
Formal Aspects of VLSI Research Group

University of Utah� Department of Computer Science

Dynamic Reordering of High Latency Transactions in Time�Warp
Simulation Using a Modi�ed Micropipeline�

ARMIN LIEBCHEN
GANESH GOPALAKRISHNAN

University of Utah

Dept� of Computer Science

Salt Lake City� Utah �����

Keywords� Asynchronous Design� Micropipelines� Dynamic Instruction Reordering� Time Warp Simulation

Abstract� Time warp based simulation of discrete�event systems is an e�cient way to overcome the syn�
chronization overhead during distributed simulation� As computations may proceed beyond synchronization
barriers in time warp� multiple checkpoints of state need to be maintained to be able to rollback invalidated
branches of the lookahead execution� An e�cient mechanism to implement state rollback has been proposed
in ���� In this environment� a dedicated Roll�back Chip �RBC� maintains multiple versions of state by re�
sponding to a set of control instructions interspersed with the regular stream of data�access instructions� As
these control instructions have latencies that are orders of magnitude more than the latencies of data�access
instructions� a strict ordering of the instructions may lead to large ine�ciencies�

This paper describes a dynamic instruction reordering scheme that optimizes multiple pending instruc�
tions to achieve higher throughput� A modi	ed asynchronous micropipeline� called the Asynchronous Reorder
Pipeline �ARP� has been chosen to implement this scheme� ARP can be easily adapted for supporting dy�
namic instruction reordering in other situations also� After outlining the design of the ARP� we present its
high level protocol� and a correctness argument� We then present two new primitive asynchronous compo�
nents that are used in the ARP
 a lockable C�element LockC� and an exchange pipeline stage ExLatch�
Circuit level simulation results are presented to justify that LockC � a critical component of our design �
functions correctly� The newly proposed primitives� as well as the ARP itself� are useful in other contexts
as well�

� Introduction

One of the key issues in distributed discrete event simulation is the problem of synchro�
nizing time�correlated events� As multiple processes cooperate to solve one problem� events
local to one process may need to synchronize with events on a remote process� requiring
expensive rendezvous synchronization protocols� A promising approach to minimize the
synchronization overhead is the time warp mechanism ��� that allows processes to proceed
beyond their synchronization barriers� In doing so� each process e�ectively creates its own
virtual time and temporarily violates causality by guessing the outcome of future events�

�Supported in part by NSF Award �
�����



� ARMIN LIEBCHEN� GANESH GOPALAKRISHNAN

In case these guesses can be validated a posteriori� no further action needs to be taken �
the simulation would have proceeded at an overall higher rate of concurrency� If� however�
a lookahead process turns out to be in violation of causality� it will have to be rolled back
into a previously checkpointed consistent state� This requires the system running time warp
simulation to maintain a series of checkpoints for each possible synchronization point that
a local process skips� For large scale simulation problems� however� the overhead of control�
ling multiple checkpointed versions turns out to be excessive and can severely degrade the
performance gain that multiprocessors could provide ����

A more e	cient mechanism to perform version control in a distributed processor envi�
ronment has been proposed in �
� �� ��� In this environment� dedicated hardware� called
the Roll�back Chip 
RBC�� is provided to maintain multiple versions of memory�references
through a set of page�indirection and written�bit tables� and to quickly locate the �correct
version� of data for each address� A set of control instructions supports allocation� reclama�
tion� and invalidation of versions of state� Although these instructions are implemented in
an e	cient manner� they still introduce a large latency disparity between the regular data
access and the control instructions� For example� the overhead of cleaning up invalidated
page�table entries after rollback and reclamation exceeds the latency of read�write operations
by orders of magnitude �
��

As has been pointed out by ���� even if resources are only partially shared� execution
environments with non�uniform latency distributions can signi�cantly degrade machine per�
formance� as concurrently issued low�latency operations are unable to utilize idle resources
during the execution of high�latency operations�

In this paper� a dynamic reordering pipeline is considered to preprocess the instruc�
tion stream directed at the RBC� To reduce the e�ects of high latency�disparities in the
instruction�set of the RBC� this pipeline dynamically reorders� cancels� or combines multi�
ple instructions to obtain shorter as well as more optimal 
in terms of latency� instruction
sequences�

We chose an asynchronous style implementation for the Asynchronous Reorder Pipeline

ARP� because� as has been discussed in ���� an asynchronous pipeline structure exhibits
low latency when empty� its interfacing rules are simple and reliable� and it is a simple and
regular structure� Our work modi�es Sutherland�s micropipeline structure ��� to support the
above optimizations� Key results reported here include�

� development of instruction re�ordering rules for the RBC�

� development of a modi�ed micropipeline architecture that can be reliably stalled during
operation� its contents modi�ed 
through cancellation or exchange�� and re�started�

� design of two new primitive asynchronous components� a Lockable C�element 
LockC�
to support the ARP� and an Exchange Latch 
ExLatch� which extends the basic tran�



A DYNAMIC INSTRUCTION REORDERING MICROPIPELINE �

sition latch structure reported in ��� to permit data exchanges within the pipeline�

� a precise correctness argument about the ARP�

Although designed in the context of the RBC� ideas embodied in the design of the ARP can
be applied to the design of other instruction pipelines as well� In addition� the new primitive
components proposed are expected to be useful in other situations�

RBC Instruction-Set

RBACK
ADV
MARK
READ
WRITE

n
n

rollback frame-version by n
recollect n oldest frames
allocate new frame as current
read data from last written frame
write data to current frame

Figure 
� RBC instruction�set

� Transaction Optimizations

Figure 
 shows the instruction�set of the Roll�back Chip� Logically� the state held by
the RBC can be viewed as a stack of successive �frames�� where each frame 
logically� at
least� denotes the entire data�segment of a process corresponding to one version� A write
operation stores data into the top�most frame of this stack �gure at the addressed location�
Read operations may not �nd valid data in the top�most frame� in which case they �go down
the stack� until they �nd one valid version of the addressed reference� A new �empty� frame
is allocated by the mark operation� 
Note that mark is commutable with reads� but not with
writes�� If a branch of the local execution becomes invalidated� the RBC�system is subject
to a rollback operation to roll back the computation into a previous checkpointed state by
discarding N frames from the top of the stack 
where N depends on the event that caused
the invalidation of the local execution � such as a message with an �old timestamp��� In
time warp� there is a notion of the global virtual time 
GVT� which is a time such that all
transactions with time�stamp older than GVT have been committed� In regular intervals�
the GVT is recomputed and distributed to all the processes� Any frame that is older than
the GVT can be garbage collected through the advance operation�



� ARMIN LIEBCHEN� GANESH GOPALAKRISHNAN

original:

WRITE

WRITE

RBACK  1

WRITE

ADV

RBACK  1

READ

RB/W cancellation:

RBACK  1

WRITE

ADV

RBACK  1

READ

RB/A commutation:

RBACK  1

WRITE

RBACK  1

ADV

READ

RB/RB accumulation:

RBACK  2

READ

ADV

Figure �� Transaction Queue

As an example of possible instruction re�orderings� Figure � shows a sequence of pending
instructions while the RBC system is in operation� The RBC system is attached to the front
of this queue while the computing node running time warp processes �lls the queue from
the rear with RBC instructions� In the original order� a read operation was issued last� and
stalls its requesting process for the duration of all preceding instructions drawn underneath�
These include high�latency operations such as rollback and advance which have orders of
magnitude higher latency than the read operation� Recalling the semantics of the above
de�ned instruction�set� it can be observed that write operations always address the current
marked frame� while rollback operations discard N frames from the top of the frame�stack�
Thus any rollback operation annihilates the e�ect of a write operation� provided that no
mark operation appears in between� Instruction cancellation is the �rst optimization that
we identify� It reduces execution�latency by removing a partial set of instructions from the
queue� In the example of Figure �a� the rollback near the bottom of the pipeline can instantly
annihilate the two write operations below it� thus reducing the total number of queue�entries
from seven to �ve�

In the second step� it can be observed that rollback and advance operations are close
together� Since advance a�ects only the frames marked before the GVT� while rollback can
never a�ect frames created earlier than the GVT� we can commute these operations� as
shown in Figure �c� Notice that after the commutation� a further write cancellation becomes
possible� Thus� instruction commutation is a second type of optimization that allows the
reduction of the e�ects of high latency instructions� either directly by promoting lower latency
instructions in the queue� or indirectly� by enabling further optimizations�

After the second write�cancellation has been performed� two rollback operations sit on top



A DYNAMIC INSTRUCTION REORDERING MICROPIPELINE �

of each other� These two operations can be combined into one by adding their arguments�
Instruction accumulation provides a third opportunity to improve the response time of system
by combining multiple high�latency instructions into one� In a last step� the pending read
operation commutes with the advance operation� and is now signi�cantly closer to the RBC
than in the original order�

Studies conducted so far �
� suggest that the above optimizations could greatly improve
the performance of the RBC system� Further simulation studies are pending�

� Hardware Implementation� The Asynchronous Reorder Pipeline

An asynchronous pipeline with local dynamic reordering and cancellation was chosen to
implement the above suggested algorithm� Figure � shows an outline of the hardware imple�
mentation� The ARP consists of an arbitrary number of stages� numbered ascending from
left to right� One stage of the ARP consists of 
from top to bottom� a control unit 
CU�� a
data unit 
DU�� and an optimization unit 
OU��

The CU is a micropipeline control stage� with the following modi�cations� 
a� it uses a
LockC element instead of a regular C�element� 
b� it uses an XOR�gate to probe for the status
signal full 
called the full XOR�� 
c� two more XOR�gates that generate the signal creqo and sense
the signal cacko� respectively� These XOR gates are called 
respectively� the creqo and the
cacko XORs� The additional signals in CU 
beyond those used in a standard micropipeline
control stage� are full and cancel� The DU consists of two exchange latches ExLatch 
a
modi�ed version of the transition latch reported in ���� where the upper ExLatch is used to
hold an RBC operation� while the lower exchange latch holds the associated argument��

Associated with each DU is a full�token that propagates along CU� following the conven�
tions of the micropipeline� CU contains a full�token� if the internal request� and acknowledge�
lines are of opposite phase� which can be probed by the full XOR gate� The CU and DU units
are operated following the data bundling convention ��� and support a left�to�right �ow� It
is also assumed that adequate time is allowed between the application of a pass followed by
a capture on each ExLatch 
see ��� for details��

The OU supports a right�to�left �ow of optimization tokens� The RBC system is situated
at the right�end while the instructions are �lled from the left�end� Assume that several
instructions have �lled the ARP and that the CU and DU are operating as they would in a
normal micropipeline�

The operation of the ARP is now cursorily explained 
detailed later�� Periodically� the
RBC system injects an optimization token from the right into the OU cell� When the
optimization token enters stage i� stage i � 
 is locked 
temporarily isolated from stage i��
Stages i and i � 
 are examined 
by OU� to see if they are both full� If they are not� then
stage i�
 is unlocked� and the optimization token is forwarded 
i�e� sent to the left�� If the



� ARMIN LIEBCHEN� GANESH GOPALAKRISHNAN

OU

fulloa? or!

opt
QS

T

F

D δ

TL

C P

TL

C PDU

CU

C

capture! pass! cancel?full

tacko[i-1]!

treqo[i-1]?

tacki[i-1]?

treqi[i-1]!

lock[i]!unlock[i]!

di[i-1] do[i-1]

ti[i-1] to[i-1]

lock[i-1]?

cacki[i-1]!

creqi[i-1]?

creqo[i-1]!

cacko[i-1]?

OU

fulloa? or!

opt
QS

T

F

D δ

TL

C P

TL

C PDU

CU

C

capture! pass! cancel?full

tacko[i]!

treqo[i]?

tacki[i]?

treqi[i]!

lock[i+1]!unlock[i+1]!

di[i] do[i]

ti[i] to[i]

lock[i]?

cacki[i]!

creqi[i]?

creqo[i]!

cacko[i]?

Figure �� Asynchronous Reorder Pipeline



A DYNAMIC INSTRUCTION REORDERING MICROPIPELINE �

stages i and i� 
 are full� OU further checks to see whether one of the RBC optimizations
can be performed� If a cancel optimization can be performed� OU issues cancel on stage i�
that forces stage i to become empty� Stage i then �lls up from stage i� 
� If an accumulate

optimization can be performed� the basic steps are similar to that of cancel except that
the argument �eld of DUi is suitably modi�ed 
e�g� using an adder�� Stage i � 
 is then
unlocked� permitting the normal operation to continue� If an exchange operation is to be
performed� then an exchange sequence is performed on ExLatchi and ExLatchi�� Then�
stage i�
 is unlocked� After an optimization� the optimization token is returned back to the
RBC through the chain of XOR gates at the bottom of the OUs� 
This is a simple heuristic
followed in the current version� The e�ect of this heuristic is to perform optimizations near
the RBC�end of the queue before they are performed at the rear��

Notice the �bundle� of unlocki signals emerging from OUi� Each signal in this bundle
corresponds to one situation in which the lock on stage i� 
 can be removed� For example�
the left�most unlock signal is issued in case no optimization applies on stage i 
the token is
then sent to stage i�
 to see if any optimization applies there�� the middle unlock corresponds
to the case where stage i and�or stage i � 
 are not found to be full� and� the right�most
unlock signal is issued when stage i and�or stage i � 
 are both found to be full but none
of the optimization conditions apply� Thus� in the actual circuit� locki and the bundle of
unlocki signals are merged using one multi�input XOR and connected to the lock�i�� input
shown on the LockC element of stage i� 
�

Finally� also notice the two �logical� signals or� and oa�� these stand for actual control
signals that are necessary to initiate the required optimization sequence and to detect the
completion thereof� These details are also standard� and are suppressed to avoid clutter�

The next section fully explains the operation of the ARP� taking possible metastable
behaviors and timing constraints into account�

� Details of the ARP

��� The Q�select Module

The Q�select module is a module proposed in ���� It is based on the design of Q�flop
proposed in ���� A Q�select module awaits its input level signal 
connected to full in
Figure �� to attain a reliable � or a 
 level� Concurrently� a transition may arrive on its D

input� If the level input full attains a �� the transition on D is steered to output F� else� it is
steered to output T�

��� The Exchange Latch

Figure �a 
the top �gure� shows a regular forward�pipeline built from transition latches
that do not provide a data�path for value exchange� The simplest extension to support value



� ARMIN LIEBCHEN� GANESH GOPALAKRISHNAN

Exchange Pipeline:

C PH S C PH S

Forward Pipeline:

C P C P

Figure �� Exchange�Pipeline

exchange would involve the introduction of an additional latch per stage� with multiplexors
to feed back the value into the data�path� resulting in ��inverters and ��switches per stage�
Figure �b 
bottom �gure� presents a slightly improved scheme using the �exchange�latch��
Using the idle inverter in the transition latch for temporary storage� this implementation
requires only ��inverters and ��switches per stage� In both these �gures� the position of the
switches correspond to the case when the controlling inputs are �� Also� � means assert a
signal� � means deassert� and � means �ip the current state of the signal�

The control sequence required for an exchange between cell � and cell 
 is as follows�

H�� ��� hold the output of cell�� in the upper cross�coupled pair of cell 
�

S�� ��� set the latch in cell � to the output of cell 
� now being provided by the lower
cross�coupled pair of cell 
�

S�� ��� hold this value in cell ��

P�� ��� switch cell�
 output to the upper cross�coupled pair�

C�� ��� prepare feedback�path for alternate latch

H�� ��� give holding�control back to C�P�



A DYNAMIC INSTRUCTION REORDERING MICROPIPELINE �

��� A Lockable C�element� LockC

C-select Interlock Static-Hold

a

b

a

b

lock

q

q

Figure �� A Lockable C�element� LockC

A Lockable C�element is shown in Figure �� In this �gure� proper ratioing is assumed so
that the cross�coupled pair of inverters in C�select can be overpowered by the pull�downs to
the left� and also the stage Static�Hold can be overpowered by the pull�downs to the left�
The cross�coupled pair of inverters in C�select are also much weaker than Static�Hold� LockC
consists of a cross�coupled pair which is pulled down on one side by the condition a� b or
on the other side by the condition �a��b� assuming that the condition �lock � 
 is stable�
This implements the basic mechanism of a C element� However� if lock changes coincident
with a or b� the cross�coupled pair can go metastable and �ip back to its original state� or
�ip to the new state� � Since the output of the cross�coupled pair is fed through an interlock
element �
�� which isolates the output stage if the cross�coupled pair goes metastable� the
output of LockC always makes �clean� transitions� If the cross�coupled pair did not succeed
in moving into its new state� then it surely will when � lock changes back to a 
� Thus� the
only noticeable e�ect of locking a LockC is that the operation of the C element is delayed
while lock lasts� See the Appendix for details of LockC�

�Actually� the change of lock coincident with b is harmless if LockC is used in a micropipeline because
all b transitions turn the pull�down stack o� � and a �� � on � lock only aids the turn�o��



	
 ARMIN LIEBCHEN� GANESH GOPALAKRISHNAN

��� Detailed Operation of the ARP

We consider several scenarios and argue that ARP is correct in all of them� The basic
scenario is now explained�

Suppose an optimization token comes into OUi 
the ith stage of the optimization unit�
and issues a lock on ARPi��� LockC within ARPi�� may have �red exactly at the same
time the lock is issued� if this is the case� then it will take some time before its e�ect is
absorbed by ARPi and re�ected in fulli � this time is the sum of the cacko XOR delay plus a
LockC delay plus the full XOR delay 
call this time delay ��� Therefore� after asserting lock

on ARPi��� OUi waits for � units of time before �sampling fulli�� Sampling fulli is actually
accomplished by the optimization token causing a transition on the D input of the Qselect�
the logical level of fulli steers the transition to either the optimization sub�unit labeled opt

or back into the XOR chain� The �danger� of using a Q�select is that we can falsely sense
ARPi to be empty when in fact it may be �lling up� However� this is an error on the safe
side because it will result only in a missed optimization opportunity�

The readers may notice that fulli actually can be a�ected not only by ARPi 
which can
set it to false� but also by ARPi�� 
which can set it to true�� It is not guaranteed that
the change that ARPi�� could cause on fulli 
by �lling stage i� would be completed by �

time units� However� this latter change can only change fulli to true� Therefore� once a fulli
has been sampled by Qselecti within OUi to be true� it is guaranteed to stay true � this
is because stage i � 
 is locked and cannot empty stage i� and also stage i � 
� by design�
can never empty stage i� Therefore� we only have the following one�sided timing constraint�
after the application of locki� OUi must wait � time units before it can start considering the
various optimization options�

It is also important to note the order in which we sample the �full� status of the control
units� we sample fulli and then only fulli��� and not vice versa� This is because if fulli has
been sampled to be true� it is guaranteed to remain true� whereas if we sample fulli�� to be
true� it is not guaranteed to remain true� for it can go empty by �lling CUi with a token� To
sum up� the sequence followed by OUi is captured in �gure ��

��	 Correctness of the Optimization Protocol

The various scenarios presented in the above pseudo�code are now analyzed� and we argue
that the optimizations are correctly implemented�

��	�� ARPi or ARPi�� not full

In this case� OUi simply unlocks ARPi�� and returns the optimization token back to stage
ARPi�� 
which� as can be seen from the schematic� trickles back to the RBC through the
XOR chain��

Studying the design of LockC we can conclude that a lock followed by a �lock does not af�



A DYNAMIC INSTRUCTION REORDERING MICROPIPELINE 		

Assert locki

Wait � units of time
if fulli
then

if fulli��
then

if any optimizations can be performed
then

perform required optimizations
return token back to the RBC

else hand over the token to the stage with the lower index
end if

else return token back to the RBC
end if

else return token back to the RBC
end if

Figure �� Optimization Algorithm Followed by OUi

fect the overall execution semantics � it only introduces a momentary hiatus in the operation
of the micropipeline�

��	�� ARPi and ARPi�� full
 but No Optimizations

In this case� if none of the optimization conditions apply� then also OUi simply unlocks
ARPi�� and forwards the optimization token to stage ARPi�� � again with no ill e�ects�

��	�� ARPi and ARPi�� full
 and Optimizations Performed

Suppose a cancel optimization applies� OUi then issues canceli� which has the following
momentary e�ect on ARPi��� it injects a �spurious� token into CUi��� Fortunately� canceli
has the following e�ect on ARPi as well� it �rst propagates through the upper XOR of ARPi�
and introduces a transition into the b input of LockCi 
the LockC within ARPi�� This drains
CUi of its full token 
and� correspondingly� DUi of its data� since passi is now enabled�� But�
since ARPi is full� LockCi will �re� producing an output that does two things� it initiates
another capture� thus loading the data from DUi�� into DUi� It also injects a transition on
the lower XOR that removes the �spurious� token from ARPi��� The time from canceli till
the spurious token is �nally removed from ARPi�� is again equal to the sum of a cacko XOR

delay plus a LockC delay plus a creqo XOR delay� which� again� is � units� After this time�
we can safely deassert locki��



	� ARMIN LIEBCHEN� GANESH GOPALAKRISHNAN

The operation of exchange is simpler� instead of issuing a cancel� the exchange sequence
is performed before deasserting locki��

� Conclusions� and Ongoing Work

Although simple in structure� the design of this pipeline shows a rich spectrum of principal
caveats in asynchronous circuit design such as phase�coherence in transition�level signaling�
dealing with metastability� reliance on invariants 
e�g� sample fulli before fulli�� and not
the other way� relying on the fact that once both stage i and i � 
 are full� they will stay
full so long as stage i � 
 is locked�� etc�� This example has given us plenty of excellent
opportunities for developing the modeling capabilities of our hardware description language�
hopCP �

�� and veri�cation tools 
we plan to use the veri�er reported in �
���� The ARP
has been speci�ed hopCP at two levels of re�nement�

The following work will be carried out in the coming months�

� Prove the correctness of the instruction reordering rules� using the work reported in
��� as a basis�

� Prototype the ARP system using Actel FPGAs� using approximate versions of the
Qselect and LockC � this is only to prove the concept�

� Build a CMOS implementation of ARP� measure its metastability characteristics�

� Verify the ARP protocol by suitably modeling the operations of the various components
using Petri nets� and using a Trace�theory Veri�er �
�� 
��� Despite the fact that many
low�level phenomena cannot be modeled using Petri nets� suitable abstractions can be
used to handle them�

Acknowledgements� The authors would like to express their thanks to Venkatesh Akella
for help with the hopCP language� Richard Fujimoto for his inspiring work on the design of
the RBC� and Erik Brunvand for his many useful comments�



A DYNAMIC INSTRUCTION REORDERING MICROPIPELINE 	�

A Appendix� Circuit�Simulation of LockC

Crucial to the performance of the Asynchronous Reorder Pipeline is the proper operation
of the lockable C�element LockC under any possible external sequence of events� In an
asynchronous environment the temporal order of signals is by no means constrained� and
in particular may violate proper setup and hold�times required to guarantee monotonic
transitions�

The following simulation was performed in SPICE using a level�� MOSFET�model for
a �� MOSIS fabrication�process� Simulated in the following sequence is the arrival of an
activating transition at the input a of LockC� roughly 
��ns after the plot starts �� After a
certain delay 
which we shall vary in the following experiments�� a lock transition occurs�
and deactivates 
i�e� open�circuits� the pull�down tree of the cross�coupled inverter�pairs
while they are in transition� It is well known that such signaling results in non�deterministic
circuit�behavior� leading possibly to oscillations and to prolonged periods of metastability�
Our circuit was designed to shield these adverse conditions from the output nodes until a
reactivating lock�transition resolves any possible non�deterministic circuit�state in the input�
section�

Figures ��� show a sequence of simulations performed at various pulse�separations� Initially
both latches are reset� In Fig �a� a deactivating lock arrives 
ns after the transition on a

started to invert the input�latch� v
��� and v
�
� refer to q and �q at the input�latch
respectively� while v
��� and v
�
� refer to the corresponding q and �q at the circuit output�
As can be seen� v
��� gets pulled down instantly with the arrival of a� however the interlock�
element e�ectively isolates the output�stage from the input� as v�� never decreases su	ciently

e�g� one threshold voltage� below v
�
�� This observation is supported by probing the
current �owing through the interlock�elements� Figure �b con�rms that the upper transistor
in the interlock�stage 
see Figure �� conducts almost no current 
i
v�
��� The lower transistor
v
��� initially is back�biased and conducts a transient pulse� which however� as seen in
Figure �a� only generates a ringing at the input�latch 
v
����� In summary� while the short
pulse�separation in Figure � produces excessive voltage�swings at the input�latch� the output�
latch retains smooth signal�levels and produces no adverse e�ects on successive logic stages�

In case of Figure �� the lock�pulse arrives slightly too late to abort the ongoing transition
of both latches� As can be seen in Figure �a� both output�signals 
v
���� v
�
�� have already
started to change� when a lock comes in �ns after the enabling activation on a� As soon
as the di�erence of the input�voltages 
v
���� v
�
�� falls below the threshold of the upper
interlock�transistor� a large current sets in to pull down the output�latch into an inverted
state 
i
v�
�� Fig �b�� committing the output latch into a irreversible transition� As Figure �a
indicates� the output transitions again are very smooth�

Figure � shows the circuit driven into metastability� While the voltages at the input�

�This delay is due to a driving CMOS�bu�er at the inputs to properly shape the stimulating waveforms�



	� ARMIN LIEBCHEN� GANESH GOPALAKRISHNAN

latch 
v
���� v
�
�� oscillate into a non�deterministic temporary state 
between �ns and
�ns�� their di�erential remains below the turn�on threshold of the upper interlock�transistor

i
v�
�� Fig �b�� It is only after this metastability is beginning to get resolved 
at t � �ns��
that a strong pull�down current sets in through the upper interlock�element 
Fig �b� i
v�
���
and smoothly initiates a transition of the output latch as can be seen in Fig� � 
v��� v�
��

References


� Richard M� Fujimoto� J� �J� Tsai� and Ganesh Gopalakrishnan� Design and evaluation
of the rollback chip� Special purpose hardware for time warp� IEEE Transactions on
Computers� �


�������� January 
����

�� D� R� Je�erson� Virtual time� ACM Transactions on Programming Languages and
Systems� �
����������� July 
����

�� R� M� Fujimoto� Time Warp on a shared memory multiprocessor� Transactions of the
Society for Computer Simulation� �
����

����� July 
����

�� Ganesh C� Gopalakrishnan and Richard Fujimoto� Design and veri�cation of the rollback
chip using hop� A case study of formal methods applied to hardware design� Technical
Report UUCS��
��
�� Dept� of Computer Science� University of Utah� Salt Lake City�
UT ��

�� October 
��
� Submitted to the ACM Transaction on Computer Systems�

�� C� A� Buzzell� M� J� Robb� and R� M� Fujimoto� Modular VME rollback hardware
for Time Warp� Proceedings of the SCS Multiconference on Distributed Simulation�
��

��
���
��� January 
����

�� Norman P� Jouppi� The nonuniform distribution of instruction�level and machine paral�
lelismand its e�ect on performance� IEEE Transaction on Computers� ��

���
����
����
December 
����

�� Ivan Sutherland� Micropipelines� Communications of the ACM� June 
���� The ����
ACM Turing Award Lecture�

�� Erik Brunvand� Parts�r�us� a chip aparts�s�� � �� Technical Report CMU�CS����

��
Carnegie Mellon University� May 
����

�� Fred U� Rosenberger� Charles E� Molnar� Thomas J� Chaney� and Ting�Pein Fang� Q�
modules� Internally clocked delay�insensitive modules� IEEE Transactions on Comput�
ers� ��
���
����
�
�� September 
����


�� C� A� Mead and L� Conway� An Introduction to VLSI Systems� Addison Wesley� 
����
Chapter � entitled �System Timing��



A DYNAMIC INSTRUCTION REORDERING MICROPIPELINE 	�



� Venkatesh Akella and Ganesh Gopalakrishnan� Static analysis techniques for the synthe�
sis of e	cient asynchronous circuits� Technical Report UUCS��
��
�� Dept� of Computer
Science� University of Utah� Salt Lake City� UT ��

�� 
��
� To appear in TAU ���	
���� Workshop on Timing Issues in the Speci
cation and Synthesis of Digital Systems�
Princeton� NJ� March ����
� �����


�� Ganesh Gopalakrishnan� Nick Michell� Erik Brunvand� and Steven M� Nowick� A cor�
rectness criterion for asynchronous circuit veri�cation and optimization� To be submitted
to the Computer Aided Veri
cation Workshop� Montreal� �����


�� David L� Dill� Trace Theory for Automatic Hierarchical Veri
cation of Speed�independent
Circuits� MIT Press� 
���� An ACM Distinguished Dissertation�



	� ARMIN LIEBCHEN� GANESH GOPALAKRISHNAN

Fig 9a: Voltage Levels before and after Interlock (dt = 1.52 ns)

v(20)

v(21)

v(30)

v(31)

V [V]

t [ns]

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0.00 2.00 4.00 6.00 8.00 10.00

Fig 8a: Voltage Levels before and after Interlock (dt = 3.0 ns)

v(20)

v(21)

v(30)

v(31)

V [V]

t [ns]

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0.00 2.00 4.00 6.00 8.00 10.00

Fig 7a: Voltage Levels before and after Interlock (dt = 1.0 ns)

v(20)

v(21)

v(30)

v(31)

V [V]

t [ns]

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0.00 2.00 4.00 6.00 8.00 10.00

Fig 9b: Current through Interlock (dt=1.52ns)

i(v40)

i(v41)

I [uA]

t [ns]
-320.00

-300.00

-280.00

-260.00

-240.00

-220.00

-200.00

-180.00

-160.00

-140.00

-120.00

-100.00

-80.00

-60.00

-40.00

-20.00

-0.00

20.00

40.00

60.00

80.00

0.00 2.00 4.00 6.00 8.00 10.00

Fig 8b: Current through Interlock (dt=3.0ns)

i(v40)

i(v41)

I [uA]

t [ns]

-350.00

-300.00

-250.00

-200.00

-150.00

-100.00

-50.00

0.00

50.00

100.00

0.00 2.00 4.00 6.00 8.00 10.00

Fig 7b: Current through Interlock (dt=1.0ns)

i(v40)

i(v41)

I [uA]

t [ns]

-300.00

-250.00

-200.00

-150.00

-100.00

-50.00

0.00

50.00

100.00

150.00

0.00 2.00 4.00 6.00 8.00 10.00


