
Modules as Values in a Persistent Object Store�

Gilad Bracha

Horizon Technologies of New York� Inc�

gilad�cs�utah�edu

Charles F� Clark� Gary Lindstrom� and Douglas B� Orr

University of Utah

fclark�lindstrom�dbog�cs�utah�edu

Abstract

We report on an object manager �OM� providing persistent implementations for C�� classes�

Our OM generalizes this problem to that of managing persistent modules� where the module concept

is an abstract data type �ADT�� This approach permits a powerful suite of module manipulation

operations to be applied uniformly to modules of many provenances� including non�class based

entities such as conventional object �les� application libraries� and shared system libraries� OMOS�

a generalized linker and loader� plays a central role in our OM� Class implementations are repre�

sented by OMOS modules� which in turn are constructed from OMOS meta�objects encapsulating

linkage blueprints� We cleanly solve the problems of �i� logically �but not physically� including

executable object �les in our OM� �ii� reconciling class inheritance history and linkage history� and

�iii� supporting alternative implementations of a class� for client interoperability or version control�

Key words� Persistence� object stores� modules� dossiers� class implementations� dynamic

linking and loading� functional interposition�

� This research was sponsored by the Defense Advanced Research Projects Agency �DOD�� monitored
by the Department of the Navy� O�ce of the Chief of Naval Research� under Grant number N���������J�
���	
 The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing o�cial policies� either expressed or implied� of the Defense Advanced Research
Projects Agency or the US Government


� Primary contact author� Computer Science � ���� MEB� Salt Lake City� UT 
���� USA� phone ���
���
�
����
	� fax ���
����
���
��


�



� Requirements for a Persistent Object Store

��� Motivations for Persistent Objects

Techniques for saving objects in long�term storage are the focus of vigorous scienti�c and com�

mercial activity� arising from two motivations�

� Extending the software engineering �SWE� power and 	exibility of object�oriented �O�O�

programming systems� and

� Extending database technology to advanced applications such as computer aided design�

multi�media data management� and large�scale scienti�c databases�

The �rst motivation is felt within the O�O programming language community� where the rapid

advances of O�O programming methodology design are confronting its semantic impedance mis�

match with byte�oriented �le systems� Typically an O�O application system designer develops a

customized object representation exploiting static typing� encapsulated data and functions� vari�

able granularity data� and intricate interobject referencing� Unfortunately� this rich structure must

be encoded and decoded when preserved in a 	at� amorphous� and unencapsulated �le� Systems

permitting O�O language objects to be saved and restored without such loss of structure are termed

persistent object stores �POS
s��

The second motivation comes from the database community� where successors are being sought

for the relational data model� Though uniform and mathematically elegant� the relational model

is primarily motivated by ad hoc querying of schematically simple databases by short duration�

highly concurrent transactions� Object�oriented databases �OODB
s� �ABD��
� provide a modern

alternative� where relations are replaced by collections of objects� in the O�O programming sense�

Traditional concerns in the database community remain paramount in the design of OODB
s�

including atomicity and recovery� distribution� concurrency control� and optimized querying�

Users have good reason to hope that these two approaches will eventually converge� or even

unify� into a pervasive O�O system framework o�ering comprehensive support of both O�O SWE

and database requirements� However� there remain today sharp and weighty di�erences between

these two worlds� One of the most vivid such di�erences lies in management of the functions

�method code� associated with persistent objects� To an O�O programmer� the methods associated

with an object are its sine qua non � and even� under full encapsulation� comprise the object
s

�



only external interface� Yet today
s OODB
s consider methods� and their association with stored

objects� to be the application programmer
s concern� much like query code�

We address here the conceptual� semantic� and implementation issues raised by the POS require�

ment that method de�nitions comprising a class implementation must be permanently associated

with its persistent instances� This requirement poses several speci�c questions� including�

�� How should the class implementation of a persistent object be represented�


� How can a persistent object and its class implementation be kept consistent�

�� How can an application program deal e�ectively with objects of classes unknown to it at the

time of its compilation�

�� How does managing class implementations relate to managing the object �les in which their

implementations reside in a traditional system linking sense�

�� Can this long�lamented overloading of �object� �class instances vs� object �les� be turned to

advantage as the basis for a single� broadly useful architecture for managing programmodules�

their descriptions and their instances��

��� The MSO Object Manager

Although much remains to be investigated� designed� implemented and validated� we believe we

have preliminary answers to the above questions and others that arise when class implementations

are required to be persistent� Our insights have been formulated while designing an object manager

�OM� for the Mach Shared Objects �MSO� project� Although the MSO OM will ultimately provide

more services than is customary for a POS �e�g� rudimentary querying and concurrency control��

we will view it as a POS for the purposes of this paper� The MSO OM is being developed under

the following requirements�

�� The primary function of the MSO OM is to provide a persistent store for C�� and Common

Lisp Object System �CLOS� application program objects�


� The MSO OM will be layered between application systems and modern operating systems

of the Unix family� and run e�ciently on current hardware� Hence any architectural �object

orientation� will rely on software implementation only�

� For the purposes of this paper� we assert the following lexical equivalences� declaration � speci�cation�
and de�nition � implementation
 By description we mean either of these two� in a generic sense







�� The MSO OM must not invalidate use of existing compilers� programming environment tools

�e�g� make� and �le systems� In particular� executable code associated with persistent objects

will not be physically stored in the MSO OM�

�� The MSO OM will use at its lowest level a storage manager that �i� stores and retrieves

uninterpreted byte�oriented records� �ii� provides an object identi�er �OID� naming service

for these records� and �iii� implements rudimentary transaction control �e�g� object locking��

�� In addition� several pragmatic constraints are exerted by MSO
s primary client� Alpha �� a

large computer aided geometric design and manufacturing system� including� �i� a high degree

of compiler and hardware platform independence� �ii� minimal constraints on application

programming style� and �iii� preservation of high computational speed on loaded objects�

The MSO OM design thus far has focused on support for C�� application programs� Con�

sequently� the main thrust of this paper concerns providing persistence support for C�� class

implementations�

� Describing Stored Objects

It is well known that run�time objects describing classes are necessary for fully polymorphic

manipulation of objects� e�g� copying� browsing� and secure casting� In particular� such descriptions

are required for a POS to implement fully polymorphic load and store functions� This section

discusses how both class speci�cations and implementations are represented in our system�

��� Representing Class Speci�cations

We begin by reviewing how speci�cations of statically loaded classes can be represented by

dossier objects� as conceived by Interrante and Linton �IL���� Their work is motivated by providing

type descriptions at run time� Types fundamentally deal with compatibility of object interfaces�

while classes are programmodules from which objects can be instantiated� In C�� classes are types

� which facilitates compilation but segregates classes which could be considered type equivalent�

All objects of a given class share the same dossier� which in turn is an instance of class dossier�

Our dossiers comprise a type identi�er� instance size� and information about the class
s data mem�

bers� member functions� and direct base classes� Each data member is represented within the

�



dossier by a structure containing that member
s name� its position within the declaration of the

class� and a reference to the dossier for that data member
s type�

The information about each member function includes that function
s name� its arguments with

references to the dossiers for their types� and a reference to the dossier for the return type� Each

dossier of a class which uses inheritance contains only the information contained within that class
s

declaration� Hence� data members and member functions declared in base classes are not replicated

within the dossier of a derived class� Since a dossier contains method speci�cations but not method

implementations �code pointers�� the dossier of a class corresponds to the class
s speci�cation�

��� Representing Class Implementations

Many current OODB systems associate with a stored object its class
s symbolic name as a class

implementation key� This device is acceptable� provided that any application program loading an

object �i� ensures that class name uniqueness guarantees class implementation uniqueness� and �ii�

will have already statically loaded that object
s class implementation� In practice� these conditions

are too severe� In particular� we may desire to� �i� dynamically link and load method implementa�

tions� �ii� access objects of unknown classes �DSS���� and �iii� provide alternate implementations of

a class for interoperability �across compilers and hardware platforms� or versioning �e�g� debugging�

purposes�

Dossier objects could be extended to record the method implementations of the classes repre�

sented by its objects� Static type checking would dictate that these be stripped of type information

by void�casting� but this would be a benign loss since such information is already encoded in method

type descriptors� Nevertheless� little purpose would be served by this extension for statically cre�

ated dossiers for objects of known classes� since all methods must be already de�ned� The key issue

is how to represent a class implementation associated with stored objects�

Since a class implementation is an extension of a class speci�cation� we can extend class dossier

to represent class implementations as well� Storing a persistent object O then entails �i� storing

O
s dossier as a persistent object augmented to include method implementations� �ii� storing O

itself� with a data member OID� my dossier set to the OID of its stored dossier� However� several

questions remain�

�� How are method implementations represented in a stored dossier� Clearly� a memory address

�



at which the implementation was once loaded is inappropriate�


� Loading an object should load its dossier� if not already loaded� How do we know if the

dossier is already loaded�

�� If a dossier is dynamically loaded� how do we locate and map in its method implementations

as executable code�

�� Dossiers record the inheritance history of classes� This is central to the logical structure

of O�O systems� but separate from the management of class descriptions as SWE artifacts�

which concerns linkage history of separately compiled �les� How can these two dimensions be

reconciled�

�� Since a dossier is a persistent object itself� does it possess a dossier itself� and if so� what is

its function� �And ever upward��

We assert that these questions should not be answered within the limited context of a particular

O�O programming language �e�g� C���� lest overly speci�c mechanisms result� Rather� we believe

that a comprehensive solution should be sought in the more general context of storing program

modules as persistent values�

� Classes as Modules

A module is a familiar program structuring notion involving encapsulating functions and data�

controlling visibility� presenting a typed interface to clients� admitting instantiation� etc� For our

purposes� there are two highly pertinent kinds of modules�

� The class notion� as formulated in O�O languages �especially C���� and

� The object �le notion� as produced by language processors and manipulated by system utilities

such as linkers and debuggers�

These two notions of module share many characteristics� but are very di�erent in their senses

of composability� Classes are composed by inheritance� a semantically rich but language�speci�c

operation� while object �les are composed by semantically simple linkage operations with universal

applicability within families of language processors emitting a standardized object �le format�

�



As suggested in x
�
� a class implementation stored as a persistent dossier object must live on

the boundary of these two worlds� being a persistent object itself� while providing directions for

locating method implementations in object �les which are not stored in the POS� Rather than

being a source of confusion� we believe this dual object nature can enrich the POS to manage both

kinds of objects in a compatible and architecturally unifying manner�

The basis lies in recent work �BL�
� Bra�
� formalizing the module notion as an abstract data

type �ADT�� customizable to these two senses of module �class and object �le�� and many others�

This is distinct from the familiar notion that modules �e�g� classes� can be used to introduce user�

de�ned abstract data types� Rather� the concept of module itself is cast as an abstract data type�

in the same sense one might characterize stack as an abstract data type�

A module is a self�referential scope� with some names bound to values �i�e� de�ned� and some

names simply declared� Modules have no free variables� and we assume that declarations are

su�cient for external access� thereby permitting separate compilation of modules� The module

ADT provides a constructor function make module� through which individual modules �cf� classes�

are created� Once created� a module can create instances �cf� objects� via an instantiate function�

speci�ed �but perhaps not implemented� by the module ADT� Most importantly� the module ADT

de�nes language�independent combinators applicable to any well�formed module� Metaphorically�

these combinators permit the deft reshaping and �tting together of modules� much as a jigsaw tool

may be used to craft the pieces of a wooden puzzle� In this spirit� we dub the applicative language

of module ADT operators Jigsaw� Sample Jigsaw module combinators are shown in Fig� ��

Viewing class implementations as modules enlarges the charter of a POS to be a persistent

store for modules� their instances� and their descriptions� This three level perspective� developed

in detail in x�� resolves two vital issues�

� A class implementation is stored as a dossier object extended to include a reference to the

object �le module in which its method implementations are found� and

� Dynamic linking and loading of class implementations �even unknown ones� involves simply

the run�time merge of the executing program �viewed as a module� with the object �le module

containing the class implementation�

�



Name Sample Module

O� fint x� fun f �int y� � g�g�y��� fun g �int z� � z�xg

O� fint x � ��� fun q �real z� � z�zg

O� fint y � ��� fun g �int w� � w	yg

Operation Result

O� copy f as h fint x� fun f �int y� � g�g�y��� fun g �int z� � z�x� fun h �int y� � g�g�y��g

�A de�nition copy is added�

O� freeze g fint x� fun f �int y� � g�g�y��� fun g �int z� � z�x g

�O� is unchanged� but g becomes non�rebindable�

O� hide g fint x� fun f �int y� � g
�g
�y��� fun g
 �int z� � z�xg

�Component g
 is not externally visible�

O� merge O� fint x � ��� fun f �int y� � g�g�y��� fun g �int z� � z�x� fun q �real z� � z�zg

�Declarations and de�nitions collected � matched� con�icts disallowed�

O� override O� fint x� fun f �int y� � g�g�y��� int y � ��� fun g �int w� � w	yg

�Merge with con�icts resolved in favor of right operand�

O� rename g to h fint x� fun f �int y� � h�h�y��� fun h �int z� � z�xg

�Declaration and all uses consistently renamed�

O� restrict g fint x� fun f �int y� � g�g�y��� fun g � int � intg

�Declaration stripped of its de�nition�

O� show f fint x
� fun f �int y� � g
�g
�y��� fun g
 �int z� � z�x
g

�Complement of hide � x
 and g
 are hidden�

Figure �� Sample Jigsaw operators

�



Level C�� Dossiers Jigsaw OMOS Shared Libraries

Meta � meta�dossier module ADT meta�object �

Module class dossier module object public data � functions

Application object � instance � private data

Figure 
� Three levels of objects�

� Three Levels of Persistent Objects

Thus far we have argued that �i� persistent objects need persistent descriptions� �ii� those

descriptions should be persistent dossier objects� �iii� persistent dossiers should include class imple�

mentation information� and �iv� class implementation information should be obtained from object

�les� viewed as modules� From these speci�c decisions emerge three general criteria for the design

of a comprehensively useful POS�

�� The POS should recognize the role of some objects as descriptions of collections of other

objects�


� A POS should not be tailored to a particular O�O language� or even to O�O languages in

general� Rather� it should facilitate uniformity through generalizing its task to representing

�i� an abstract notion of modules� �ii� individual modules� and �iii� instances of those modules�

�� This abstract module notion should embrace not only class implementations but comparable

forms of modularity such as abstract classes� object �les� system libraries� and application

libraries� especially in class framework form �JR����

Indeed� the converging technologies of O�O languages and shared system libraries was an original

stimulus for the MSO project� Seeley �See��� establishes broad correspondences between these

two software structuring concepts� including code reuse� dynamic function dispatch� and visibility

control� Jigsaw clari�ed this relationship� which we recognize as a three�layer object management

architecture that reappears in many software domains �see Fig� 
�� The column labeled OMOS

refers to MSO
s generalized linker and loader� which incorporates the module ADT and Jigsaw

operator suite� OMOS is discussed in detail in x��

We now brie	y consider the connections across each of these three layers�

�� Application level� At the bottom level we have objects in the traditional O�O language

sense�

�



C��� These of course are class instances�

Dossiers� Due to their descriptive nature� dossiers are meaningful only at the class or module

level� or above�

Jigsaw� As described in x�� module instances correspond to class instances�

OMOS� Modules can provide instantiate functions� allocating run�time data structures akin

to C�� objects� but such functions have no special status to OMOS�

Shared libraries� Shared libraries generally permit the allocation of private data �e�g� ran�

dom number seeds�� allocated by init functions� much like user�level instantiate functions

in OMOS�


� Class level� At the intermediate level� we have objects serving as descriptions shared by

collections of application objects�

C��� Clearly� this is a class�

Dossiers� A dossier object represents a class�

Jigsaw� These are modules� resulting from the make module constructor of the module ADT�

OMOS� This is an object in the system programming sense� i�e� an object �le�

Shared libraries� The central idea behind shared libraries is to share public data and func�

tions�

�� Meta level� At the top of our three�level architecture we have module descriptions� Since

we truncate our meta�tower here� all objects at this level must be self�describing �i�e� have

�xed format��

C��� C�� has no corresponding notion� However� if we were dealing with Smalltalk or

CLOS� this entry would be �metaclass��

Dossiers� A meta�dossier is the dossier of the dossier class� Its role is described in x��
�

Jigsaw� This is the module ADT itself�

OMOS� Objects in the OMOS world are described by meta�objects � which export a construct

function delivering objects �i�e� modules��

Shared libraries� The need to manage the creation and sharing of system libraries was an

early motivation for OMOS�

�



�constrain ��� �x���������

�show � open� close� read� write� ioctl�

�merge �ro�lib�libc�open	o

�ro�lib�libc�close	o

�ro�lib�libc�read	o

�ro�lib�libc�write	o

�ro�lib�libc�ioctl	o���

Figure �� An OMOS module blueprint�

� De�ning and Using Modules

The MSO OM thus uses a generic notion of module to represent both class implementations

and more general executable program units� We now explain the role of OMOS� our generalized

linker and loader� in �i� manipulating modules for both these purposes� and �ii� as an MSO OM

client itself� Throughout this section the reader should bear in mind the terminology of Fig� x
 �

especially that an OMOS object is a module level entity� akin to a C�� class�

��� Modules As Persistent Objects

The OMOS Object�Meta�Object Server �OM�
� OMHL��� was created to support and exploit

the use of modules as persistent objects� OMOS deals with objects �modules� in two forms�

� Relocatable program fragments � e�g� compiler emitted object �les� and

� Meta�objects which intentionally describe modules constructible according to blueprints ap�

plying Jigsaw operations on modules under speci�ed address mapping constraints�

As described in x�� the dossier representing a class implementation obtains its function de��

nitions from a persistent object representing an OMOS object� Since the MSO OM cannot store

compiled code directly� that object is in fact a surrogate � the OMOS meta�object from which the

speci�ed module can be constructed on demand� OMOS meta�objects are de�ned using a Lisp�like

blueprint language� illustrated in Fig� �� The Jigsaw expression in the blueprint of a dossier
s

meta�object thus speci�es the linkage history of its associated class implementation�

As a full�featured system loader� OMOS must also deal with client address space management�

Execution of module operations is accomplished in conjunction with a constraint system that con�

trols placement of objects within an address space� OMOS is responsible for assigning virtual

��



addresses to the machine instructions that make up a set of object methods� OMOS retains 	exi�

bility by allowing rebinding of method virtual addresses as needed� In general� OMOS constraints

will encourage use of the same virtual address bindings for all instances of a given set of methods�

In this way� all clients mapping the methods in will �tend to� share the same physical memory� If�

however� a given region is already occupied in a user
s address space� OMOS will select another

region for the mapping� Bound instances of methods are cached to avoid unnecessary repetition of

symbol binding�

Hence OMOS is a �loader with a memory� � which is very helpful both within a client session

�e�g� in support of dynamic relinking� see x��
�� and across client sessions �e�g� to suppress relinking

and relocation of frequently used class implementations�� Moreover� the constraint system allows

the bulk of an object
s clients to physically share the same set of methods� as is done by shared

libraries� The use of a constraint system retains the 	exibility of modern shared library schemes

without incurring the overhead or added complexity necessitated by the use of position independent

code��

��� Classes As Persistent Objects

Before an object of a class C can be stored in the MSO OM� an implementation of C must be

registered� A class implementation is a stored object D of class dossier� i�e� a class speci�cation

object� augmented to include two additional data members�

� OID� implementation� which refers to the OMOS module from which its functions can be

loaded� and

� OID� meta dossier� which refers to a �xed�format objectM specifying the compiler and hard�

ware conventions ��execution environment�� under which this class implementation was pro�

duced�

The OMOS module referenced by implementation gathers �e�g� from various object �les� the de�ni�

tions comprising the class implementation� Typically� this gathering will be de�ned by an OMOS

blueprint � hence the module is logically �intentionally� de�ned via an OMOS meta�object� rather

than explicitly manifested at class registration time� Registering a class implementation entails

� Position independent code is not precluded by this scheme
 Use of PIC code will render OMOS�
relocation operations trivial� streamlining some phases of OMOS� execution
 In general� OMOS performs
these functions in the background� so this time savings is not a critical factor


��



associating OID�D� with the key �C� OID�M�� in a class name server provided by the MSO OM�

The execution environment information in a meta�dossier permits MSO OM client programs to

store and retrieve objects in an interoperable manner� despite compiler and processor architecture

di�erences� These characteristics are summarized in a shorthand fashion� via a small set of literal

values describing compiler version� hardware platform� etc� �more on this in x��
�� An MSO OM

client application has available as global read�only data the OID of the meta�dossier characterizing

its execution environment� This leads to a rudimentary policy for validating dynamically loaded

class implementations� The OID of the meta�dossier of the new class implementation is compared

with the client
s meta�dossier OID� and an exception is raised if the two disagree� More adaptive

policies are sketched in x��
� The means by which dossier objects are originally created is described

in x����

� Linking and Loading as Module Manipulation

The use of the Jigsaw module operations within OMOS �rmly casts program linking operations

within the module manipulation model� The Jigsaw operations extend traditional linker opera�

tions to allow sophisticated module manipulation� Under OMOS� these operations apply to both

static and dynamic linking and provide functionality such as function overriding and interposition�

However� the Jigsaw formulation goes beyond conventional linking� by supporting �i� submodules

�nested scopes�� and �ii� typed module interfaces� OMOS does not currently implement these as�

pects of Jigsaw� Instead� OMOS relies �as do all existing linkers� on C�� name mangling to encode

type information in external names� Since classes are types in C��� this also accomplishes 	atten�

ing of class scopes� An extra advantage is compatibility with modules produced by other language

processors� e�g� ordinary C compilers�

��� Static Linking and Loading

As mentioned earlier� the primary function of a static linker is to associate references to interfaces

with their de�nitions� We can see that this operation corresponds largely to the module merge

operation� OMOS implements module manipulation facilities that are more sophisticated than

simple merging through the use of other Jigsaw module operators� individually or via blueprinted

combinations� The override operation� for example� permits precedence when combining scopes�

�




This feature allows modules to be combined in a fashion that simulates single inheritance � which

drives home our point that inheritance is simply a form of module combination� and should not be

the exclusive purview of O�O languages� The hide operation� another Jigsaw operation supported

by OMOS� reduces the amount of information exported by a module� OMOS uses this feature to

provide di�erent views of a shared library to its clients� Hiding symbols not used by the client

speeds subsequent linking and prevents interfaces that may be de�ned but not referenced from

interfering with de�nitions found later in other modules�

To illustrate the degree of sophisticated module manipulation supported by OMOS� consider

the technique of function interposition� Here we wish all references to a function f to be rebound to

an interloper function which takes its place� In turn� the new function can make references to the

prior de�nition of f �as well as itself� in the general recursive case�� In this fashion� new de�nitions

of routines can be made to replace old ones� or inserted �between� the references to the routine

and its original de�nition�

Function interposition is a very powerful system con�guration device� OMOS uses it internally

when performing program execution monitoring� For a set of routines that are to be monitored�

OMOS creates interposing wrapper functions whose job it is to �rst log information about the call

to the routine� then pass the call on to its original destination� The logging is completely hidden

from the application� the only operations needed to add it to the system are the Jigsaw operations

applied to the module namespace� Interposition is also very handy for pointer �swizzling�� i�e�

converting OID
s to virtual addresses �Mos�
��

Function interposition �by various names� is a familiar construct in O�O programming� There�

it is common for an overriding method to refer to the method being overridden� For example�

Smalltalk provides access to the overridden method through the pseudo�variable super� This feature

is semantically identical to function interposition�

By our analysis� interposition is beyond the capability of conventional linkers since it funda�

mentally relies on renaming� Within OMOS� the general case of interposition can be achieved by

application of the Jigsaw operations copy
as� override� and hide� To illustrate� suppose we wish all

invocations of a function f to be redirected to a new de�nition of f using �in the general case� both

its own de�nition� which it refers to as f� and the existing de�nition of f� which it refers to as fold�

Speci�cally� suppose the existing �loaded� module is

O � f g � ��f� g�� f � ��f� g� g

��



�
 �Copy�as� O� � O copy f as fold

Result� O� � f g � ��f� g�� f � ��f� g�� fold � ��f� g� g

�
 �Override�� O� � O� override O


Result� O� � f g � ��f� g�� f � ��fold � f�� fold � ��f� g� g

�
 �Hide� Ointerpose � O� hide fold

Result� O� with fold removed from its interface� as desired


Figure �� Functional interposition via Jigsaw operations

and the module containing the interposing f is

O� � f f � ��fold� f� g

where for brevity we omit the declaration of fold� The desired interposition result is

Ointerpose � f g � ��f� g�� fold � ��f� g�� f � ��fold� f� g

where fold is hidden �removed from the interface of Ointerpose�� We of course wish to preserve the

original interface to f� so that subsequently merge
d modules see the interposed f� and� indeed� cas�

caded interposition works as expected� Ointerpose can be obtained by the Jigsaw operator sequence

shown in Fig� ��

��� Dynamic Linking and Loading

As suggested in x�� dynamic linking and loading can be viewed as module manipulation where

one operand is already loaded and undergoing execution� This variation poses pragmatic consid�

erations in the use of Jigsaw module operations beyond the static case described in x���� A major

concern is whether symbols to be rebound in the executing module have references in data segments

or code segments �text in Unix jargon�� Due to limitations on execution state modi�cation� includ�

ing instruction cache clearing� it is impractical to modify symbol bindings in text segments� This

restriction is accommodated cleanly by viewing symbols referenced from the executing module
s

text segments as having been subjected to Jigsaw
s freeze operation �see Fig� ��� This renders their

bindings read�only� but does not hide them� so references in the dynamically loaded module can be

bound to them�

In the simplest case� dynamic linking and loading involves a run�time merge operation between

loaded module and the module being loaded� More sophisticated e�ects can be obtained through

more powerful Jigsaw operators such as override� and compound operations such as interposition�

Frozen symbols can be manipulated through operations that only a�ect the loading module
s sym�

��



bolic interface �e�g� hide and rename
to�� Operations that cause binding or rebinding of symbols�

such as restrict� override and merge� may not be applied if the binding of a frozen symbol would be

a�ected�

The asymmetry between execution of Jigsaw operations on frozen vs� unfrozen bindings can be

thought of as a matter of �views�� A module with frozen bindings cannot change how it views the

world� since it cannot change bindings to the interfaces it references� It can� however� experience a

change in how it is viewed from the outside� since the names and values of the symbols �interfaces�

it exports can be changed� Modules with unfrozen bindings modules �such as a module being

dynamically loaded into a running program� can change either how they view the world or how

they are viewed by the world�

It is only possible for a program to change the de�nition of a class on the 	y �as in the case of

class evolution� see x����� if all changes are made through unfrozen bindings� such as those residing

in data segments� C�� systems generally allocate virtual function tables in data segments� hence

references to symbols denoting virtual functions may be rebound� In particular� the starred step in

the interposition example of Fig� � �involving override� cannot be performed unless the references

being rebound are in data segments� Thus we can expect that dynamic interposition of C��

functions only to be possible on virtual functions� Note that a rebindable symbol may have multiple

occurrences �e�g� entries in several virtual function tables�� The state�saving capabilities of OMOS

accommodate this fact by saving relocation information su�cient to locate and rebind all data

segment references to a symbol�

� Generating Dossiers

��� Dossiers for Application Classes

We now turn to the question of how dossier objects are created within an O�O software devel�

opment process� Recall that the MSO OM
s primary function is to provide a persistent store for

C�� and CLOS application program objects without invalidating existing compilers� programming

envrionment tools �e�g� make� and �le systems� The scheme for creating dossier objects must �t

within these constraints�

In the development of a C�� class� the speci�cation for that class is �nalized when the imple�

��



mentation of the class is compiled� At this stage� in current C�� development environments� the

implementation for that class is then �xed� Our dossier objects are created during this stage of the

development process� Dossiers may be generated by either a preprocessor or directly by a modi�ed

compiler� Linton et al� used a preprocessor� We describe here how a modi�ed C�� compiler may

be used for these purposes� As the compiler processes an input �le� it builds descriptions of� among

other things� the speci�cation and layout of types de�ned therein� These descriptions contain all

the information necessary for the creation of the dossier objects� After parsing a class de�nition� the

dossier for that class is emitted by the compiler as static data to be linked into client applications�

As stated in x
� run�time class descriptions are necessary for fully polymorphic manipulation

of objects� Consequently� we o�er access to the dossier for a particular object at run�time� This

access is provided through the virtual function dispatch table �vtable� for the class� Each vtable

is expanded to include a reference to the appropriate dossier� Classes without virtual functions�

and thus no vtable� are modi�ed to have an empty vtable� this vtable is then expanded to include

a reference to the dossier for that class� The inclusion of a vtable pointer within a class instance

may violate C compatibility � a C�� class without virtual functions no longer has a memory

layout compatible with a identically declared C structure� Although this incompatibility may be

signi�cant for some existing applications� thus far it has not proved to be a problem�

Loading an object is a two step process� First� the member data associated with an object is

loaded into the memory space of an application� Then the object must be con�gured for use within

that particular application
s address space� Speci�cally� the virtual function dispatch table and

virtual base class pointers must be initialized� To simplify this stage of reconstructing an object�

special con�guration functions are generated by the modi�ed compiler� A con�guration function is

generated for each class� and is emitted along with the dossier for that class�

��� Meta�Dossiers

In x��
 we describe how the OID of a meta�dossier can be used as a key to ensure execution

environment compatibility between the creator and users of a persistent object� We now brie	y

sketch how we envision using an object
s meta�dossier to govern its adaptation to varying execution

environments� Again� the module ADT viewpoint plays a fundamental role�

As a persistent object �rather than simply an OID�based key�� a meta�dossier summarizes the

conventions observed in compiling the class implementations it describes� This will contain�

��



� Certain literal attributes� e�g� compiler � �GNU C

 version �	�	��� processor � �HP �����

endian � �big�� alignment � �word�� etc�

� An OID referring to an OMOS module with a �xed set of object and class conversion func�

tions �compiled� of course� under this execution environment�� For example� there could be

a function build vtbl�d�� which constructs a virtual function table consistent with its exe�

cution environment� given a dossier d �and d
s meta�dossier� constructed under a di�erent

environment� In a sense� these functions would be meta�dossier driven generalizations of

compiler�speci�c actions such as the con�guration function described in x���� If relatively few

execution environments are supported� and the set evolves slowly �as we expect�� then these

functions can exploit a hand�written ad hoc solution for each case�

� Implementation Status

��� Dossiers for Application Classes

The compiler used in this experiment� the GNU C�� compiler version 
�
�
� is distributed with

a partially implemented facility for generating type descriptors and providing them at run�time �for

garbage collection�� We have modi�ed and extended this facility to provide the functionality de�

scribed in x���� The dossiers produced are based on the object layout and parse trees generated

during compilation� The compiler produces dossiers for all classes� including those that use multiple

inheritance and virtual base classes� It also produces dossiers for classes de�ned using templates�

Currently the dossiers created by this compiler are both compiler and platform speci�c� The infor�

mation they contain includes what we have described for the dossiers and meta�dossiers� together

in one object�

This modi�ed compiler has been used to build the InterViews �LCV��� library� The InterViews

library� with associated applications� contains over ������ lines of C�� code and makes extensive

use of class inheritance and virtual functions� A text editor distributed with the library was also

built with the modi�ed compiler� and this application ran without error� The success of this

regression test demonstrates that our scheme for generating and accessing type information at run�

time is applicable to large� multi��le applications with libraries� and is compatible with existing

operating system and X�Window libraries� The addition of virtual function table pointers to objects

has� thus far� caused no compatibility problems with existing code or libraries�

��



��� OMOS

OMOS has been implemented as an operating system server using a set of C�� objects� An

installation of OMOS exists on the Intel ��� platform running under the Mach operating system�

Operating system dependent features are isolated� thereby easing the port of OMOS to any system

with modern virtual memory and inter�process communication facilities� Recently� the object �le

manipulation aspects of OMOS �the other major porting obstacle� have been recast using the BFD

object �le back�end from the Free Software Foundation� BFD provides a high degree of object �le

format independence� which should greatly facilitate porting to other platforms�

OMOS provides module storage� linking� and loading facilities� The OMOS constraint system

permits automatic sharing of modules between clients ��a la shared libraries�� In addition� OMOS

provides facilities for automatic monitoring of program execution� and transparent reordering of

program binaries to improve program paging behavior� A �le�based version of OMOS �known as

OFE� exists which acts as a superset of the Unix system linker� ld� OFE can be used to manually

manipulate object �les using the Jigsaw operation suite� as well as to manually reorder program

binaries�

	 Semantic Issues

Storing and retrieving class implementations as modules opens many opportunities for broading

POS utility� However� it also poses vexing issues that reveal subtle di�culties in adding persistence

to O�O languages designed for manipulating transient objects�

�� What should be the role of user�de�ned constructors when an object is loaded from the POS�

The only general answer is �none�� since the retrieved object is not being constructed �at

least not from whole cloth�� In any case� given overloaded class constructors� it is impossible

to determine which one might be appropriate to execute� Yet� existing user code may rely on

constructors to maintain application speci�c invariants when an object �comes into existence��


� The static data members of a class clearly need to exist whenever an object of that class is

loaded� But when are they created and initialized� and are they persistent� The latter issue is

especially troublesome when static member data is mutable� Such data could reside within the

dossier object� but again� when should they be constructed� � when the class is registered�

��



What about multiple implementations of the class for di�ering execution environments �

should the static data be shared or separate�

�� How late should the binding be between class names and class implementations� We suspect

that one implementation per class per execution environment is much too limiting� even if

load time specialization �e�g� interposition� is supported� Instead� a systematic approach to

managing class versions and consistent class libraries should be devised�

�
 Continuing Work and Longer Term Implications

�	�� Continuing Work

As outlined in x�� a basic implementation of OMOS� and a dossier�creating C�� compiler�

already exist� Their integration with the basic object store remains to be done� In addition� class

implementation registration and meta�dossiers are only in the design stage�

Another dimension of the MSO OM still under development is support for persistent CLOS

objects� and multi�lingual objects� We believe the module ADT viewpoint will again permit 	exible

and highly appropriate abstractions� but this remains to be established�

We hope to extend the MSO OM to support three advanced e�ects�

�� Multiple class implementations� As remarked above� we believe multiple class implementa�

tions to be an important POS feature� Architecturally� there is no problem having a retrieved

object can bring in its own implementation � indeed� that is what happens in the standard

dynamic loading case� However� some means must be found for an already loaded imple�

mentation of that class not to become invalidated� As a simple avenue� we are considering

extending the role of meta�dossiers to group logically consistent collections of class imple�

mentations� in the same sense that they currently group class implementations that share an

execution environment� This turns the name server described in x��
 into a rudimentary class

version manager�


� Class evolution� This is a generalization of multiple class implementations� whereby data and

function members are added to a class de�nition� presumably in a monotonic manner �GS����

The technical complications of this are myriad� and generally compiler speci�c� However�

we hope to accommodate this in simple cases� perhaps as a generalization of multiple class

��



implementations�

�� Object promotion� Here an existing object is summarily converted to belong to a di�erent

class� typically a subclass of its original class� In e�ect� this is retroactive inheritance� on

a per�object basis� Again� we believe the necessary technical devices exist within our POS

architecture� but semantic and compiler�speci�c pitfalls abound � for example� do we execute

a constructor for the new class�

�	�� Longer Term Implications

In this section we consider two directions in which this work could proceed in the longer term�

The �rst direction concerns factoring the module ADT implementation out of OMOS� and the

second deals with linguistic extensions made possible by our system�

The notion of an abstract data type representing modules pervades this paper� We have argued

that such an abstraction arises naturally in the design of a POS� and we have incorporated it in

our design and implementation� In our case� the ADT is implemented by OMOS� Yet the module

ADT is a useful concept independent of persistent stores� Ideally� we should implement the ADT

as a separate entity�

Speci�cally� we suggest implementing the module ADT as a framework in Johnson
s sense

�JR���� In such a framework� notions such as modules and instances would be represented by

abstract classes� The framework would likely provide concrete subclasses representing particular

realizations of these notions� An application like OMOS would then extend or modify the framework

to suit its particular needs� For example� the address loading constraints employed by OMOS are

speci�c to linking� and would be added as an extension of the basic module ADT�

There are other valuable uses for such a framework� It may serve as a basis for the implemen�

tation of a family of interoperable language processors that share a common notion of object� This

is not unlike the use of standard calling sequences to help ensure interoperability of procedural

languages� Of course� a standard format for objects could be used by unrelated implementations

as well� The advantage of the framework is that it implements the standard in a manner accessible

to various compilers� saving implementation e�ort and encouraging adherence to the standard�

Another direction is to extend the semantics of C��� Jigsaw operators allow for richer behaviors

than those of classes in C��� One example is the introduction of mixins �BC����


�



The facilities introduced for dynamically applying Jigsaw operators allow inheritance at run time�

These facilities could be employed by the modi�ed C�� compiler itself� to support delegation� The

di�cult part here is deciding exactly how such features should be incorporated linguistically into

C��� as described here� we already have an applicable implementation�

�� Related Work

This project builds on work ongoing elsewhere in many related areas� We brie	y mention only

a few here�

� Basic object stores� Several language�neutral object stores have been described� including

ESM �CDRS���� Cricket �SZ��� and Mneme �Mos����

� C�� based OODB�s� Twowell�known examples are ObjectStore �LLOW��� and ODE �AG����

� OODB toolkits� Here OODB extensibility is the primary objective � examples include EX�

ODUS �CDG���� and ObServer �HZ����

� Persistent language extensions� The earliest persistent higher level language was PS�Algol

�A��
�� Recent persistent Lisp systems include PCLOS �Pae��� and MetaStore �Lee�
��

� Multi�language object systems� The RPDE� �HO�
� system represents important new work

in multi�lingual objects�

� Dynamic extensions to C�� Several papers have exploited dynamic loading to stretch the

bounds of C�� static type checking� e�g� �DSS��� and �GS����

� Re�ective systems� Class descriptions and related meta�representational issues are explored

in Smalltalk�� �GR���� CLOS �KdRB���� and ��Lisp� a fully re	ective language �Smi�
��

Acknowledgements

We acknowledge the many contributions to this work by members of the MSO OM project�

including Robert Mecklenburg� Mark Swanson� Robert Kessler� Jay Lepreau� Guru Banavar� and

Peter Hoogenboom�


�



References

�A�
�� Malcom P
 Atkinson et al
 PS�Algol� An Algol with a persistent heap
 ACM SIGPLAN Notices�
pages ������ July ��
�


�ABD���� Malcolm Atkinson� Fran�ccois Bancilhon� David DeWitt� Klaus Dittrich� David Maier� and Stan�
ley Zdonik
 The object�oriented database system manifesto
 In Building an Object�Oriented

Database System� chapter �� pages ����
 Morgan Kaufmann� ����


�AG
�� R
 Agrawal and N
 H
 Gehani
 ODE �Object Database and Environment� The language and data
model
 In Proc� Int�l� Conf� on Management of Data� pages �	���� Portland� Oregon� May�June
��
�
 ACM�SIGMOD


�BC��� Gilad Bracha and William Cook
 Mixin�based inheritance
 In Proc� OOPSLA Conference�
Ottawa� October ����
 ACM


�BL��� Gilad Bracha and Gary Lindstrom
 Modularity meets inheritance
 In Proc� International Con�

ference on Computer Languages� pages �
������ San Francisco� CA� April ����� ����
 IEEE
Computer Society


�Bra��� Gilad Bracha
 The Programming Language Jigsaw � Mixins� Modularity and Multiple Inheritance

PhD thesis� University of Utah� March ����
 ��� pp


�CDG���� M
 J
 Carey� D
 J
 DeWitt� G
 Graefe� D
 M
 Haight� J
 E
 Richardson� D
 T
 Schuh� E
 J
 Shekita�
and S
 L
 Vandenberg
 The EXODUS extensible DBMS project� An overview
 In Readings in

Object�Oriented Databases
 Morgan�Kaufman� ����


�CDRS
�� Michael J
 Carey� David J
 DeWitt� Joel E
 Richardson� and Eugene J
 Shekita
 Storage man�
agement for objects in EXODUS
 In Object�Oriented Concepts� Databases� and Applications�
chapter ��� pages �����	�
 Addison�Wesley� ��
�


�DSS��� Sean M
 Dorward� Ravi Sethi� and Jonathan E
 Shopiro
 Adding new code to a running C��
program
 In USENIX Proceedings C�� Conference� pages �������
 USENIX Association� ����


�GR
�� A
 Goldberg and D
 Robson
 Smalltalk���� The Language and Its Implementation
 Addison�
Wesley� ��
�


�GS
�� Philippe Gautron and Marc Shapiro
 Two extensions to C��� A dynamic link editor and inner
data
 In USENIX Proceedings and Additional Papers C�� Workshop� pages �����
 USENIX
Association� ��
�


�HO��� William Harrison and Harold Ossher
 Attaching instance variables to method realizations in�
stead of classes
 In Proc� International Conference on Computer Languages� pages �������� San
Francisco� CA� April ����� ����
 IEEE Computer Society


�HZ
�� Mark F
 Hornick and Stanley B
 Zdonik
 A shared� segmented memory system for an object�
oriented database
 ACM TOIS� ��������
�� January ��
�


�IL��� John A
 Interrante and Mark A
 Linton
 Runtime access to type information in C��
 In USENIX
Proceedings C�� Conference� pages �������
 USENIX Association� ����


�JR��� Ralph E
 Johnson and Vincent F
 Russo
 Reusing object�oriented designs
 Technical Report
UIUCDCS ����	�	� University of Illinois at Urbana�Champagne� May ����


�KdRB��� Gregor Kiczales� Jim des Rivi�eres� and Daniel G
 Bobrow
 The Art of the Metaobject Protocol

The MIT Press� Cambridge� MA� ����


�LCV
�� Mark A
 Linton� Paul R
 Calder� and John M
 Vlissides
 InterViews� A C�� graphical interface
toolkit
 In Proceedings of the USENIX C�� Workshop� page �� pp
� Santa Fe� NM� November
��
�


�Lee��� Art Lee
 The Persistent Object System MetaStore� Persistence Via Metaprogramming
 PhD
thesis� University of Utah� June ����
 ��� pp








�LLOW��� Charles Lamb� Gordon Landis� Jack Orenstein� and Dan Weinreb
 The ObjectStore database
system
 Communications of the ACM� ����������	�� October ����


�Mos��� J
 Eliot B
 Moss
 Design of the Mneme persistent object store
 ACM Transactions on Information

Systems� 
������������ ����


�Mos��� J
 Eliot B
 Moss
 Working with persistent objects� To swizzle or not to swizzle
 IEEE Transac�

tions on Software Engineering� �
�
��	���	��� August ����


�OM��� Douglas B
 Orr and Robert W
 Mecklenburg
 OMOS � an object server for program execution

In Proc� International Workshop on Object Oriented Operating Systems� pages �������� Paris�
September ����
 IEEE Computer Society


�OMHL��� Douglas B
 Orr� Robert W
 Mecklenburg� Peter J
 Hoogenboom� and Jay Lepreau
 Dynamic
program monitoring and transformation using the OMOS object server
 In Proceedings of the

Hawaii International Conference on System Sciences� page ��pp
� January ����


�Pae

� Andreas Paepcke
 PCLOS� A �exible implementation of CLOS persistence
 In S
 Gjessing and
K
 Nygaard� editors� Proceedings of the European Conference on Object�Oriented Programming�
Lecture Notes in Computer Science� Berlin� ��


 Springer�Verlag


�See��� Donn Seeley
 Shared libraries as objects
 In Proc� USENIX Summer Conference� Anaheim� CA�
June ����


�Smi
�� B
 Smith
 Re�ection and semantics in a procedural language
 Laboratory for Computer Science
TR����� MIT� ��
�


�SZ��� Eugene Shekita and Michael Zwilling
 Cricket� A mapped� persistent object store
 In Proceedings
of the Fourth International Workshop on Persistent Object Systems� Martha�s Vineyard� MA�
August ����
 U
 Wisc
 Tech
 Rpt
 ��	


Last revised December �	� ����


�


