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Abstract

In this paper� we discuss the problem of improving the e�ciency of macromodule networks generated
through asynchronous high level synthesis� We compose the behaviors of the modules in the sub	network
being optimized using Dill
s trace	theoretic operators to get a single behavioral description for the whole
sub	network� From the composite trace structures so obtained� we obtain interface state graphs �ISG� �as
described by Sutherland� Sproull� and Molnar�� encode the ISGs to obtain encoded ISGs �EISGs�� and then
apply a procedure we have developed called Burst	mode machine reduction �BM	reduction� to obtain burst	
mode machines from EISGs� We then synthesize burst	mode machine circuits �currently� using the tool of
Ken Yun �Stanford�� We can report signi
cant area	 and time	improvements on a number of examples� as a
result of our optimization method�
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� Introduction

In the last decade� asynchronous�circuit and system design has seen signi
cant growth in the number of
practitioners and a corresponding broadening of the basic understanding at both the practical and theoretical
levels ��� �� �� ��� �� ��� The result is that there are numerous design styles� many of which are supported
by reasonable synthesis and analysis tools� Asynchronous systems have been shown to exhibit a number of
inherent advantages� more robust behavior �in terms of process and environmental variations� ���� a capability
for higher performance operation ���� decreased power consumption ��� ��� ��� which makes asynchronous
circuits attractive for portable applications� inherently higher reliability in high speed applications ���� ����
and the ease with which coordination and communication between systems �that involve arbitration� message
routing� etc�� can be supported� These developments warrant serious consideration of asynchronous circuits
by the high level synthesis community which has� hitherto� largely focussed their e�orts on synchronous
circuits ���� ��� ��� ����

Due to the considerable degree of attention that synchronous circuits have received� they would� in
many cases� prove to be superior to asynchronous circuits if evaluated using many practical criteria� How	
ever� asynchronous system design has been making signi
cant strides forward in recent times� In addi	
tion� considerable potential for improvement still remains untapped� and also enormous potential exists
for mixing the synchronous and the asynchronous styles to derive the best advantages of both the styles
���� ��� ��� ��� ��� ��� ����

In this paper� we shall discuss the problem of improving the e�ciency of circuits generated through asyn	
chronous high level synthesis using a tool such as SHILPA ���� ��� ��� or Brunvand
s occam compiler ���� ����
These tools take a description in a concurrent process description language ��hopCP�� or �Occam� in our
examples� and translates it into a network of macromodules ���� ���� Macromodules are hardware primitives
that have an area complexity of anywhere from one to several tens of and	gate	equivalents� and are designed
to support common control	�ow constructs� the procedure call element �call�� the control��ow merge ele	
ment �merge�� the control��ow join element �join�� the sequencer element �sequencer�� the toggle element
�toggle�� various arbiters �arbiter�� modules that alter control	�ow based on Boolean conditions �se�
lect�� and modules that help implement 
nite	state machines �such as decision�wait� are all examples of
commonly used macromodules� The set of macromodules considered by us in this paper are largely those
reported in ���� ��� ���� but include a few additional ones documented in ����� One notable feature of these
macromodules is that they employ transition	style �non return�to�zero� signaling� which is well known for
its advantages� among which ease of understanding and reduced power consumption are prominent ����� In
the rest of the paper� whenever we discuss macromodules� we shall tacitly assume transition	style signaling�

For several reasons� macromodules are a popular choice as target for asynchronous circuit compilation�
Their behavior is much easier to understand than that of corresponding Boolean gate networks� They have
e�cient circuit realizations in many technologies� However� when employed as the target of asynchronous
circuit compilers� many instances of the same macromodule subnetwork tend to recur� For example� in
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compiling process	oriented languages such as hopCP� the join	call combination occurs frequently ��
Retaining these sub	networks in the 
nal circuit can lead to area	 and time	ine�cient circuits�

The problem we address in this paper is how to optimize these subnetworks in such a way that the
optimized networks are valid replacements for the original networks in any behavioral context�i�e�� the
optimizations are context�free in the behavioral sense� The particular approach we take in this paper to
generate the logic for the optimized network� however� requires that the environment of the sub	network
should allow the sub	network to operate in the fundamental mode� i�e�� allow su�cient time for the sub	
network to stabilize after each excitation� Thus� the optimizations work in any behavioral context� subject
only to simple timing assumptions� We call this problem the peephole�optimization problem for macromodule
networks�

The peephole optimization problem for macromodule networks has been addressed in the past� In ����� this
problem has been mentioned� though the details of the author
s solution have not been published� In �����
we have addressed the problem of verifying peephole optimizations� The approach of ��� altogether avoids
the peephole optimization problem by synthesizing logic equations directly from a textual intermediate form
called production rules� The generality of Martin
s logic synthesis method is not well understood� We believe
that asynchronous high	level synthesis approaches that generate macromodule networks as intermediate form
possess several advantages� among which the advantages of retargetability� understandability of the generated
circuits� and ease of validation of the compiler are prominent� Therefore� we prefer the approach of generating
macromodule networks and later optimizing them�

Our approach to peephole optimization is based on process composition� We compose the behaviors of
the modules in the sub	network being optimized to get a single behavioral description for the whole sub	
network�� We model behaviors in the trace theory of Dill ����� and use the composition operator on trace
structures �Section ��� Dill
s parallel composition �or process composition� operator which enjoys a number
of desirable properties� which we exploit �detailed in Section ��� The behavior inferred in this fashion is
often quite succinct� as it leaves out many combinations of the behaviors of the submodules that can never
arise� or can lead to internal hazards in the circuit� �Note� The parallel composition operator is usually used
in conjunction with the hide operator that can also suppresses irrelevant information�� Taking the example
of the join	call combination� we will compose the automatons�describing the behaviors of a join and a
call element to get a single automaton that describes the behavior of the combination� To the best of our
knowledge� the use of process composition as a step in the peephole optimization process is new�

Recall that the behavior of our macromodules is expressed in the transition signaling style� Before we
synthesize logic corresponding to the automata inferred through process composition� we convert them
into encoded interface state graphs �EISGs� �����automata that label their moves with polarized signal
transitions �e�g�� �a rising� �a��� �b falling� �b	�� etc��� �EISGs are very similar to the state graphs of Chu
������

Now we address the problem of logic synthesis for implementing the EISGs� Asynchronous logic synthesis
is inherently harder than that for synchronous systems primarily due to the need to provide hazard covers�
Synthesizing hazard	free implementations of asynchronous automata with unrestricted behaviors is still an
open problem �and is of dubious value� as totally unrestricted behaviors are rare�� Recent research in
asynchronous system design has resulted in many synthesis procedures that impose mild restrictions on the
class of asynchronous automaton descriptions allowed� and synthesize hazard	free e�cient implementations
for the members of these sub	classes� We choose one such class proposed by Davis ��� called burst�mode
machines� E�cient tools for synthesizing burst	mode machines are becoming available ���� ��� ��� We then
discuss how EISGs are converted into Burst	mode machines through a process called BM�reduction� and
synthesized using the tool of Yun �����

In Section �� our optimizer is illustrated on a simple example� We also present general details about
parallel composition� EISG generation and BM	reduction�

�It results from multiple invocations of communication on a channel from di�erent places in the program text

�Analogous to composing two resistors in parallel to get an equivalent resistance	 for instance
 However automaton

composition is more involved than resistance composition�
�We use the terms 
asynchronous automata� and 
asynchronous state machines� interchangeably
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Our peephole optimizer has been applied on a number of examples and we are encouraged by our results
to date� We should note that our optimizer imposes some restrictions on the kind of macromodules it allows
at its input� It allows only deterministic components �e�g�� no arbiters�� because burst	mode machines are
deterministic� Secondly� it handles only delay insensitivity ���� modules� because the BM	reduction process
capitalizes on Udding
s syntactic conditions about delay insensitivity ����� Fortunately these restrictions are
mild� and are obeyed by most of the sub	networks generated by SHILPA �or similar compilers�� In Section ��
we discuss our experimental results and provide concluding remarks�

� Basic De�nitions and Concepts

In this section� we begin by stating basic de
nitions about asynchronous circuits� our assumptions� as well
as key results needed here �detailed elsewhere� for example ���� ��� �����

��� Basics of Burst�mode Machines

Burst	mode machines are a restricted class of asynchronous 
nite	state machines developed at HP	laboratories
���� They are capable of modeling a large variety of practical systems �control	oriented behaviors� succinctly�
and have been used widely in signi
cant projects ��� ����

A burst	mode machine is a �Mealy	style� 
nite	state machine in which every transition is labeled by pairs
�I�O� �written in the usual �I�O� notation�� I is a non	empty set of polarized signal transitions �an example�
fa��b	g�� and is called the input burst� According to the original de
nition of burst	mode machines ���� O is
a possibly empty set of polarized signal transitions called the output burst� We shall� however� assume that
O is non�empty� Doing so is consistent with the assumption of delay insensitivity that we make regarding
our macromodules�

When in a certain state� a burst	mode machine awaits its input burst to be completed �all the polarized
transitions to arrive�� then generates its output burst� and proceeds to its target state� The environment can
also be given a burst	mode speci
cation by mirroring ���� a given burst	mode machine� The environment
s
speci
cation will consist of I�O pairs where the Is are output	bursts for the environment and the Os are
input	bursts for the environment� Thus� it can be seen that the environment must wait for the output burst
to be complete before it can generate new inputs� We call this the burst�mode assumption�

Burst	mode machines obey a number of restrictions� For input bursts Is� and Is� labeling any two
transitions leaving a state s� neither must be a subset of the other� This enforces determinacy� The set of
input bursts need not be exhaustive� Those input bursts that are not explicitly speci
ed are assumed to be
illegal� and cause unde
ned behaviors when invoked�

If a state of a burst	mode machine can be entered via two separate transitions� then the output bursts
associated with these transitions must be compatible �for instance� one output	burst should not include b�
while the other output	burst includes b	��

Figures ��a���b�� and �c� model a merge �an �XOR	gate��� a M�uller c�element �or a �join��� and a
call element� respectively� These diagrams specify the intended usages of these modules� For completeness�
we provide the behavior of the call element in the transition style as well as a state	transition matrix� As
an example� the state	transition matrix is to be read as follows� in state �� when R� is obtained� go to state
�� in state �� generate an RS and go to state �� in state �� when an AS is obtained� go to state �� in state ��
generate an A� and go back to state ��

��� Assumptions about Macromodule Networks Being Optimized

The macromodule network being optimized by our optimizer must not contain arbiters� or arbiter	like
components� because our optimizer generates burst	mode machines as output� and burst	mode machines
cannot model arbiters� The only use of non	determinism permitted in the network input to the optimizer is
to model concurrency through non	deterministic interleaving�

The network of macromodules being considered by the optimizer should initially be in a quiescent state��

�
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Figure �� Burst�mode machines for merge�a�� c�element�b�� and call�c�

This is because burst	mode machines must have non�empty input bursts� and therefore� cannot produce an
output without receiving any inputs immediately after �power up��

The network of macromodules being considered by the optimizer should also never diverge �in other words�
the network should be in
nitely often in a quiescent state�� This is because each �circle� �state� in a burst	
mode machine models a quiescent situation� and every transition ��arc�� must be incident on a �circle�� in
order to be a well	formed burst	mode machine graph�

We assume that our macromodules are delay insensitive �DI�� The behavior of a DI module does not
depend on its computational delays or delays on wires used to communicate with it� If the behavior is
invariant over module	delays but not over wire delays� the module is classi
ed as speed independent �SI��

��� Basics of Trace Theory

Trace theory���� is a formalism for modeling� specifying� and verifying speed	independent and delay	
insensitive circuits� In this paper� we employ trace	theory to provide us with semantically well speci
ed
operators �namely parallel composition� renaming� and hiding� that allow us to obtain the composite behavior
of networks of delay	insensitive macromodules� in the process of optimizing them�

Trace	theory is based on the idea that the behavior of a circuit can be described by a regular set of traces�
or sequences of transitions� Each trace corresponds to a partial history of signals that might be observed at
the input and output terminals of a circuit�

A simple pre�x�closed trace structure� written SPCTS� is a three tuple �I�O� S� where I is the input
alphabet �the set of input terminal names�� O is the output alphabet �the set of output terminal names�� and
S is a pre
x	closed regular set of strings over � � I �O called the success set�

In the following discussion� we assume that S is a non	empty set� We associate a SPCTS with a module
that we wish to describe� Roughly speaking� the success set of a module described through a SPCTS is the

�A system is in a quiescent state if it is blocked waiting for external inputs
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set of traces that can be observed when the circuit is �used properly�� With each module� we also associate
a failure set� F � which is a regular set of strings over �� The failure set of a module is the set of traces that
correspond to �improper uses� of the module� A failure set of a module is completely determined by the
success set� F � �SI � S���� Intuitively� �SI � S� describes all strings of the form xa� where x is a success
and a is an �illegal� input signal� Such strings are the minimal possible failures� called chokes� Once a choke
occurs� failure cannot be prevented by future events� therefore F is su�x	closed� �Note� When we specify a
SPCTS� we generally specify only its success set� its input and output alphabet are usually clear from the
context� and hence are left out��

As an example� consider the SPCTS associated with a unidirectional buffer with input a and output
b� In this context we view a bu�er as a component that accepts signal transitions at a and produces signal
transitions at b after an unspeci
ed delay� If we were to use buffer properly� its successful executions will
include one where it has done nothing �i�e�� has produced trace ��� one where it has accepted an a but has
not yet produced a b �i�e�� the trace a�� one where it has accepted an a and produced a b �i�e�� the trace ab��
and so on� More formally� the success set of buffer is

�fag� fbg� f�� a� ab� aba� � � �g��

This is a record of all the partial histories �including the empty one� ��� of successful executions of buffer�
An example of an improper usage of buffer�a choke�is the trace �aa�� Once input �a� has arrived� a
second change in �a� is illegal since it may cause unpredictable output behavior� A bu�er of this type can
be used to model a wire with some delay�

a?

b!

a?

a?, b!

BUFFER A "choke"

Figure �� The Finite Automaton corresponding to buffer

We can denote the success set of a SPCTS by using a state diagram such as the one in in Figure �� In
this diagram� constructs such as a� denote incoming transitions �rising or falling� and constructs such as b�
denote outgoing transitions �rising or falling�� This diagram also shows the choke of buffer�

There are two fundamental operations on trace structures� compose �k� 
nds the concurrent behavior of
two circuits that have some of their terminals of opposite directions �the directions are input and output�
connected� and hide makes some terminals unobservable �suppressing irrelevant details of the circuit
s opera	
tion�� A third operation� rename� allows the user to generate modules from templates by renaming terminals�
For the purposes of this paper� the following property of these operators is important� parallel	composition�
renaming� and hiding preserve delay insensitivity�

To transform a speed	independent circuit into a delay insensitive circuit �in the context of Dill
s trace
theory�� bu�ers can be placed in series with the terminals of the speed	independent circuit� However�
placing bu�ers in series with the terminals of a delay insensitive circuit has no e�ect whatsoever on the
behavior of the circuit�

��� Udding�s Conditions for Delay Insensitivity

Udding ���� ��� has done foundational work on delay insensitivity� and has provided four syntactic con	
ditions that are necessary and su�cient to guarantee delay insensitivity� These conditions� which form the
basis of BM	reduction� are now brie�y explained �and illustrated in Figure ��a� through �d���

Udding
s 
rst condition is� �the same signal cannot transition twice in a row�� If a signal were to so
transition� then the second transition� which may be applied too soon� can nullify the e�ect of the 
rst
transition applied on the same wire� giving rise to a �runt pulse�� An example is provided in Figure ��a��

Udding
s second condition is �if a module accepts �generates� two inputs a and b in the order ab� it must
also accept �generate� them in the order ba�� If this were not so� the wires leading to the module �which
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Figure �� Udding
s Conditions for Delay Insensitivity

can have arbitrary delays� can reorder the transitions and present them to the module in the wrong order�
Notice that the words �accepts� and �generates� are used symmetrically above� because the environment
can also be treated as a module� through the process of mirroring� An example is provided in Figure ��b��

Udding
s third condition is �for input symbol a and output symbol b� and for arbitrary trace t� if the
behaviors ta and tb are legal for the module� then the behaviors tab as well as tba must also be legal�� This
is explained as follows� After processing t� the module has the choice of generating a b and awaiting an a�
or vice	versa �and like	wise the environment�� Suppose the module chooses to generate the output b� The
environment has no immediate way of knowing that this choice was taken by the module �due to arbitrary
wire delays�� In fact� the environment may �think� that the module is waiting for an a �which is also legal
for the module to do after a t�� Therefore� the environment can go ahead and generate an a� The module
will� therefore� end up seeing the sequence tba� which better be legal for the module� The argument can be
completed using symmetry �via mirroring�� An example is provided in Figure ��c��

Udding
s fourth condition is �for symbols a� c which are both inputs and b which is an output� and arbitrary
traces s and t� if sabtc as well as sbat are legal for the module� then sbatc should also be legal�� The argument
goes as follows� The existence of sabtc in the success set of the module says that after s� the environment of
the module has a choice of causing its a output followed by awaiting its b input� The existence of sbat in the
success set of the module says that the module has the choice of causing its b output followed by awaiting its
a input� Therefore the following scenario is possible� the environment and the mechanism together engage in
trace s� Then� concurrently� the environment emits a while the module emits b as the next signal transition�
Depending on the wire delays� a could arrive at the module before the module emits b� or could arrive
later� Suppose a did not arrive at the module in a �timely way�� Also suppose that b did not arrive at the
environment in a �timely way�� The module �thinks that� it is engaged in behavior sba and pursues it�
while the environment �thinks that� it is engaged in sab and pursues it� The module and the environment
then continue with behavior t which is a legal extension to both sab and sba� Now the environment can emit
a c� The module� after processing the trace sbat� must 
nd c to be a legal input�

In e�ect� after s� the module and the environment end up �talking at the same time� and hence lose track
of whose action came 
rst� An example is provided in Figure ��d��

� Details of the Optimizer With Examples

��� A Simple Example �Control�Block Sharing�

The input to our synthesis procedure is a macromodule network� An example appears in Figure �� The
merge component always receives a START transition at power	up� This places a �call� on the call element
through the R� input� This enables the A input of the c�element� When a transition on A IN arrives� A OUT

is produced� A OUT also �returns� the call to the call element� which re	enables a call� now through the R�
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input� Thus� this circuit should reduce to a wire between A IN and A OUT�

Feeding this circuit through Dill
s parallel composition operator gives us the following state transition
matrix�

A�OUT A�IN

�� � �

�� � �

�� � �

�� � �

�� � �

�� 	 �

	� � 



� � �

�� � �

�� � �

These signal transitions are converted into an EISG� and into a burst	mode machine� which indeed gen	
erates a wire�

� � A�IN
 � A�OUT


	 � A�IN� � A�OUT�

� 	 A�IN
 � A�OUT


� � A�IN� � A�OUT�

��� Detailed Explanation of the Optimizer

We now go through the details of the optimizer� giving all the steps from inputting a macromodule circuit
upto obtaining and verifying a burst	mode machine� Each step is explained in a separate section�

����� Obtaining a Macromodule Network

As explained before� the input macromodule network is obtained from any asynchronous high	level syn	
thesis tool that meets our criteria� For speci
c discussions� we will use SHILPA as our example high	level
synthesis tool�

����� Identifying a Sub�network to Optimize

Currently we identify the sub	network manually� although� in future implementations� we could obtain the
sub	network as a result of performance studies� We could also determine burst	mode circuits corresponding
to standard �macromodule network idioms� once and for all� and store them� Also� since Dill
s parallel
composition operator is� essentially� exponential in its execution time� it often pays to compose a large
network by composing its sub	sub	networks 
rst� and then composing the results� Determining a suitable
set of partitions �and sub	partitions� is important for the overall e�ciency� Currently we do this by hand�
by picking clusters of most closely related components�
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Once the sub	network to optimize is identi
ed� it is to be guaranteed that its environment will obey the
burst	mode assumption with respect to it� That is� the environment must� after supplying every input burst�
wait for the sub	network to produce its output burst� This calls for path	delay analysis which is currently
done using conventional simulation tools�

����� Imposing Environmental Constraints

Once a sub	network is identi
ed� the environment of the sub	network must be suitably speci
ed� to avoid
obtaining too general a result� For example� each sub	network can interact with its environment through
either an active channel or a passive channel� An active channel involves the output of a request transition
followed by the receipt of an acknowledge transition� A passive channel awaits a request transition and then
generates an acknowledge transition� Channel connections to the environment must not be left �dangling��
for� this would cause impossible behaviors to be considered by the parallel composition process� For example�
for an active channel� we must stipulate that acknowledge will come only after a request� If this is not
speci
ed� the parallel composition operator will allow for the possibility of an acknowledge even before a
request� These constraints are expressed by introducing 
ctitious modules that possess the required I O
traces and e�ectively �close o�� the dangling channel connections properly�

SHILPA generates connections to datapath elements by treating them as active channels �i�e�� it places
a request for a computation on the datapath element and awaits an acknowledge�� Datapath elements are
not considered in their entirety by our optimizer� only their control�aspects are considered� Therefore the
abstraction for a datapath element� as far as our optimizer is concerned� is an active channel� Therefore�
connections to datapath elements are modeled exactly as �dangling� active channels are modeled�

One more preprocessing step is to be applied� any merge element with a START input �as in Figure ��
is replaced by an iwire�initialized wire�that acts like a bu�er with input a and output b except that
it begins operation by generating a b� Notice that iwire is non	quiescent� However� it can be guaranteed
that SHILPA	generated circuits that involve the iwire are quiescent� Once the above steps are completed�
parallel composition can be invoked on the network �usually recursively� on the partitions� as mentioned in
Section �������

����� Composite SPCTS to EISG

Composite SPCTS are converted into EISGs by exhaustively �simulating� all possible moves until all
reachable con
gurations are covered� In Figure �� this process is illustrated for a call element� This process
also can result in state explosion� For instance� behaviors in which many nested branches are involved can
expand into very large EISGs� Fortunately� this has not proved to be a problem so far�

����	 BM�reduction

Once EISGs are obtained� they are to be converted into equivalent burst	mode machines� This algorithm�
and its correctness� are brie�y outlined below�

Input� An EISG� which is a state graph with circles denoting states� and arcs between states labeled by a
single polarized transition of an input signal or an output signal� Only those EISGs obtained by composing
macromodules obeying restrictions stated earlier are considered�

Output� A burst	mode machine�

Method�

�� Mark all states as �not visited�� and call the starting state current�

�� If the current state has not been visited� and has an exit through at least one output transition� mark
current as visited� and retain any arbitrary output transition leaving that state� Eliminate all other
transitions� Call the destination of the retained transition as current� Continue with Step ��

�� We reach this step when the �current� state has no exits through an output transition� Retain all the
exits through input transitions from this state� Consider all the destination states reached through






these input transitions as �current�� in turn� and continue with Step � for these states�

�� We reach here after the initial �transition elimination� portion of the algorithm is over� Now� remove
unreachable portions of the state graph�

�� Set the starting state of the state graph as �current��

�� Go to the current state� It will have exits only through input transitions� �This invariant is initially
true due to the quiescence of the starting state� and is preserved by the way the following loop will
work��

Take any path out of the �current� state and traverse the path� collecting input transitions encountered
along the way into a set �input�burst�� �We will never encounter a state in the interim that has both an
input exit as well as an output exit because the loop starting in Step � would then have eliminated all
the input exits� and all but one output exit�� Continue collecting input transitions� till we encounter
a state with exactly one output exit� Call this state �intermediate��

�� Continue traversing from state �intermediate� collecting output transitions into a set �output�burst�
till a state which has no exits through an output transition is encountered� Call this state �next��

�� Construct a burst	mode machine arc from �current� going to �next� labeled by �input�burst output�
burst��

�� Repeat the procedure from Step � for all paths emanating from �current��

��� Recurse� now treating all the states marked �next� as �current�� and till all states have been considered�

��� Eliminate all duplicate transitions in the burst mode machine�

We illustrate the above algorithm on the following state transition matrix �corresponding to �QR����
a four	phase to two	phase converter with quick return linkage ������ In this example� we do not consider
polarized transitions� to avoid notational clutter� the same method applies� whether the transitions are
polarized or not� �The various kinds of parenthesizations� ��� ��� etc� are explained momentarily��
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R� R� A� A�
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�� � � � �	�

���� � � � 


The transitions enclosed in �� are the ones selected in the loop starting at Step �� The states enclosed in
�� are the ones referred to in Step � as being the �unreachable portions of the state graph�� In state �� we
could have retained the transition going to either state � or state � because both transitions are through
outputs� namely R� and A�� we arbitrarily choose the transition going to state �� In state �� we must retain
the transition going to state � because this move is through the output transition A�� the transition going
to state 	 is not retained� as that transition is through the input A�� In state �� both transitions must be
retained because both of them are input transitions�

After Steps � through �� we are left with the following graph �we now remove the �� decoration��
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We now take state 
 as current� and traverse till state �� forming the set input�burst fR�g� State � is
called intermediate� From state �� the traversal is continued� forming set output�burst fR��A�g� reaching
state next� which is state �� From state �� two arcs are erected to state 
� both with input�burst fR��A�g
�paths ������
 and ��
���
� with current being state �� intermediate being state � and next being state 
��
only one is retained� The following burst	mode machine is now constructed�

Input wires� R� A�

Output wires� R� A�

Start state number� �

� �� R���R��A�� ��� 	

	 �� �R��A���A� ��� �

The above burst	mode machine is realized through the following equations� generated by Yun
s tool �����

A� � R� 
 A�� R� 
 A� R��

R� � R�� R� 
 R� Q�� 
 R� Q��

Q� � A� R�� 
 A� Q� 
 R� Q�

The steps in the algorithm can be justi
ed as follows�

� When a state s has both out	going output	 and input	transitions� due to adherence to Udding
s
conditions� these inputs and outputs will be o�ered in all combinations� The environment �due to the
burst�mode assumption� will allows enough time for the machine to produce all these outputs in some
order before it considers applying any of the inputs being o�ered� This justi
es the step that retains
an arbitrary output transition in preference to all other transitions� in Step ��

� By the same token� when a sequence of inputs is being collected to form the set input�burst� we can
be assured that these inputs will appear in all permutations �due to delay insensitivity�� Furthermore�
the behavior following this input burst �irrespective of the path taken to form it� will be the same�
Thus� we can be assured that all input bursts will lead to the same output burst� This will give rise
to opportunities to eliminate duplicate transitions�

����
 Correctness of BM�reduction

The above reasoning shows that BM	reduction results in a burst	mode machine that has the same behavior
as the original macromodule network when that network is operated under the burst	mode assumption� The
following well	formedness conditions of burst	mode machines are also guaranteed�
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Circuits
Burst�mode
machine size

Macromodule
machine size

Burst�mode
machine speed

Macromodule
machine speed

Merge
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QR��

�version ��
�a	 �o ��a	 ��o ��nS ��nS

QR��
�version ��

�a	 �o ��a	 ��o ��nS ��nS

Two�input
Call ��a	 �o ��a	 �o �nS �nS

Control�Block
Sharing

�a	 �o ��a	 ��o �nS ��nS

Call�C
Idiom ��a	 �o ��a	 �o ��nS ��nS

Decision
Wait ��a	 �o ��a	 �o �nS ��nS

Simple GVT
�part ��

�a	 �o ��a	 �o �nS �nS
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�a	 �o �a	 �o ��nS ��nS

Call��Merge
Optimization ��a	 ��o ��a	 ��o ��nS ��nS

Figure 	� Performance of our Optimizer

Non�empty Input Bursts� The fact that all input bursts are non	empty is guaranteed by the quiescence
requirement and by the way the BM	reduction process works�

Subset Property� The subset property requires that no input burst can be a subset of another� This is
guaranteed as follows� Consider the traversal made by algorithm BM	reduction beginning at step ��
when it forms the set input�burst� Suppose the sequence i�� i�� � � � � in is encountered by the time state
intermediate is reached� Due to Udding
s condition � �Figure ��b��� we are assured that this sequence
will also appear in all its permutations between state current and intermediate� Furthermore� the
sequence of outputs encountered during the traversal from intermediate to next will also appear in
all its permutations� Thus� we will end up getting many transitions with identical input�burst and
output�burst sets�speci
cally as many such burst	mode transitions as the product of the number of
permutations that the inputs and the outputs have� Thus� we can get duplicate burst	mode transi	
tions� but never two burst	mode transitions that violate the subset property� �Duplicate burst	mode
transitions will be eliminated in Step ����

Unique Entry� This is guaranteed by the way an EISG is generated �essentially a state of an EISG includes
the state of the interface signals� hence� there cannot be a state	con�ict in the burst	mode machine
because the EISG will allocate two separate states for non	compatible interface	signal assignments�

� Results and Concluding Remarks

We have an implementation for all the phases of our optimizer described here� and these phases have
been integrated to some extent� The parallel composition tool was developed by Dill and Nowick ����� The
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EISG generation algorithm is described in ����� The BM	reduction algorithm has been implemented by us�
For burst	mode machine generation� we use the tool developed by Yun ����� Yun
s tool also generates a
Verilog description of the circuit� however� for comparing burst	mode machine outputs with macromodule
networks �which we have in the Viewlogic tool database�� we end up translating combinational logic equations
describing burst	mode machines into VHDL �the version of Viewlogic that we use does not compile Verilog
into circuits�� and use the VHDLDesigner tool to generate schematics� Looking back� it is interesting to
observe the great extent to which we end up using tools techniques developed for synchronous high level
synthesis�

Our results fall into di�erent categories� In general� the burst	mode circuits generated by us are often
smaller and faster� as shown in Table �� Here is how area 
gures were obtained� we obtained gate	style
implementations for the individual macromodules� and added their sizes to obtain the area of the macro	
module circuit� The output of the burst	mode machine is in AND OR form for which we obtain a gate	count
straight	forwardly� In both cases� we reduce the whole description to two	input AND OR gates and report
their count in the form �!a� !o� for �number of ands and ors�� respectively� In this table� the circuits
Call�C Idiom� Simple GVT �part � and ��� and Call��Merge are various networks produced by the Occam
or SHILPA compilers� others have been mentioned earlier�

Obtaining speed estimates can be trickier� Here� we focus on throughput� and not on latency� For
throughput� the notion of a critical path does not apply� Instead� the notion of cycle time ���� applies�
Cycle time is the period of one cycle of the repetitious behavior exhibited by the asynchronous circuit when
the circuit
s environmental connections are suitably �closed o��� to make the asynchronous circuit into an
oscillator �� For each of our test circuit we close	o� the environment so as to use the burst	mode circuit
as aggressively as possible� short of breaking the burst	mode assumption� The same environment was then
used for simulating the macromodule circuit�

Burst	mode circuits do not need special provisions for being reset� merely holding the interface signals
low after power	up achieves resetting� In contrast� the macromodule circuits require an explicit reset signal�
Automated techniques to avoid providing an explicit reset input to macromodules are not known to us
�though brie�y discussed in ��� by Furber��

We have experimentally determined that our optimizer subsumes virtually every macromodule�network
to macromodule�network optimization proposed by Brunvand in ����� Our optimizer� in e�ect� achieves
macromodule	network optimization and burst	mode machine generation in one phase�

Burst	mode circuits are believed to be often easier to test than ordinary macromodule	based circuits �����
especially if implemented using Nowick
s locally clocked style ����� They can also be synthesized as complex
gates� as done by Stevens ����

In conclusion� replacing macromodule	networks by burst	mode machine networks often seems to have many
advantages� In practice� one may carry out macromodule subnetwork replacement till the required degree of
performance is achieved� Then� one may leave some macromodules �at the �top level�� unaltered� for� they
make the control organization of a large system quite clear� In the process of replacing macromodule sub	
network after sub	network� incremental algorithms for repeatedly re	verifying the burst	mode assumption
seem highly desirable�
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A Details of the Examples Optimized

We now provide details of how� for each signi
cant circuit considered in Table �� the network to be
optimized is speci
ed� along with the constraints necessary to obtain a compact SPCTS and �in some cases�
how the partitioning is done�

Various versions of QR�� were considered� The �trick� in specifying a QR�� module in Occam or hopCP
is to treat each channel initially as if it were a wire� and then to ignore the acknowledgement handshake
emitted by the channels� to get a �kosher� QR��� This trick works when wire communications alternate�

The following was the speci
cation used for the hand	design for QR���

�defun qr���imp�w�channel�constraints�di ��

�teval

�hide ��x� x� x��

�compose �toggle r� x� x��

�buffer x� r�� ��� to delay�insensitize

�join x� a� x��

�merge�element x� x� a��

�fourph�channel r� a�� ��� constraint on ��phase interface

�twoph�channel r� a�� ��� constraint on ��phase interface

����

The circuit obtained from the Occam compiler� after a few hand	transformations� is the following �called
Version � in the paper��

�defun mmqr�� ��

�teval

�hide ��rs� as� rs� r�� r�� a�� a�� r�� r�i a�i�

�compose

�buffer r�i r�� ��� the buffers are to delay�insensitize the QR��

�buffer a�i a�� � prior to verification

�fourph�channel r� a�� ��� four�phase channel constraint

�twoph�channel r� a�� ��� two�phase channel constraint

�join r� rs� as��

�join as� rs� a�i�

�call r�� r�i r�� a�� rs� as��

�call r�i r�� r�� a�� rs� a�i�

�join a�� a� r���

�iwire a�� r���

����

The circuit obtained from SHILPA �Version �� is
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�defun qr���shilpa ��

�teval

�hide ��a��out a�� r�� a�i a�� a�� r�� r�� rs� r��out r�� rs��

�compose

�join a��out a�� r���

�iwire r�� a�i�

�join a�i a�� r���

�iwire a�� r���

�call r�� a�� r�� a�� rs� r��out�

�call r�� r�� r�� a�� rs� a���

�buffer rs� a��

�buffer r�� r��

�join r� a� a��out�

�join rs� r� r��out�

�twoph�channel r� a��

�twoph�channel r� a��

����

One thing nice about all the QR��
s is that the parallel composition operator could bridge many of the
macromodule to macromodule peephole optimizations identi
ed by Erik Brunvand �����

The circuit for Call	C Idiom is

�defun call�c�idiom ��

�teval

�hide ��rs ci�

�compose

�call r� a� r� a� rs as�

�join rs b ci�

�buffer ci c�

����

The speci
cation for decision	wait is�

� Molnar�s decision�wait � �x�

�

� pref �� r�� � a�� � r�� � a�� �

� �� pref �� s� � �a�� � a��� �

�defmacro decision�wait �r� a� r� a� s�

��petri�to�spcts � �

�� �� ��� ����

�� �� �� �� ���

�� ��� ����

�� �� �� �� ���

�� ��� �����

��� ��

���r� �a� �r� �a� �s�

���r� �r� �s�

���a� �a����

A larger decision	wait was tried� but took oodles of time� so was aborted�
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� Decision�wait needed in Udding�Josephs stack � �x�

�

� pref �� r�� � �a��� � a����

� � r�� � �a��� � a����

� � r�� � �a��� � a���� �

�

� �� pref �� s�� � �a��� � a��� � a����

� � s�� � �a��� � a��� � a���� �

�defmacro decision�wait��x� �r� r� r� s� s� a�� a�� a�� a�� a�� a���

��petri�to�spcts 
 ��

�� �� ��� ����

�� ��� ����

�� ��� ����

�� ��� ����

�� ��� �	��

�� �� �� �� ���

�	 �� 	� �� ���

�
 �� �� �� ���

�� �� 	� �� ���

�� �� �� �� ���

����� 	� �� ����

��� ��

���r� �r� �r� �s� �s� �a�� �a�� �a�� �a�� �a�� �a���

���r� �r� �r� �s� �s��

���a�� �a�� �a�� �a�� �a�� �a���

��

The GVT �Global Virtual Time� computation arises in Time Warp simulation� The hopCP speci
cation
used was�

GVT� �� �� ��rcin�z� lcin�y� �� pout��min y z� �� GVT� ���

��

GVT� �� �� �pin�x �� �lcout�x�rcout�x� �� GVT����

The circuit when compiled gives essentially two independent circuits� one for process GVT� and the other
for process GVT�� Since the circuits are so independent� it is foolish to try and compose them together� So�
we do them separately� as simplegvt	part� and simplegvt	part�� below�

�defun simplegvt�part� ��

�teval

�hide ��t� t�� t���

�compose

�iwire pout�in t��

�buffer t� t���

�buffer t� t���

�join t�� lcin�in r��

�join t�� rcin�in r��

�buffer a� lcin�out�

�buffer a� rcin�out�

�join a� a� rmin�

�buffer amin pout�out�

�twoph�channel r� a��

�twoph�channel r� a��

�twoph�channel rmin amin�

�twoph�channel pout�out pout�in�

�twoph�channel lcin�in lcin�out�

�twoph�channel rcin�in rcin�out�

����
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�defun simplegvt�part� ��

�teval

�hide ��t� t��

�compose

�join lcout�in rcout�in t��

�iwire t� t��

�join t� pin�in r��

�buffer a� pin�out�

�buffer a� lcout�out�

�buffer a� rcout�out�

�twoph�channel lcout�out lcout�in�

�twoph�channel rcout�out rcout�in�

�twoph�channel pin�in pin�out�

�twoph�channel r� a��

����

Call�	merge is another optimization discussed in Erik Brunvand
s PhD dissertation ����� Erik
s optimiza	
tion rule is that call�	merge	optimization can be optimized to optimized	call�	merge� It was observed that
call�	merge	optimization and optimized	call�	merge both reduced to the same composite automaton� and
so� they both gave rise to the same burst	mode circuit�

�defun call��merge�optimization ��

�teval

�hide ��a� a��

�compose

�call� r� a� r� a� r� a� rs as�

�merge�element a� a� out�����

�defun optimized�call��merge ��

�teval

�hide ��int�

�compose

�call r� a� int out rs as�

�merge�element r� r� int�����

One 
nal circuit that passed Dill
s composition operator but not the rest of the algorithm �yet� that is� is
given below� Note my use of hierarchy even to make Dill
s code run at an acceptably fast rate�

��



� This circuit appears on page ��� of Venkatesh�s thesis 

� I�ve replaced the XORs by iwires

� also eliminated registers and in their place have r� output a� input� etc   

�defun multicast� ��

�teval

�hide ��c� a�

�compose

�join a� a� c��

�iwire c� a�

�join a a�in r��

�buffer a� d�out�

�buffer a� c�out�

����

�defun multicast� ��

�teval

�hide ��in� in��

�compose

�bcel� a� in� r� in� r��

�iwire c�in in��

�iwire d�in in��

�buffer a� a�out�

����

�setf �multicast�� �multicast���

�setf �multicast�� �multicast���

�defun hier�multicast ��

�teval

�compose

�multicast��

�multicast��

�twoph�channel r� a��

�twoph�channel r� a��

�twoph�channel r� a��

�twoph�channel c�out c�in�

�twoph�channel d�out d�in�

���


