
�����
�����
������
�����
����
�����
����

reset

TxRDY RxRDY

RxD�

SYNDET�

TxD�

transmit output�

receiver input�

USART
TESTER

RCVR

XMIT

MAIN

Figure �� Illustrating Tester Modules in hopCP

A mode of behavior of a system can be de�ned as a �nite execution trace of the system involving at
least one input communication action and one output communication action� The input and output
communication actions in the execution trace give us the ability to control the system execution and
observe the response of the system� respectively� A execution trace consisting of only internal actions
is not a useful mode of behavior� Some of the useful modes of behavior in the USART example are�
receiving a character from the CPU and transmitting it on the serial output TxD in the synchronous
mode� receiving a character on the serial input RxD and transmitting it in parallel to the CPU�
hunting for the synchronizing characters in the synchronous mode receive etc�

A tester module for a hopCP speci�cation H is a hopCP description of a module which interacts
with the system being tested �i�e� H	 and guides the execution of H along a chosen mode of behavior�
A tester module can be viewed as an interface between the user and the system under test as shown in
�gure �� It receives the inputs from the user �via the CFSIM interactive environment	 and provides
the necessary stimulus to the system and it receives the responses from the system and channels
them back to the user�

���� Illustrating Tester Modules

Let us consider validating the asynchronous mode of behavior of the USART speci�cation� To
recapitulate �from section �	� transmission in the asynchronous mode involves receiving a character
from the CPU and transmitting it serially on the TxD pin at a speci�ed baud rate after padding it
with a start bit and some speci�ed number of stop bits and an optional parity bit� The baud rate�
number of stop bits and kind of parity to be checked is speci�ed by the mode word� Reception in
the asynchronous mode involves receiving a serial stream of data from the RxD input� and checking
for parity and framing errors and transmitting the character to the CPU�

�� VENKATESH AKELLA� GANESH GOPALAKRISHNAN

Module TEST

Type

byte� vector � of bit�

SyncPort

input�mode��input�command�� input�data��indata�� inctrl� � byte�

receiver�input�� transmit�output� � byte�

txd�� RxD� � bit�

AsyncPort

reset� � bit�

Function

Behavior

�TEST�RESET ��
� �reset �� �	 �� TEST�START ���

TEST�START ��
� input�mode�m �� indata�m �� input�command�c ��

inctrl�c �� TEST�LOOP ���

TEST�LOOP ��
� input�data�d �� indata�d �� TEST�LOOP ��

	

��

�RECEIVE ��
� receiver�input�din �� RxD�din �� RECEIVE ��	

��

�TRANSMIT ��
� txd�din �� transmit�output�din �� TRANSMIT ��	

End

Figure �� Tester Module for Testing Asynchronous Mode of Operation

A tester module called TEST which validates the asynchronous mode of behavior of the hopCP
USART speci�cation is shown in �gure �� It communicates with the user via synchronous ports
input mode�� input command�� input data�� receiver input�� and transmit output� and com�
municates with the USART with the rest of the ports� TEST basically encapsulates three concurrent
processes which represent the CPU� and a serial transmitter and a serial receiver �denoting a Modem
for example	� TEST RESET process� resets the USART via an assignment action on the reset port�
and then loads the mode and command word� It then enters a state called TEST LOOP where it
continuously transmits characters to the USART� The RECEIVE process receives serial data from the
receiver input� and transmit it on the RxD� port while the tt TRANSMIT process receives serial
data from the USART and outputs it on the transmit output��

The TEST module is compiled into a HFG along with XMIT� MAIN and RCVR modules and the
resultant HFGs are compiled into CML code using CFSIM� Figure �� illustrates the compilation
and simulation of the asynchronous mode of behavior in CML environment�

simulate processes on line � is the top�level function which compiles a list of hopCP modules
into HFGs and generates two �les� a �le containing the user�de�ned functions and the simulator�
The �les are loaded in sequence as shown in lines � and �� TEST MAIN XMIT RCVR N is the top�level
function which simulates the USART and the TEST module and is invoked on line � by a CML
function called doit� CML uses pre�emptive scheduling� The desired time�slice can be presented as
a parameter to doit� �In our example the time�slice is �� milliseconds	� On line � we present the
mode word� ��� which enables the asynchronous mode operation� enables odd parity� sets the baud
rate to �x� sets number of stop bits to � and number of bits per character to �� The command word
is presented on line �� which enables the transmitter and receiver� On Line �� the tester module
prompts the user for the input data which is provided on line �� The next few lines shows the

SPECIFICATION AND VALIDATION OF CONTROL INTENSIVE ICS IN HOPCP ��

� simulate�processes ��test�h�� �main�h�� �xmit�h�� �rcvr�h��� �� Line � �	

val it � �	 � unit

� use �TEST�MAIN�XMIT�RCVR�N�fun�sml�� �� Line � �	

�opening TEST�MAIN�XMIT�RCVR�N�fun�sml�

����

����

�closing TEST�MAIN�XMIT�RCVR�N�fun�sml�

� use �TEST�MAIN�XMIT�RCVR�N�sim�sml�� �� Line � �	

�opening TEST�MAIN�XMIT�RCVR�N�sim�sml�

val TEST�MAIN�XMIT�RCVR�N � fn � unit �� unit

�closing TEST�MAIN�XMIT�RCVR�N�sim�sml�

� doit�TEST�MAIN�XMIT�RCVR�N� SOME �
	� �� Line � �	

Waiting for Input on Channel receiver�input�

Waiting for Input on Channel input�mode�

�� �� Line � �	

Waiting for Input on Channel input�command�

� �� Line
 �	

Waiting for Input on Channel input�data� �� Line � �	

Waiting for Input on Channel receiver�input�

�� �� Line � �	

Output on Channel TxRDY

Output on Channel TxEMPTY

Output on Channel TxRDY�

Output on Channel transmit�output�

Output on Channel transmit�output��

Output on Channel transmit�output��

Output on Channel transmit�output��

Output on Channel transmit�output��

Output on Channel transmit�output�

Output on Channel transmit�output�

Output on Channel transmit�output��

Output on Channel TxEMPTY � � �� Line � �	

�

Waiting for Input on Channel receiver�input�

�

Waiting for Input on Channel receiver�input�

Waiting for Input on Channel receiver�input�

�

Waiting for Input on Channel receiver�input�

�

Waiting for Input on Channel receiver�input�

Waiting for Input on Channel receiver�input�

Output on Channel RxRDY � � �� Line �
 �	

�

��

��

CML� Interrupt �� Line �� �	

val it � �	 � unit

�

Figure ��� Illustrating the Simulation of hopCP Speci�cations

�� VENKATESH AKELLA� GANESH GOPALAKRISHNAN

functionality of the transmitter� Note that the bits are shifted out according to the asynchronous
transmit protocol with the least signi�cant bit �rst� Successful transmission is indicated on line �
when TxEMPTY status
ag is set� In parallel� receive operation is going on� whose termination is
detected by the status
ag RxRDY on line ��� Since� the tester module was constructed to be an
in�nite process� we terminate the simulation session by an interrupt shown on line ���

���� Discussion

hopCP speci�cation of the USART was checked for di�erent modes of behavior like internal and
external reset operation� synchronous receive and transmit� setting of various error
ags �overrun�
parity� framing	 and status
ags TxRDY� RxRDY� TxEMPTY� SYNDET� external character synchroniza�
tion� by constructing appropriate TESTER module� Actually something similar to conventional fault
simulation was employed� in the sense that a single tester module was programmed with appropriate
mode words to check for more than one mode of behavior� Several errors were detected by this
validation process which were subsequently �xed�

The attractive features of this style of validation process are�

� Testers are speci�ed in the same HDL� This opens up several promising avenues for further
research like extracting BIST �Built�In�Self�Test	 hardware by synthesizing the tester module
just like the rest of the hopCP speci�cation� including DFT �Design For Testability	 ideas
in the speci�cation i�e� writing a speci�cation which when synthesized becomes more easily
testable�

� We feel that tester modules provide a systematic and elegant approach to functional simulation�
since most of the details of the simulation are buried within the tester module� The user does
not have to deal directly with the speci�cation as shown in �gure ��

� By expressing the tester module in hopCP and simulating it via CFSIM we are actually validat�

ing our system in truly concurrent environment� This is illustrated in the example of the tester
module above �which validates the asynchronous mode of behavior	� Note that the tester itself
has three concurrent processes� So� the validation of the USART in the CFSIM environment
has the e�ect of connecting an ���� to a modem and a microprocessor and switching on the
power quite realistically�

It is interesting to compare the style of validation we have presented against that o�ered in veri��
cation tools such as SMV
��� and COSPAN
���� SMV is a system that allows concurrent �nite�state
systems to be described in a language reminiscent of data�
ow languages as well as guarded�command
languages� The transition relation underlying �nite state systems modeled in SMV are represented
using binary decision diagrams �BDDs	 which are often e�cient representations for relations� SMV
accepts queries about the �nite�state system from the user in the language of computational tree
logic �CTL	 and answers these queries through symbolic model checking� In our experience� a system
such as SMV will be valuable to interface to the hopCP system� Control aspects of HFGs can be
compiled into SMV in a straightforward manner� COSPAN is again a formalism for specifying and
verifying concurrent automata where validation is achieved by exhibiting homomorphisms between
the speci�cation and the implementation automata� Therefore� existing validation tools such as
COSPAN and SMV can be interfaced with HFGs to derive those advantages o�ered by these tools
that are not o�ered by CFSIM� However� validation tools such as SMV and COSPAN are not well
suited for modeling data aspects of systems� Since a system such as the ���� USART involves control
aspects that are data independent� data aspects� as well as control aspects that are data dependent�

SPECIFICATION AND VALIDATION OF CONTROL INTENSIVE ICS IN HOPCP ��

it becomes necessary to apply a variety of techniques and tools to validate systems such as the �����
Hence� tools such as CFSIM can complement other �nite state validation tools�

Other formal veri�cation systems such as HOL
��� and Nqthm
�� are considerably more powerful
and can� in principle� deal with systems with potentially unbounded amounts of state� However�
these tools have not been widely used for modeling or verifying control dominated ICs such as the
����� to the best of our knowledge�

� Concluding Remarks

The major contributions of this work are� �i	 Introduction of a simple HDL called hopCP to
describe concurrent state�transition systems� and the illustrattion of the expressive power of hopCP
by capturing the behavior of a fairly complex chip namely Intel ���� at a high level� �ii	 A behavioral
inference tool called parComp and its applications� �iii	 High�level validation of hopCP speci�cations
via a compiled�code concurrent functional simulator �CFSIM	 and a notion of tester modules�

In a nutshell the main contribution of this work is the demonstration of the applicability of formal
methods in the speci�cation and validation of a realistic and existing hardware design�

Currently we are engaged in systematically transforming hopCP speci�cations into VLSI circuits
with as little manual intervention as possible� We are also exploring the possibilities of augmenting
hopCP with mechanisms to handle timing constraints and using CFSIM and its variants to perform
basic timing simulation�

References

�� Akella� V�� and Gopalakrishnan� G� hopCP� A Concurrent Hardware Description Language� Tech�
Rep� UUCS�������� Department of Computer Science� University of Utah� Oct� �����

�� Akella� V�� and Gopalakrishnan� G� Static Analysis Techniques for the Synthesis of E�cient Asyn�
chronous Circuits� Tech� Rep� UUCS������	� Department of Computer Science� University of Utah� Oct�
�����

� Akella� V�� and Gopalakrishnan� G� CFSIM� A Compiled�Code Concurrent Functional Simulator
for VLSI Systems� Tech� Rep� UUCS�TR�������� Department of Computer Science� University of Utah�
Jan� ����� To appear in International Journal in Computer Simulation�

�� Akella� V�� and Gopalakrishnan� G� SHILPA� A High�Level Synthesis System for Self�Timed Cir�
cuits� In International Conference on Computer�aided Design� ICCAD �� �Nov� ����
� pp� �	������

�� Appel� A�� and MacQueen� D� A Standard ML compiler� In Functional Programming Languages and

Computer Architecture �Sept� ��	�
�

�� Appel� A� W� Compiling with Continuations� Cambridge Univ� Press� ����� ISBN ��������������

�� Apt� K� R�� and Olderog� E��R� Veri�cation of Sequential and Concurrent Programs� Springer�Verlag�
����� ISBN ��������	�����

	� Barbacci� M� R� Instruction Set Processor Speci�cations �ISPS
� The Notation and Its Applications�
IEEE Transactions on Computers C���� � �Jan� ��	�
� ������

�� Boyer� and Moore� A Computational Logic� Academic Press� �����

��� Brunvand� E� Translating Concurrent Communicating Programs into Asynchronous Circuits� PhD
thesis� Carnegie Mellon University� Nov� �����

��� Charlesworth� A� The Multiway Rendezvous� ACM Transactions on Programming Languages and

Systems ��
 �July ��	�
�
���
���

�	 VENKATESH AKELLA� GANESH GOPALAKRISHNAN

��� Cleveland� R�� Parrow� J�� and Steffen� B� The concurrency workbench� A semantics based tood
for the veri�cation of concurrent systems� Tech� Rep� ECS�LFCS�	��	
� Laboratory for Foundations of
Computer Science� Univ of Edinburgh� Aug� ��	��

�
� Dill� D� L� Trace Theory for Automatic Hierarchical Veri�cation of Speed�independent Circuits� MIT
Press� ��	�� An ACM Distinguished Dissertation�

��� Dill� D� L�� Nowick� S� M�� and Sproull� R� F� Speci�cation and automatic veri�cation of self�timed
queues� Formal Methods in System Design
� � �July ����
� ������

��� Ebergen� J� C� Translating Programs into Delay Insensitive Circuits� Centre for Mathematics and
Computer Science� Amsterdam� ��	�� CWI Tract 	��

��� Gopalakrishnan� G�� and Fujimoto� R� Design and veri�cation of the rollback chip using hop� A
case study of formal methods applied to hardware design� Tech� Rep� UU�CS�TR�������� University of
Utah� Department of Computer Science� �����

��� Gopalakrishnan� G�� and Josephson� L� Towards amalgamating the synchronous and asynchronous
styles� In TAU ��� Timing Aspects of VLSI� Malente� Germany �Sept� ���

� ACM�

�	� Gopalakrishnan� G�� Michell� N�� Brunvand� E�� and Nowick� S� M� A correctness criterion
for asynchronous circuit veri�cation and optimization� IEEE Transactions on Computer�Aided Design

�����
� Accepted for Publication�

��� Gordon� M� J� Mechanizing programming logics in higher order logic� In
��� Ban
 Hardware Veri��

cation Workshop� Ban
� June
��� ���		
� G�Birtwistle and P�A�Subrahmanyam� Eds� Invited Paper� to

appear as a chapter in a forthcoming Springer�Verlag book�

��� Hall� A� Seven myths of formal methods� IEEE Software� � �Sept� ����
�

��� Har�El� Z�� and Kurshan� R� P� Software for analytical development of communication protocols�
AT�T Technical Journal �Jan� ����
� To appear�

��� Hoare� C� A� R� Communicating Sequential Processes� Prentice�Hall� Englewood Cli�s� New Jersey�
��	��

�
� Intel� 	���A Programmable Communication Interface� In Intel Microprocessor and Peripheral Handbook

���	�
� pp� ���������
	�

��� Johnson� S� D� Synthesis of Digital Designs from Recursion Equations� The MIT Press� ��	�� An ACM
Distinguished Dissertation���	
�

��� Ku� D�� and Micheli� G� D� HardwareC � A Language for Hardware Design� Version ���� Tech� Rep�
CSL�TR�������� Computer Science Laboratory� Stanford University� April �����

��� Lamport� L� A Simple Approach to Specifying Concurrent Systems� Communications of the ACM ���
� �Jan� ��	�
�
�����

��� Logrippo� L�� Obaid� A�� J�P�Briand� and Fehri� M� An Interpreter for LOTOS� a Speci�cation
Language for Distributed Systems� Software�Practice and Experience
�� � �Apr� ��		
�
���
	��

�	� Page� Ian and Luk� Wayne� Compiling Occam into Field�Programmable Gate Arrays� International
Workshop on Field Programmable Logic and Applications� September� ����� Oxford University� UK�

��� Martin� A� J�� Burns� S�� T�K�Lee� D�Borkovic� and P�J�Hazewindus� The design of an asyn�
chronous microprocessor� In Proc� Decennial Caltech Conference on VLSI ���	�
� C�L�Seitz� Ed�� MIT
Press�

�� McMillan� K� L� Symbolic Model Checking� Kluwer Academic Press� ���
�

�� McFarland� M� C�� Parker� A� C�� and Camposano� R� The high�level synthesis of digital systems�
Proceedings of the IEEE ��� � �Feb� ����
�
���
�	�

�� May David Compiling Occam into Silicon� Developments in Concurrency and Communication Addison�
Wesley� �����

SPECIFICATION AND VALIDATION OF CONTROL INTENSIVE ICS IN HOPCP ��

� Nalumasu� R�� and Gopalakrishnan� G� Verifying an asynchronous wavefront crossbar arbiter using
smv� ���
� Class Project Notes� CS ���� Available upon request from ratan�cs�utah�edu�

�� Occam programming manual� ��	
�

�� Reppy� J� H� CML� A Higher�order Concurrent Language� In ACM SIGPLAN��
 Conference on Pro�

gramming Language Design and Implementation �June ����
�

�� Robin Milner� Communication and Concurrency� Prentice�Hall International� Englewood Cli�s� New
Jersey� ��	��

�� Rosenberger� F� U�� Molnar� C� E�� Chaney� T� J�� and Ting�Pein Fang� Q�modules� Internally
clocked delay�insensitive modules� IEEE Transactions on Computers ��� � �Sept� ��		
� ��������	�

	� Sheeran� M� Design of regular hardware structures using higher order functions� In Proceedings of

the Functional Programming and Computer Architecture Conference �Sept� ��	�
� Springer�Verlag� LNCS
���� Nancy� France�

�� Srivas� M�� and Bickford� M� Formal veri�cation of a pipelined microprocessor� IEEE Software� �
�Sept� ����
�

��� Sternheim� E�� Singh� R�� and Trivedi� Y� Digital Design with Verilog HDL� Automata Publishing
Company� Cupertino� CA� ������ ����� ISBN �������		���
�

��� Sutherland� I� Micropipelines� Communications of the ACM �June ��	�
� The
��� ACM Turing

Award Lecture�

��� Thomas� D� E�� Lagnese� E� D�� Walker� R� A�� Nestor� J� A�� Rajan� J� V�� and Blackburn�

R� L� Algorithmic and Register�Transfer Level Synthesis� The System Architect�s Workbench� Kluwer
Academic Publishers� Boston� �����

�
� Thomas� D� E�� and Moorby� P� The Verilog Hardware Description Language� Kluwer Academic
Publishers� ����� ISBN �����
������	�

��� VHDL Language Reference Manual� Aug� ��	�� Intermetrics Report IR�MD���	��� See also IEEE Design

and Test� April
����

�� VENKATESH AKELLA� GANESH GOPALAKRISHNAN

� Appendix

�� Specification of the Transmitter module of the Intel �
�� Usart �	

Module XMIT

Type

byte� vector � of bit�

Bit � vector � of bit

SyncPort

broadcastctrl�� broadcastdata�� xmitmain� � byte�

txd�� intReset� � Bit

AsyncPort

XmitBufferEmpty�� extReset� � Bit�

TxEMPTY� � Bit

Function

fun TransmitEnable ctrl � if �subvector�ctrl����	��	 then true else false endif�

fun DataSize mode � �subvector �mode�
��	 � � � subvector�mode����	

� subvector�mode����		�

fun AssembleAsyncData mode data � if �subvector�mode����	 � �	 then

orb�lshift�orb ���data	��	�

lshift�update������parity data		��subvector�mode�
��	 � �			

else

orb�lshift�orb ���data	��	�

lshift����subvector�mode�
��	 � �			

endif �

fun ExtractBaudRate mode � if �subvector�mode����	 � �	 then �

else

if �subvector�mode����	 �
	 then ��

else ��

endif

endif�

fun Lsb data � index�data��	�

fun Decrement x � x � �

SPECIFICATION AND VALIDATION OF CONTROL INTENSIVE ICS IN HOPCP ��

Behavior

XMIT�START �� �� ��IsTrue extReset	 �� XMIT�INITIATE ��	

���not�IsTrue extReset		 �� XMIT�START ��	�

XMIT�INITIATE �� �� broadcastdata�m �����SyncMode m	 �� broadcastdata�s� ��

XMIT�READ�SYNC� �m�s��	

���not�SyncMode m		�� XMIT�EXECUTE �m�
�
�		�

XMIT�READSYNC� �m�s�� �� ��ReadSync� m	 �� broadcastdata�s� �� XMIT�EXECUTE �m�s��s��	

� ��not �ReadSync� m		 �� XMIT�EXECUTE �m�s��
�	�

XMIT�EXECUTE �m� s�� s�� �� broadcastctrl�ctrl �� XMIT�SEND�DATA �m�s��s��ctrl��

XMIT�SEND�DATA �m� s�� s�� ctrl � �� ��TransmitEnable ctrl	 �� ��SyncMode m	 �� XMIT�SYNC �m�s��s��	

���not �SyncMode m		 �� XMIT�ASYNC�m�s��s��		

���not �TransmitEnable ctrl		 �� XMIT�EXECUTE �m�s��s��	�

XMIT�ASYNC �m� s�� s� � �� ��IsFalse extReset	 �� XMIT�START ��	

��intReset� �� XMIT�INITIATE ��	

��xmitmain�x �� TxEMPTY ��
 �� XMIT�ASYNC�SEND �m� s�� s���AssembleAsyncData m x	�

�DataSize m	��ExtractBaudRate m	�	

��broadcastctrl�ctrl �� XMIT�SEND�DATA �m�s��s��ctrl�	�

XMIT�ASYNC�SEND �m�s��s��data�size�brate� �� ��not�size�
		�� txd��Lsb data	 ��

XMIT�ASYNC�SEND �m�s��s��rshift�data��	��Decrement size	�	

���size�
	 �� TxEMPTY �� ��� XMIT�ASYNC �m� s�� s��	�

XMIT�SEND�SYNC�DATA � m� s�� s�� data� size� �� ��not �size�
		 �� txd��Lsb data	 ��

XMIT�SEND�SYNC�DATA�m� s�� s�� rshift�data��	� �Decrement size	�	

���size�
	 �� XMITSYNC �m�s��s��	�

XMIT�SYNC �m�s��s� � �� ��xmitmain�x �� TxEMPTY��
 �� XMIT�SEND�SYNC�DATA �m�s��s��x��DataSize m	�		

��broadcastctrl�ctrl �� XMIT�SEND�DATA�m�s��s��ctrl�	

���IsFalse extReset	 �� XMIT�START ��	

��intReset� �� XMIT�INITIATE ��	

���IsTrue XmitBufferEmpty	�� TxEMPTY��� �� XMIT�SYNC�CHAR �m�s��s��s����	�

XMIT�SYNC�CHAR �m� s�� s�� data� size � �� ��not�size�
		 �� txd��Lsb data	 ��

XMIT�SYNC�CHAR �m�s��s��rshift�data��	��Decrement size	�	

���size�
	 �� ��ReadSync� m	 ��

XMIT�SECOND�SYNC�CHAR �m�s��s��s����	

���not �ReadSync� m		�� XMIT�SYNC�m�s��s��		�

XMIT�SECOND�SYNC�CHAR � m� s�� s�� data� size� ��

��not �size�
		 �� txd��Lsb data	 �� XMIT�SECOND�SYNC�CHAR �m� s�� s��

rshift�data��	� �Decrement size	�	

���size�
	 �� XMIT�SYNC �m�s��s��	

End

