
International Conference on
Computer Systems and Education� IISc� Bangalore� ����

Type�safe Composition of Object Modules�

Guruduth Banavar� Gary Lindstrom� Douglas Orr

Department of Computer Science� University of Utah

Salt Lake City� Utah ����� USA

Abstract

We describe a facility that enables routine
type�checking during the linkage of exter�
nal declarations and de�nitions of separately
compiled programs in ANSI C� The primary
advantage of our server�style type�checked
linkage facility is the ability to program the
composition of object modules via a suite of
strongly typed module combination opera�
tors� Such programmability enables one to
easily incorporate programmer�de�ned data
format conversion stubs at link�time� In ad�
dition� our linkage facility is able to automat�
ically generate safe coercion stubs for com�
patible encapsulated data�

�This research was sponsored by the Advanced
Research Projects Agency �DOD�� monitored by the
Department of the Navy� O�ce of the Chief of
Naval Research� under Grant number N���������J�
���	
 The views and conclusions contained in this
document are those of the authors and should not
be interpreted as representing o�cial policies� ei�
ther expressed or implied� of the Advanced Research
Projects Agency or the US Government
 Contact
author� G
 Banavar� Computer Science � ���� MEB�
University of Utah� Salt Lake City� UT
���� USA� e�
mail banavar�cs�utah�edu� phone ���
����
��
��
�
fax ���
����
���
��

� Introduction

It is widely agreed that strong typing in�
creases the reliability and e�ciency of soft�
ware� However� compilers for statically typed
languages such as C and C�� in tradi�
tional non�integrated programming environ�
ments guarantee complete type�safety only
within a compilation unit� but not across

such units�� Longstanding and widely avail�
able linkers compose separately compiled
units by matching symbols purely by name
equivalence with no regard to their types�
Such �common denominator� linkers accom�
modate object modules from various source
languages by simply ignoring the static se�
mantics of the language� Moreover� com�
monly used object �le formats are not de�
signed to incorporate source language type
information in an easily accessible manner�

In this paper� we present a technique to
perform type checking of object modules as
a routine link�time activity� Our technique is
characterized by �i	 the design of speci�c lan�
guage type systems into a system�wide linker�
�ii	 programmed link�time control over indi�
vidual symbols of object modules� and �iii	

�C�� style name�mangling does not accomplish
complete type�safety across compilation units� see
Section 	

utilization of standard debugging informa�
tion generated by compilers for type check�
ing� We describe in detail the realization of
these steps for ANSI C�

A crucial enabler for this facility is the abil�
ity to resolve inconsistencies among compiled
object modules at link time� The existence
of link time type errors does not mean that
program source �les need to be modi�ed and
recompiled� as this may not be possible for
pre�compiled libraries� Programmer control
for correcting link time type errors is pro�
vided via the already existing programming
facilities of OMOS
��
� our dynamic linker�
For instance� consider the case where the
type of a declaration in one translation unit
does not match with a de�nition in another�
This can usually be �xed by �i	 uniformly re�
naming the declaration and its uses to match
the actually intended de�nition name� or �ii	
in the case when the names match but the
types do not� by introducing a new decla�
ration to match the de�nition� and binding
the renamed original declaration with a type
conversion function� Our linkage facility eas�
ily supports such transformations� If a type
error cannot be corrected with such simple
transformations on object modules� it might
indicate a more serious error in the design of
the modules involved�

Our link�time type�checking facility per�
mits us to adapt and utilize the full expres�
sive power of language type systems to bet�
ter suit modern persistent� distributed and
heterogeneous environments� For example�
structural typing can be applied to languages
such as ANSI C with name�based typing�
Pure name�based typing becomes a problem
in persistent and distributed environments�
where data and types could migrate out�
side the program in which they were orig�
inally created
�
� and lead to matching of
names that may or may not have the same
programmer�intended meaning� This argues
for structural matching of aggregate types

similar to Modula��
��
� using member or�
der and type signi�cance along with names�

Furthermore� our programmable linkage
facility enables the incorporation of auto�
matic and user�de�ned conversion routines
for encapsulated data� For automatic con�
version� we postulate safe adaptability rules
for converting built�in data types using the
language de�nition in conjunction with the
characteristics of particular hardware plat�
forms� We then utilize these rules to auto�
matically generate data conversion �stubs�
at link time� More importantly� program�
mer de�ned conversion stubs can also be eas�
ily incorporated at link time� This opens
up the possibility of programmer�controlled
data evolution and conversion across hetero�
geneous data formats� e�g� those arising from
di�erent languages� hardware architectures�
etc��

We provide the ability to support a vari�
ety of type systems by designing our type�
checking facility as an extension of an object�
oriented framework
�
� The O�O framework
contains generic type system related abstrac�
tions such as named types� function types�
record types� etc� that are specialized via in�
heritance to implement the type domain of
speci�c languages�

In the following sections� we describe in
detail the type�checking of object modules
generated by compiling ANSI C programs�
Section � introduces our notion of modules
and interfaces� Section � brie�y describes our
object server OMOS� and Section � discusses
the essential aspects of the type system of
ANSI C� We then give some implementation
details� discuss related work and conclude�

� Object Modules and

their Interfaces

We refer to an ANSI C program source or
object �le as a module� consisting of a set
of attributes with no order signi�cance� An

attribute is either a �le�level declaration �a
name with an associated type� e�g� extern
int i�	� or a �le�level de�nition �a name
with a data� storage or function binding	�
Type de�nitions �e�g� struct de�nitions�
and typedef�s in C	 are not attributes of
a module� The interface of a module con�
sists of �name� type� declared or de�ned�

tuples of the attributes of the module� In the
context of type�checking object module inter�
faces� attributes match if they have the same
name� There cannot be matching attributes
within a single interfacey� and attributes that
match across interfaces must be type com�
patible� The notion of type compatibility de�
pends on the particular module combination
operation being performed� and is informally
described below�

Our linker is based upon a formal model
of modules proposed in
�
� achieving a �ne
level of control over individual attributes of
object modules� Brie�y� object modules are
combined via a suite of module combination
operators that were originally conceived to
describe the many facets of inheritance in
object�oriented programming� Figure � gives
the primary operators� their informal seman�
tics and type rules� These operators pro�
vide control over aspects of visibility� sharing�
and rebindability of individual attributes of
modules� The power that this model lends
to object module linkage is brie�y given in
Section �� and is described in more detail
in
��
� where the original implementation of
the type�less OMOS linker is described� The
current e�ort incorporates the rules of the
strongly typed module model and illustrates
some of its applications�

The semantics of common linkage is em�
bodied in the module operator merge� For
a simple example of the use of this module
operator� consider Figure �� In this �gure�

yIn order to model languages that support user�
de�ned overloading� e�g� C��� our model can be ex�
tended to include an ordinal value in the tuple� which
is also signi�cant for attribute matching

the compiled module O� provides a de�ni�
tion of function f� Consider the case where
a programmer creates and compiles module
O� with the intention of using O��s f de�ni�
tion by performing O� merge O�� but makes
the incorrect presumption that f returns an
int� If merge were untyped �as it is in com�
mon linkage	� O� merge O� would have been
legal� however� it does not typecheck in our
linker since the interfaces of O� and O� are
not type compatible for a merge operation�
Let us say that the programmer of O� dis�

covers during linkage that f returns the de�
sired int value as a component of the re�
turned structure� Traditionally� in order to
make O� and O� compatible� the program�
mer would modify the source code of either
module extensively� if it were available� and
recompile� This� of course� could adversely
a�ect combination of the modi�ed module
with yet other modules� Alternatively� in our
model of �exible link�time module adapta�
tion� O� can be adapted to get the desired ef�
fect by constructing a �stub� module O�� O�
consists of a new declaration that matches
f�s de�nition� and a stub function that ex�
tracts the desired value from the structure
returned by f� With this� a modi�ed ver�
sion of O� is obtained with the module ex�
pression �O� rename f f stub� merge O��
which can then be merge�ed with O� to get
the originally desired e�ect�

� The OMOS Linker

In this section� we describe our linkage
facility� the Object Meta�Object Server
OMOS
��
�
The OMOS linker�loader is designed to

provide a dynamic linking and loading facil�
ity for client programs via the use of module
combination and instantiation� OMOS im�
plements a persistent hierarchical namespace
� much like the UNIX directory hierarchy
� whose leaf nodes are either object mod�
ules ��o �les	 or meta�objects� Meta�objects

Operator Semantics Typing

M� merge M� Combine M� and M�
 Matching de�nitions disallowed� a de�nition must
be a subtype of its matching declaration

M� override M� Merge� but resolve matches in
favor of right operand

Same as merge� except right�operand de�nition
must be a subtype of matching left opnd
 de�nition

M restrict L Make L unde�ned
 L must be de�ned

M freeze L Make references to L static
 L must be de�ned

M hide L Make attribute L �private
� L must be de�ned

M rename L� L� Rename L� � its uses to L�
 L� must exist� L� must not

M copyas L� L� Copy attribute named L� to L�
 L� must be de�ned� L� must not exist

Figure �� Informal Semantics and Typing of Module Operators

�� Module O�� �� �� Module O�� �� �� Module O�� ��

struct S f struct S f
int x� extern int f ��� int x�

�� 			 �� �� 			 ��

g void bar �� f g

int x
 foo ��� extern struct S f ���

struct S f �� f g int f stub �� f

�� 			 �� return f��	x�

g g

�� 			 �� �� 			 ��

Modules O� and O� are composed with the expression� �O� rename f f stub� merge O� merge O�

Figure �� Linkage Adaptation

are named placeholders for modules that are
speci�ed bymodule combination expressions�
OMOS essentially provides a level of indirec�
tion between a named OMOS entity �a mod�
ule	 and its actual implementation �a module
instance	 that is loaded into a client� Clients
may directly load named module implemen�
tations or generate new modules by combin�
ing or modifying existing ones� This facility
is used as the basis for system program ex�
ecution and shared libraries
��
� as well as
dynamic loading of simple modules�
Expressions specifying module combina�

tion are encoded in a scripting language with
a LISP�like syntax� These expressions con�
sist primarily of operations for manipulat�
ing modules and module namespaces� such
as those shown in Figure �� Additionally�
OMOS supports operations for constructing
an object module given program source code�
and for specializing the implementation of a

given module �e�g� library vs� ordinary mod�
ule	
��
� among others� The operands in
module expressions may be executable code
or data fragments� other module expressions�
or other named meta�objects�
Since OMOS is an active entity �a server	�

it is capable of performing sophisticated
module manipulations on each instantiation
of a module� Evaluation of a module ex�
pression could potentially produce di�erent
results each time� Some OMOS operations
such as those used to implement program
monitoring and reordering
��
 enact pro�
gram transformations using operations on
module expressions�
For example� monitoring a program using

OMOS might involve extracting and trans�
forming the expression that generates the
program so that each de�ned procedure is
transparently wrapped with an outer routine
that monitors entry to and exit from the pro�

cedure� Figure � shows the module opera�
tions used to �wrap� the procedure f in mod�
ule O� with the automatically generated rou�
tine found in O�� Note that this illustrates
adaptation of the �service provider� module�
while Figure � showed client module adapta�
tion�

This process of wrapping procedures is en�
hanced by the availability of module type in�
formation� The wrapper procedure is con�
structed with a signature identical to that of
the wrapped procedure� simple language con�
structs can be used to propagate the caller�s
arguments to the wrapped routine� If type
information was not available �or in cases
such as printf where the the routine is de�
�ned to take a variable number of arguments	
it would be necessary to use a machine�
dependent wrapper that could preserve and
pass along the call frame without knowledge
of its contents�

While OMOS is capable of performing so�
phisticated manipulations on each invoca�
tion� it caches the results of most operations
to avoid re�doing work unnecessarily� The
practice of combining a caching linker with
the system object loader gives OMOS the
�exibility to change implementations as it
deems necessary� e�g� to re�ect an updated
implementation of a shared module across all
its clients
��
�

� C�s Type System

This concludes the general discussion of link�
age via module manipulation�

In order to ascertain the type�safety of
modules being combined� the module type
rules �shown informally in Figure �	 built
into our linker requires knowledge of the type
system �type domain� type equivalence and
subtyping	 of the base language ANSI C�
This section describes the relevant type sys�
tem of ANSI C �type domain and type equiv�
alence	
��
� and enhancements made to it

for type�checking across compilation units
�structural typing� and subsumption	�

The type domain of ANSI C consists
of �i	 basic types �primitive types �int�
float� etc�	� and enumerated types	� �ii	
derived types �function types� struct and
union types� array and pointer types	� and
�iii	 typedef�ed names� Speci�ers for these
types can be augmented with type qual�
i�ers �const and volatile	 and storage
class speci�ers �auto� register� static

and extern	�

The type quali�er volatile concerns opti�
mization� and is not relevant here� The qual�
i�er const is explicitly dealt with in this sec�
tion� The storage class speci�ers auto and
register are not relevant since they may
only be used within functions � we are in�
terested in �le�level declarations and de�ni�
tions� The storage speci�er extern indicates
an attribute declaration while non�extern at�
tributes are considered to be de�ned� The
storage speci�er static for a �le�level at�
tribute gives it internal linkage� i�e� the at�
tribute can be viewed as having been sub�
jected to a hide module operation� Simi�
larly� attributes that are subjected to hide

via link�time programming can be regarded
as having been converted to the static stor�
age class after the fact�

C permits calls to functions that have not
been declared in a module� A call to an un�
declared function f in a module results in an
implicit �le�level declaration of extern int

f ���

��� Type Equivalence

Type equivalence in ANSI C within a
single translation unit� and our extensions
for type�checking across translation units� is
given in Figure �� The rationale for the two
modi�cations are

�� For aggregate types �struct�s and
union�s	� name equivalence is too weak

�� Module O�� �� �� Module O�� ��

�� Automatically generated ��

extern short f �short��

extern void log enter �char ���

extern void log exit �char ���

void g �� f short f �short x� f

short z
 f ���� short v�

g log enter ��f���

v
 f �x��

short f �short x� f log exit ��f���

�� 			 �� return v�

g g

Module expression� ���O� copyas f f� restrict f� merge O�� hide f

Figure �� Wrapping a routine to monitor its execution

Type Equivalence within a translation unit Equivalence across translation units

Primitive type name equivalence same

Function type structural� with in and out parameter
types signi�cant

same

Enum type name equivalence same

Structure and
union type

name �tag� equivalence� tag	less types
are unique

structural� with tag� member order
and member names signi�cant

Pointer type equivalence of target types same

Array type equivalence of element types� and eq	
uality of array size

same

typedef
ed name typedef
ed type typedef name equivalence

Figure �� Type equivalence in ANSI C

when applied outside of a single transla�
tion unit� as explained in the introduc�
tion� Therefore� we adopt a conserva�
tive structural typing regimen in which
the names� order and types of mem�
bers are also signi�cant� We also re�
tain the signi�cance of aggregate tags
since there could be application�speci�c
semantic content in them�

�� For typedef�ed names� again� there
could be application�speci�c semantic
content in them� so we adopt strict name
equivalence�

Furthermore� some type speci�ers are im�
plied by others� e�g� short implies short

int� therefore these types are equivalent�

The type quali�er const is signi�cant for
equivalence since it distinguishes read�only
variables from read�write variables�

��� Subtyping

The module operators merge and override

utilize subtyping rules for type�checking com�
bination� Our base language� ANSI C� has
no notion of subtypes� hence subtyping can
be considered to be restricted to type equiv�
alence� However� module composition would
be more �exible if we could retroactively for�
mulate subtyping rules consistent with the
language de�nition�
The ANSI C language speci�es safe con�

version rules for certain primitive arithmetic

sizeof (float) < sizeof (double) == sizeof(long double)

1 < sizeof (short) < sizeof (int) == sizeof(long) == sizeof(float)

bit-field enum X

signed char

int

short int

long int
unsigned int

unsigned char

long unsigned int

short unsigned int

float

void

double
long double

Figure �� Subtyping of C Primitive Data Types

data types �e�g� float to double	� A con�
version is said to be safe if all values of
one type can be represented as values of the
the other without loss of precision or change
in numerical value� C compilers� however�
can usually be expected to support many
more safe conversions than those that are de�
�ned by the language� as governed by hard�
ware characteristics� These safe conversion
rules can be thought of as subsumption rules�
which in turn provide the basis for formu�
lating subtype rules for primitive arithmetic
types� Figure � shows the data type sizes and
a partial order of subtypes for the HP series
���� machines ����s and ���s	� For instance�
a value of type short can be safely coerced
into a value of type float on this platform
without loss of precision or change in numer�
ical value� We might ask if the above rules
can be exploited during type�checking of at�
tributes across translation units�
Consider �le�level variable declarations�

Variables can be used as evaluators �i�e� ex�
pressions that return values	 and as accep�
tors �i�e� expressions that receive values	 in
di�erent contexts� Expressions which are
evaluators can only be replaced with expres�
sions whose types are subtypes of the orig�

inal� while expressions which are acceptors
can only be replaced by expressions whose
types are supertypes of the original
�
� As
a result� subtyping of variables is always re�
stricted to type equivalence�
Consider �le�level read�only �i�e� const	

variables� Subtyping involving the type qual�
i�er const can be described as follows� if a
non�const type s is a subtype of a non�const
type t� then const s is a subtype of const
t� s is a subtype of const t� but const s

is not a subtype of t� So� for example� can
a declaration extern const float x in one
translation unit be considered subsumed by
a de�nition short x in another�
Unfortunately� this is not the case� since

size and layout formats for various primitive
data types are almost certainly incompatible�
Moreover� in certain cases� e�g� enum types�
compilers usually optimize layout by pack�
ing� hence the fact that an enum type is really
an int cannot be utilized� Within the same

translation unit� however� such subsumption
rules can be applied since the compiler has
complete knowledge of layout and usage and
hence it can generate appropriate conversion
and access code�
Similar arguments hold for subtyping

constant user�de�ned aggregate data types
�struct and union	 across translation units�
For example� a struct of two shorts can�
not be considered to be a subtype of a const
struct of two const floats even though
short is a subtype of const float� Further�
more� C unions are not discriminated� and
member access is not type�checked at run�
time� For example� a union with one short

component cannot be read�only accessed by
a supertype� a union with a const short

and a const float component� in another
translation unit� since there is no way for the
supertype accessor to know at run�time if the
union actually contains a short value or a
float value� As a result� subtyping on �le�
level read�only variables is also restricted to
type equivalence�

Arguments such as the above can be for�
mulated to show that subtyping on pointer
types is also restricted to type equivalence�

Consider subtyping of function types�
Subtyping of function types is by contravari�

ance
�
� That is� a function type is a subtype
of another with the same number of argu�
ments if its return type is a subtype of the
latter�s� and its input argument types are su�
pertypes of the corresponding ones in the lat�
ter� According to this rule� one can pass a
function actual parameters that are subtypes
of the formal parameters in the function de��
nition� For subtyping function types with an
unspeci�ed �variable	 number of arguments�
we require that the subtype has at most the
number of explicitly speci�ed argument types
in the supertype� and that they are in the
proper relationship�

However� we cannot use such a rule across
translation units since in a compiled func�
tion� the amount of space allocated for the
input parameters is exactly the size of the
expected types� and the format is expected
to be exactly as speci�ed� All in all� and
not surprisingly� no useful subtyping rules
can be discovered in the existing C language

for direct application in type�checking across
translation units�

The crucial observation� however� is that
several useful subsumption rules can be uti�
lized for data that are encapsulated within
functions� if �stubs� that perform the appro�
priate coercion between data�types can be
inserted between combined modules at link
time� This is feasible since such stub func�
tions are themselves compiled and hence they
can utilize data format conversion knowl�
edge that a compiler uses within a transla�
tion unit� Applying this stub technique to
global data� however� is not feasible since
it involves initializing global variables with
non�constant values� which is illegal in ANSI
C�

Function types lend themselves particu�
larly well to this technique since the per�
formance of function calls is a�ected much
less by this indirection than the performance
of data access� Moreover� it does not seem
unreasonable to impose the requirement on
users to encapsulate such data that they fore�
see will be accessed via supertypes�

Our linker automatically generates coer�
cion stubs for functions using the primitive
type conversions shown in Figure �� For an
example of type adaptation using language
de�ned subtypes� consider Figure �� As men�
tioned earlier� the type short is a subtype of
float� Therefore� the de�nition of function
f in module O� is a subtype �by contravari�
ance	 of the declaration of the function f in
module O�� However� O� cannot be directly
merged with O�� since in general the calling
sequence for f might not be compatible� e�g�
the de�nition of f might be expecting its in�
put in a �oating point register rather than
an integer register� This is remedied by �rst
combining O� with the automatically gener�
ated stub module O� that incorporates safe
coercions� and then performing the desired
merge� as shown in the �gure�

We have also incorporated a comprehen�
sive subtyping model including structural

�� Module O�� �� �� Module O�� �� �� Module O�� ��

�� Automatically generated ��

short f �float y� f extern float f �short�� extern short f �float��

�� 			 ��

g void g �� f float f stub �short x� f
float z
 f ���� return �float� f ��float� x��

g g

Modules O� and O� are combined with the expression�
���O� rename f f stub� merge O�� hide f stub� merge O�

Figure �� Automatic Data Coercion Using Language Rules

record subtyping with member name� type
and order signi�cance� an example of which
is shown in Figure �� It should be empha�
sized that the above technique applies only
to input and output parameters of functions�
since coercion stubs can be automatically
generated to account for function subtyping
only�

This technique of type conversion stubs
can be generalized as illustrated in Figure �
to provide a general facility to incorporate
user de�ned stubs at link time for arbitrary
data format conversion� In the �gure� mod�
ule O� comprises user�de�ned stubs�

� Implementation And

Usage Details

Ideally� we would have compilers that gener�
ate object modules in a �self�describing� for�
mat� with information about the source lan�
guage� the machine architecture� and the in�
terface� all packaged within the object mod�
ule in a readily accessible format� However�
this is far from reality � the closest approx�
imation is an object �le that has been com�
piled with the debugging optionz �g� which

zObject �les compiled without the debugging op�
tion contain no type information� and those compiled
with the debugging option contain more information
than is necessary for type�checking linkage� e�g� types
of local variables� line numbers� etc�

instructs the compiler to generate type infor�
mation in a standard encoded format�

Although conceptually simple� the actual
process of extracting type information from
the generated debugging information is tech�
nically challenging� and in our prototype in�
volved the following steps� The GNU C com�
piler� gcc� does not generate debugging in�
formation for C extern symbols� since de�
bugging is normally performed on executable
�les in which all external references have
been resolved� To solve this� we modi�ed the
back end of gcc to generate debugging infor�
mation for all symbols� For accessing the sec�
tions of the object �le that contain debugging
information ��stab and �stabstr	� we use
Cygnus Corporation�s Binary File Descrip�
tor �BFD	 library
�
� and parse the �stabs�
format debug strings
��
 using a yacc�lex
generated parser�

We are implementing an O�O framework
in C��
�
 that embodies the formal module
model that was brie�y described in Section
�� The abstractions �classes	 in the frame�
work implement the type rules discussed in
the previous section� For instance� the frame�
work class CPrimType implements the partial
order of primitive types introduced before�
A framework class called Interface imple�
ments the type rules for module operations
such as merge� The parser mentioned in the
previous paragraph instantiates the appro�

�� Module O�� �� �� Module O�� �� �� Module O�� ��

�� Automatically generated ��

struct S f struct S f struct S� f
short x� float x� short x�

float y� g float y�

g g
extern struct S f ��� struct S f

struct S f �� f float x�

�� 			 �� void g �� f g

g �� 			 �� extern struct S f ���

g struct S f stub �� f

struct S� s��

struct S� s
 �struct S�� �s��

struct S ret s�

�s
 f ���

ret s	x
 �float� s�	x�

return ret s�

g

Modules O� and O� are combined with the expression�
���O� rename f f stub� merge O�� hide f stub� merge O�

Figure �� Automatic Conversion of structs Using Structural Subtyping

�� Module O�� �� �� Module O�� �� �� Module O�� ��

R� f �T� y� f extern R� f �T��� extern R� f �T���

�� 			 ��

g void g �� f R� f stub �T� x� f

R� z
 f ���T� value���� return R� to R� �f �T� to T��x���

g g

R� R� to R� �R� r� f
�� 			 ��

g
T� T� to T� �T� t� f

�� 			 ��

g

Modules O� and O� are combined with the expression� �O� rename f f stub� merge O� merge O�

Figure �� Programmer�de�ned Data Conversion

priate classes in our O�O framework to create
the interface of the object module�
For using our type�checked linkage facil�

ity� the source programs currently must be
written in ANSI C� and function declarations
speci�ed using �new�style� prototypes� Fur�
thermore� usage of header �les can be mini�
mized� explicit declarations of external func�
tions can be provided instead� Programs
that are to be type�checked at link timemust
be �re	compiled with our �modi�ed	 compiler
using the debug ��g	 option�
One legitimate concern is the size of object

�les as a result of the inclusion of debugging
information� The size of object �les does in�
crease signi�cantly due to debugging infor�
mation� but this problem is exacerbated by
the inclusion of huge library header �les� Our
solution to this problem is that given type�
checking at link�time� it is not necessary to
include header �les in the traditional way�
Instead� programs can explicitly declare pro�
totypes for those external �library	 functions
that are called� A discussion of the disadvan�
tages of header �les used in the traditional
manner is found below in Section ��

� Related Work

Integrated Development Environments
�IDE�s	 for strongly typed languages� e�g�

Ei�el
��
� undoubtedly utilize mechanisms
for type�checking separately compiled mod�
ules� since they have complete knowledge
and control over source and object modules�
However� our work di�ers from IDE�s in that
we provide a systemwide linkage facility that
attempts to typecheck combined modules in�
dependent of language processors� Further�
more� the programmability of our linker en�
ables ��ne tuning� the compatibility of �pos�
sibly heterogeneous	 object modules at link
time�
Use of header �les has been a longstanding

attempt at type�safety of separate compila�
tion� The Annotated C�� Reference Man�

ual
��
 �page ���	 explains the inadequacy
of header �les as follows�

���� C tried to ensure the consis	
tency of separately compiled programs
by controlling the information given
to the compiler in header �les� This
approach works �ne up to a point�
but does involve extra	linguistic mech	
anisms� is usually error	prone� and can
be costly because of the need to have
other programs �in addition to the
linker and the compiler� know about
the detailed structure of a program�

Instead of including header �les� it is clearly
more modular and less error�prone to explic�
itly declare the expected external function�
ality �e�g� library functions	� let the linker
check consistency at link time� and correct
inconsistencies via programming�

With the objective of enabling type�safe
linkage within the constraints of existing
linkers� Stroustrup
��� ��
 describes a mech�
anism for encoding functions with the types
of input arguments� However� this mecha�
nism is inadequate for our purposes since �i	
certain classes of type errors cannot be de�
tected �page ��� of
��
	 since variable types
and function return types are not encoded�
�ii	 although it could be extended to deal
with structural typing of C aggregate types�
it does not scale well to arbitrarily large
types� e�g� large structs� and �iii	 we want
to do not only type�checking� but also useful
adaptation during link�time� hence we must
utilize sophisticated linker technology�

The Berkeley Pascal Compiler pc
�
 is
similar to our e�ort in that it employs
debugging information to check type con�
sistency across separately compiled mod�
ules� The compiler routinely generates stab�
format type information into object modules�
which is used by a binding phase of the com�
piler to check consistency before delegating
the actual linking to ld� However� the crucial
advantage with our approach is that we per�

form type�checking as a controlled and pro�
grammable link�time activity�
There is a plethora of literature related

to stub generation
�� ��� �� ��
� The Poly�
gen system
�
 is representative of auto�
matic stub generation for programming in a
heterogeneous environment� Polygen pack�
ages heterogeneous modules by utilizing a
programmer�de�ned speci�cation of their in�
terfaces and execution environments speci�
�ed in a common module language� The
packaging process involves generation of
client and server stubs that handle module
interconnection and data type coercion dy�
namically� Our technique di�ers from Poly�
gen in that we enable the combination of pre�
compiled object modules by automatic ex�
traction of interfaces and via link�time pro�
gramming�

� Ongoing Work

We are currently completing our implemen�
tation� and look forward to get more experi�
ence in using such a type�safe linkage facility�
We acknowledge the shift in the traditional
cycle of programming that may be required
as a result of using a programmable type�
checking linker� Also� automatically gener�
ating stub functions for all varieties of type
compatible functions is considerably hard�
For example� generating sensible stubs for
function calls involving reference parameters
�i�e� pointer parameters in C	 is somewhat
more di�cult and is currently being worked
on�
We foresee several applications for our

type�safe linkage facility� In the immediate
future� we plan to extend this technique to
apply to O�O languages such as C��� whose
type systems are signi�cantly more complex
than the simple type system of C� Further�
more� if type equivalence and subtyping rules
can be established across programming lan�
guages� our facility enables multilingual pro�
gramming�

Link�time type checking of module combi�
nation also opens up the possibility of more
expressive type systems� The current status
of static type systems for O�O languages is
unable to deal with� for example� polymor�
phic inheritance operators which has several
software engineering applications�

We are currently in the process of extend�
ing OMOS to include a small LISP inter�
preter to replace the special�purpose module
expression language� This change will allow
conditional processing of modules� de�nition
of functions� etc� In addition� we are produc�
ing an interface to OMOS that will allow it
to subsume the role of the system linker�

� Conclusion

We have described a programmable linkage
facility for separately compiled ANSI C ob�
ject modules� The programming model of
our linker is based on a formal notion of
modules and their composition via a suite
of strongly typed operators� We design the
type system of ANSI C into our linker and
typecheck composition by extracting the in�
terfaces of object modules compiled with de�
bugging information� Furthermore� we auto�
matically generate conversion stubs for com�
patible encapsulated types� and permit easy
incorporation of arbitrary user�de�ned type
conversion stubs at link time� We have thus
demonstrated a powerful� �exible� and type�
safe linkage facility�

Acknowledgments

We are very thankful to Robert Mecklenburg

and Jay Lepreau for numerous useful comments�

and to Pete Hoogenboom and Je�rey Law for

sharing their knowledge of the inner workings

of current compilers and linkers� The insights

and support of Tim Moore� Benny Yih� and all

other Mach Shared Objects project participants

are also gratefully acknowledged�

References

��� Roberto M� Amadio and Luca Cardelli�
Subtyping recursive types� ACM Transac�

tions on Programming Languages and Sys�

tems� ������ September� �����

��� Guruduth Banavar and Gary Lindstrom�
A framework for module	based language
processors� Computer Science Department
Technical Report UUCS	��	���� University
of Utah� March �� �����

��� B�N� Bershad� T�E� Anderson� E�D� La	
zowska� and H�M� Levy� Lightweight re	
mote procedure call� Association for Com�

puting Machinery Transactions on Com�

puter Systems� ����������� February �����

��� A�D� Birrell and B�J� Nelson� Implement	
ing remote procedure calls� Association

for Computing Machinery Transactions on

Computer Systems� ����������� February
�����

��� Gilad Bracha� The Programming Language
Jigsaw� Mixins� Modularity and Multiple

Inheritance� PhD thesis� University of
Utah� March ����� Technical report UUCS	
��	���� ��� pp�

��� Kim B� Bruce� A paradigmatic object	
oriented programming language� Design
static typing and semantics� Technical Re	
port CS	��	��� Williams College� January
��� �����

��� John R� Callahan and James M� Purtilo� A
packaging system for heterogeneous execu	
tion environments� IEEE Transactions on

Software Engineering� �������������� June
�����

��� Steve Chamberlain� libbfd� Free Software
Foundation� Inc� Contributed by Cygnus
Support� March� �����

��� ��� Berkeley Software Distribution� UNIX

Programmer�s Supplementary Documents�
University of California� Berkeley� Califor	
nia ������ April �����

���� Margaret A� Ellis and Bjarne Stroustrup�
The Annotated C�� Reference Manual�
Addison	Wesley� Reading� MA� �����

���� Brian W� Kernighan and Dennis M�
Ritchie� The C Programming Language�
Prentice	Hall� Englewood Cli�s� NJ� �����

���� B� Lyon� Sun remote procedure call spec	
i�cation� Technical report� SUN Microsys	
tems� �����

���� Julia Menapace� Jim Kingdon� and David
MacKenzie� The �stabs
 debug format�
Free Software Foundation� Inc� Contributed
by Cygnus Support� �����

���� Bertrand Meyer� Ei�el� the environment�
August �����

���� Ed� Greg Nelson� Systems Programming

with Modula��� Prentice Hall� Englewood
Cli�s� NJ� �����

���� Douglas Orr� John Bonn� Jay Lepreau�
and Robert Mecklenburg� Fast and �exible
shared libraries� In Proc� USENIX Sum�

mer Conference� pages �������� Cincin	
nati� June �����

���� Douglas B� Orr and Robert W� Mecklen	
burg� OMOS � An object server for pro	
gram execution� In Proc� International

Workshop on Object Oriented Operating

Systems� pages �������� Paris� September
����� IEEE Computer Society� Also avail	
able as technical report UUCS	��	����

���� Douglas B� Orr� Robert W� Mecklenburg�
Peter J� Hoogenboom� and Jay Lepreau�
Dynamic program monitoring and trans	
formation using the OMOS object server�
In Proceedings of the ��th Hawaii Inter�

national Conference on System Sciences�
pages �������� January ����� Also avail	
able as technical report UUCS	��	����

���� Bjarne Stroustrup� Type	safe linkage for
C��� In USENIX C�� Conference� �����

���� Satish R� Thatte� Automated synthesis of
interface adapters for reusable classes� In
Symposium on Principles of Programming

Languages� January� �����

