International Conference on

Computer Systems and Education, IS¢, Bangalore, 1994

Type-safe Composition of Object Modules

*

Guruduth Banavar, Gary Lindstrom, Douglas Orr

Department of Computer Science, University of Utah
Salt Lake City, Utah 84112 USA

Abstract

We describe a facility that enables routine
type-checking during the linkage of exter-
nal declarations and definitions of separately
compiled programs in ANSI C. The primary
advantage of our server-style type-checked
linkage facility is the ability to program the
composition of object modules via a suite of
strongly typed module combination opera-
tors. Such programmability enables one to
easily incorporate programmer-defined data
format conversion stubs at link-time. In ad-
dition, our linkage facility is able to automat-
ically generate safe coercion stubs for com-
patible encapsulated data.

*This research was sponsored by the Advanced
Research Projects Agency (DOD), monitored by the
Department of the Navy, Office of the Chief of
Naval Research, under Grant number N00014-91-J-
4046. The views and conclusions contained in this
document are those of the authors and should not
be interpreted as representing official policies, ei-
ther expressed or implied, of the Advanced Research
Projects Agency or the US Government. Contact
author: G. Banavar, Computer Science - 3190 MEB,
University of Utah, Salt Lake City, UT 84112 USA | e-
mail banavar@cs.utah.edu, phone +1-801-581-8378,
fax 4+1-801-581-5843.

1 Introduction

It is widely agreed that strong typing in-
creases the reliability and efficiency of soft-
ware. However, compilers for statically typed
languages such as C and C+4+ in tradi-
tional non-integrated programming environ-
ments guarantee complete type-safety only
within a compilation unit, but not across
such units*. Longstanding and widely avail-
able linkers compose separately compiled
units by matching symbols purely by name
equivalence with no regard to their types.
Such “common denominator” linkers accom-
modate object modules from various source
languages by simply ignoring the static se-
mantics of the language. Moreover, com-
monly used object file formats are not de-
signed to incorporate source language type
information in an easily accessible manner.
In this paper, we present a technique to
perform type checking of object modules as
a routine link-time activity. Our technique is
characterized by (i) the design of specific lan-
guage type systems into a system-wide linker,
(ii) programmed link-time control over indi-
vidual symbols of object modules, and (iii)

*C++ style name-mangling does not accomplish
complete type-safety across compilation units; see
Section 6.

utilization of standard debugging informa-
tion generated by compilers for type check-
ing. We describe in detail the realization of

these steps for ANSI C.

A crucial enabler for this facility is the abil-
ity to resolve inconsistencies among compiled
object modules at link time. The existence
of link time type errors does not mean that
program source files need to be modified and
recompiled, as this may not be possible for
pre-compiled libraries. Programmer control
for correcting link time type errors is pro-
vided via the already existing programming
facilities of OMOS [17], our dynamic linker.
For instance, consider the case where the
type of a declaration in one translation unit
does not match with a definition in another.
This can usually be fixed by (i) uniformly re-
naming the declaration and its uses to match
the actually intended definition name, or (ii)
in the case when the names match but the
types do not, by introducing a new decla-
ration to match the definition, and binding
the renamed original declaration with a type
conversion function. Our linkage facility eas-
ily supports such transformations. If a type
error cannot be corrected with such simple
transformations on object modules, it might
indicate a more serious error in the design of
the modules involved.

Our link-time type-checking facility per-
mits us to adapt and utilize the full expres-
sive power of language type systems to bet-
ter suit modern persistent, distributed and
heterogeneous environments. For example,
structural typing can be applied to languages
such as ANSI C with name-based typing.
Pure name-based typing becomes a problem
in persistent and distributed environments,
where data and types could migrate out-
side the program in which they were orig-
inally created [1], and lead to matching of
names that may or may not have the same
programmer-intended meaning. This argues
for structural matching of aggregate types

similar to Modula-3 [15], using member or-
der and type significance along with names.

Furthermore, our programmable linkage
facility enables the incorporation of auto-
matic and user-defined conversion routines
for encapsulated data. For automatic con-
version, we postulate safe adaptability rules
for converting built-in data types using the
language definition in conjunction with the
characteristics of particular hardware plat-
forms. We then utilize these rules to auto-
matically generate data conversion “stubs”
at link time. More importantly, program-
mer defined conversion stubs can also be eas-
ily incorporated at link time. This opens
up the possibility of programmer-controlled
data evolution and conversion across hetero-
geneous data formats, e.g. those arising from
different languages, hardware architectures,
elc..

We provide the ability to support a vari-
ety of type systems by designing our type-
checking facility as an extension of an object-
oriented framework [2]. The O-O framework
contains generic type system related abstrac-
tions such as named types, function types,
record types, etc. that are specialized via in-
heritance to implement the type domain of
specific languages.

In the following sections, we describe in
detail the type-checking of object modules
generated by compiling ANSI C programs.
Section 2 introduces our notion of modules
and interfaces, Section 3 briefly describes our
object server OMOS, and Section 4 discusses
the essential aspects of the type system of
ANSI C. We then give some implementation
details, discuss related work and conclude.

2 Object Modules and

their Interfaces

We refer to an ANSI C program source or
object file as a module, consisting of a set
of attributes with no order significance. An

attribute is either a file-level declaration (a
name with an associated type, e.g. extern
int i;), or a file-level definition (a name
with a data, storage or function binding).
Type definitions (e.g. struct definitions,
and typedef’s in C) are not attributes of
a module. The interface of a module con-
sists of <name, type, declared_or_defined>
tuples of the attributes of the module. In the
context of type-checking object module inter-
faces, attributes match if they have the same
name. There cannot be matching attributes
within a single interfacef, and attributes that
match across interfaces must be type com-
patible. The notion of type compatibility de-
pends on the particular module combination
operation being performed, and is informally
described below.

Our linker is based upon a formal model
of modules proposed in [5], achieving a fine
level of control over individual attributes of
object modules. Briefly, object modules are
combined via a suite of module combination
operators that were originally conceived to
describe the many facets of inheritance in
object-oriented programming. Figure 1 gives
the primary operators, their informal seman-
tics and type rules. These operators pro-
vide control over aspects of visibility, sharing,
and rebindability of individual attributes of
modules. The power that this model lends
to object module linkage is briefly given in
Section 3, and is described in more detail
in [17], where the original implementation of
the type-less OMOS linker is described. The
current effort incorporates the rules of the
strongly typed module model and illustrates
some of its applications.

The semantics of common linkage is em-
bodied in the module operator merge. For
a simple example of the use of this module
operator, consider Figure 2. In this figure,

'In order to model languages that support user-
defined overloading, e.g. C4++, our model can be ex-
tended to include an ordinal value in the tuple, which
is also significant for attribute matching.

the compiled module 01 provides a defini-
tion of function £. Consider the case where
a programmer creates and compiles module
02 with the intention of using 01’s £ defini-
tion by performing 01 merge 02, but makes
the incorrect presumption that £ returns an
int. If merge were untyped (as it is in com-
mon linkage), 01 merge 02 would have been
legal; however, it does not typecheck in our
linker since the interfaces of 01 and 02 are
not type compatible for a merge operation.

Let us say that the programmer of 02 dis-
covers during linkage that £ returns the de-
sired int value as a component of the re-
turned structure. Traditionally, in order to
make 01 and 02 compatible, the program-
mer would modify the source code of either
module extensively, if it were available, and
recompile. This, of course, could adversely
affect combination of the modified module
with yet other modules. Alternatively, in our
model of flexible link-time module adapta-
tion, 02 can be adapted to get the desired ef-
fect by constructing a “stub” module 03. 03
consists of a new declaration that matches
f’s definition, and a stub function that ex-
tracts the desired value from the structure
returned by f£. With this, a modified ver-
sion of 02 is obtained with the module ex-
pression (02 rename f f_stub) merge 03,
which can then be merge’ed with 01 to get
the originally desired effect.

3 The OMOS Linker

In this section, we describe our linkage
facility, the Object Meta-Object Server
OMOSI17].

The OMOS linker/loader is designed to
provide a dynamic linking and loading facil-
ity for client programs via the use of module
combination and instantiation. OMOS im-
plements a persistent hierarchical namespace
— much like the UNIX directory hierarchy
— whose leaf nodes are either object mod-
ules (.o files) or meta-objects. Meta-objects

| Operator | Semantics

Typing

M1 merge M2 Combine M1 and M2.

M1 override M2 | Merge, but resolve matches in

favor of right operand.

M restrict L Make L undefined.

M freeze L Make references to L static.

M hide L Make attribute L “private.”

M rename L1 L2 | Rename L1 & its uses to L2.

M copyas L1 L2 | Copy attribute named L1 to L2.

Matching definitions disallowed; a definition must
be a subtype of its matching declaration.

Same as merge, except right-operand definition
must be a subtype of matching left opnd. definition.
L must be defined.

L must be defined.

L must be defined.

L1 must exist; L2 must not.

L1 must be defined; L2 must not exist.

Figure 1: Informal Semantics and Typing of Module Operators

/* Module 01: */

/* Module 02: */

/* Module 03: */

struct S { struct S {

int x; extern int £ (); int x;

/* ... %/ /* ... %/

} void bar () { }

int x = foo (); extern struct S £ ();

struct S £) { } int fstub () {

/x ... *x/ return £() .x;
} }
/* ... %/ [* ... %/

Modules 01 and 02 are composed with the expression: (02 rename f f_stub) merge 03 merge O1

Figure 2: Linkage Adaptation

are named placeholders for modules that are
specified by module combination expressions.
OMOS essentially provides a level of indirec-
tion between a named OMOS entity (a mod-
ule) and its actual implementation (a module
instance) that is loaded into a client. Clients
may directly load named module implemen-
tations or generate new modules by combin-
ing or modifying existing ones. This facility
is used as the basis for system program ex-
ecution and shared libraries[16], as well as
dynamic loading of simple modules.
Expressions specifying module combina-
tion are encoded in a scripting language with
a LISP-like syntax. These expressions con-
sist primarily of operations for manipulat-
ing modules and module namespaces, such
as those shown in Figure 1. Additionally,
OMOS supports operations for constructing
an object module given program source code,
and for specializing the implementation of a

given module (e.g. library vs. ordinary mod-
ule) [16], among others. The operands in
module expressions may be executable code
or data fragments, other module expressions,
or other named meta-objects.

Since OMOS is an active entity (a server),
it is capable of performing sophisticated
module manipulations on each instantiation
of a module. Evaluation of a module ex-
pression could potentially produce different
results each time. Some OMOS operations
such as those used to implement program
monitoring and reordering [18] enact pro-
gram transformations using operations on
module expressions.

For example, monitoring a program using
OMOS might involve extracting and trans-
forming the expression that generates the
program so that each defined procedure is
transparently wrapped with an outer routine
that monitors entry to and exit from the pro-

cedure. Figure 3 shows the module opera-
tions used to “wrap” the procedure £ in mod-
ule 01 with the automatically generated rou-
tine found in 02. Note that this illustrates
adaptation of the “service provider” module,
while Figure 2 showed client module adapta-
tion.

This process of wrapping procedures is en-
hanced by the availability of module type in-
formation. The wrapper procedure is con-
structed with a signature identical to that of
the wrapped procedure; simple language con-
structs can be used to propagate the caller’s
arguments to the wrapped routine. If type
information was not available (or in cases
such as printf where the the routine is de-
fined to take a variable number of arguments)
it would be necessary to use a machine-
dependent wrapper that could preserve and
pass along the call frame without knowledge
of its contents.

While OMOS is capable of performing so-
phisticated manipulations on each invoca-
tion, it caches the results of most operations
to avoid re-doing work unnecessarily. The
practice of combining a caching linker with
the system object loader gives OMOS the
flexibility to change implementations as it
deems necessary, e.g. to reflect an updated
implementation of a shared module across all
its clients [16].

4 C’s Type System

This concludes the general discussion of link-
age via module manipulation.

In order to ascertain the type-safety of
modules being combined, the module type
rules (shown informally in Figure 1) built
into our linker requires knowledge of the type
system (type domain, type equivalence and
subtyping) of the base language ANSI C.
This section describes the relevant type sys-
tem of ANSI C (type domain and type equiv-
alence) [11], and enhancements made to it

for type-checking across compilation units
(structural typing, and subsumption).

The type domain of ANSI C consists
of (i) basic types (primitive types (int,
float, efc.), and enumerated types), (ii)
derived types (function types, struct and
union types, array and pointer types), and
(iii) typedef’ed names. Specifiers for these
types can be augmented with type qual-
ifiers (const and volatile) and storage
class specifiers (auto, register, static
and extern).

The type qualifier volatile concerns opti-
mization, and is not relevant here. The qual-
ifier const is explicitly dealt with in this sec-
tion. The storage class specifiers auto and
register are not relevant since they may
only be used within functions — we are in-
terested in file-level declarations and defini-
tions. The storage specifier extern indicates
an attribute declaration while non-extern at-
tributes are considered to be defined. The
storage specifier static for a file-level at-
tribute gives it internal linkage, i.e. the at-
tribute can be viewed as having been sub-
jected to a hide module operation. Simi-
larly, attributes that are subjected to hide
via link-time programming can be regarded
as having been converted to the static stor-
age class after the fact.

C permits calls to functions that have not
been declared in a module. A call to an un-
declared function £ in a module results in an
implicit file-level declaration of extern int

£ QO.

4.1 Type Equivalence

Type equivalence in ANSI C within a
single translation unit, and our extensions
for type-checking across translation units, is
given in Figure 4. The rationale for the two
modifications are

1. For aggregate types (struct’s and
union’s), name equivalence is too weak

/* Module 01: */

/* Module 02: */

/* Automatically generated */
extern short __f (short);
extern void _log-enter (char *);
extern void _log-exit (char *);

void g O { short £ (short x) {
short z = £ (3); short v;
} _log_enter ("f");
v=_°F (x);
short £ (short x) { logexit ("f");
/x ... *x/ return v;

¥ ¥

Module expression: (((01 copyas f _f) restrict f) merge 02) hide _f

Figure 3: Wrapping a routine to monitor its execution

Type

Equivalence within a translation unit ‘ Equivalence across translation units

Primitive type name equivalence

sSalne

Function type
types significant

structural, with in and out parameter | same

Enum type name equivalence same
Structure and | name (tag) equivalence; tag-less types | structural, with tag, member order
union type are unique and member names significant

Pointer type equivalence of target types

sSalne

Array type
uality of array size

equivalence of element types, and eq- | same

typedef’ed name | typedef’ed type

typedef name equivalence

Figure 4: Type equivalence in ANSI C

when applied outside of a single transla-
tion unit, as explained in the introduc-
tion. Therefore, we adopt a conserva-
tive structural typing regimen in which
the names, order and types of mem-
bers are also significant. We also re-
tain the significance of aggregate tags
since there could be application-specific
semantic content in them.

2. For typedef’ed names, again, there
could be application-specific semantic
content in them, so we adopt strict name
equivalence.

Furthermore, some type specifiers are im-
plied by others, e.g. short implies short
int, therefore these types are equivalent.

The type qualifier const is significant for
equivalence since it distinguishes read-only
variables from read-write variables.

4.2 Subtyping

The module operators merge and override
utilize subtyping rules for type-checking com-
bination. QOur base language, ANSI C, has
no notion of subtypes; hence subtyping can
be considered to be restricted to type equiv-
alence. However, module composition would
be more flexible if we could retroactively for-
mulate subtyping rules consistent with the
language definition.

The ANSI C language specifies safe con-

version rules for certain primitive arithmetic

/

long int
int

//;ort int

bit-field enum X

signed char

void

long double
double

S

long unsigned int
unsi gned int

float

short unsigned int

[—

unsigned char

1 < sizeof (short) < sizeof (int) == sizeof(long) == sizeof(float)
sizeof (float) < sizeof (double) == sizeof(long double)

Figure 5: Subtyping of C Primitive Data Types

data types (e.g. float to double). A con-
version is said to be safe if all values of
one type can be represented as values of the
the other without loss of precision or change
in numerical value. C compilers, however,
can usually be expected to support many
more safe conversions than those that are de-
fined by the language, as governed by hard-
ware characteristics. These safe conversion
rules can be thought of as subsumption rules,
which in turn provide the basis for formu-
lating subtype rules for primitive arithmetic
types. Figure 5 shows the data type sizes and
a partial order of subtypes for the HP series
9000 machines (300s and 700s). For instance,
a value of type short can be safely coerced
into a value of type float on this platform
without loss of precision or change in numer-
ical value. We might ask if the above rules
can be exploited during type-checking of at-
tributes across translation units.

Consider file-level variable declarations.
Variables can be used as evaluators (i.e. ex-
pressions that return values) and as accep-
tors (i.e. expressions that receive values) in
different contexts. Expressions which are
evaluators can only be replaced with expres-
sions whose types are subtypes of the orig-

inal, while expressions which are acceptors
can only be replaced by expressions whose
types are supertypes of the original [6]. As
a result, subtyping of variables is always re-
stricted to type equivalence.

Consider file-level read-only (i.e. const)
variables. Subtyping involving the type qual-
ifier const can be described as follows: if a
non-const type s is a subtype of a non-const
type t, then const s is a subtype of const
t, s is a subtype of const t, but const s
is not a subtype of t. So, for example, can
a declaration extern const float x in one
translation unit be considered subsumed by
a definition short x in another?

Unfortunately, this is not the case, since
size and layout formats for various primitive
data types are almost certainly incompatible.
Moreover, in certain cases, e.g. enum types,
compilers usually optimize layout by pack-
ing, hence the fact that an enum type is really
an int cannot be utilized. Within the same
translation unit, however, such subsumption
rules can be applied since the compiler has
complete knowledge of layout and usage and
hence it can generate appropriate conversion
and access code.

Similar arguments hold for subtyping

constant user-defined aggregate data types
(struct and union) across translation units.
For example, a struct of two shorts can-
not be considered to be a subtype of a const
struct of two const floats even though
short is a subtype of const float. Further-
more, C unions are not discriminated, and
member access is not type-checked at run-
time. For example, a union with one short
component cannot be read-only accessed by
a supertype, a union with a const short
and a const float component, in another
translation unit, since there is no way for the
supertype accessor to know at run-time if the
union actually contains a short value or a
float value. As a result, subtyping on file-
level read-only variables is also restricted to
type equivalence.

Arguments such as the above can be for-
mulated to show that subtyping on pointer
types is also restricted to type equivalence.

Consider subtyping of function types.
Subtyping of function types is by contravari-
ance [6]. That is, a function type is a subtype
of another with the same number of argu-
ments if its return type is a subtype of the
latter’s, and its input argument types are su-
pertypes of the corresponding ones in the lat-
ter. According to this rule, one can pass a
function actual parameters that are subtypes
of the formal parameters in the function defi-
nition. For subtyping function types with an
unspecified (variable) number of arguments,
we require that the subtype has at most the
number of explicitly specified argument types
in the supertype, and that they are in the
proper relationship.

However, we cannot use such a rule across
translation units since in a compiled func-
tion, the amount of space allocated for the
input parameters is exactly the size of the
expected types, and the format is expected
to be exactly as specified. All in all, and
not surprisingly, no useful subtyping rules
can be discovered in the existing C language

for direct application in type-checking across
translation units.

The crucial observation, however, is that
several useful subsumption rules can be uti-
lized for data that are encapsulated within
functions, if “stubs” that perform the appro-
priate coercion between data-types can be
inserted between combined modules at link
time. This is feasible since such stub func-
tions are themselves compiled and hence they
can utilize data format conversion knowl-
edge that a compiler uses within a transla-
tion unit. Applying this stub technique to
global data, however, is not feasible since
it involves initializing global variables with
non-constant values, which is illegal in ANSI
C.

Function types lend themselves particu-
larly well to this technique since the per-
formance of function calls is affected much
less by this indirection than the performance
of data access. Moreover, it does not seem
unreasonable to impose the requirement on
users to encapsulate such data that they fore-
see will be accessed via supertypes.

Our linker automatically generates coer-
cion stubs for functions using the primitive
type conversions shown in Figure 5. For an
example of type adaptation using language
defined subtypes, consider Figure 6. As men-
tioned earlier, the type short is a subtype of
float. Therefore, the definition of function
f in module 01 is a subtype (by contravari-
ance) of the declaration of the function £ in
module 02. However, 01 cannot be directly
merged with 02, since in general the calling
sequence for £ might not be compatible, e.g.
the definition of £ might be expecting its in-
put in a floating point register rather than
an integer register. This is remedied by first
combining 02 with the automatically gener-
ated stub module 03 that incorporates safe
coercions, and then performing the desired
merge, as shown in the figure.

We have also incorporated a comprehen-
sive subtyping model including structural

/* Module 01: */ /* Module 02: */

short £ (float y) {
/*x ... x/
} void g () {

}

float z = £ (3);

extern float f (short);

/* Module 03: */
/* Automatically generated */
extern short f (float);

float f_stub (short x) {
return (float) f ((float) x);

}

Modules 01 and 02 are combined with the expression:
(((02 rename f f_stub) merge 03) hide f_stub) merge 01

Figure 6: Automatic Data Coercion Using Language Rules

record subtyping with member name, type
and order significance, an example of which
is shown in Figure 7. It should be empha-
sized that the above technique applies only
to input and output parameters of functions,
since coercion stubs can be automatically
generated to account for function subtyping
only.

This technique of type conversion stubs
can be generalized as illustrated in Figure 8
to provide a general facility to incorporate
user defined stubs at link time for arbitrary
data format conversion. In the figure, mod-
ule 03 comprises user-defined stubs.

And

5 Implementation
Usage Details

Ideally, we would have compilers that gener-
ate object modules in a “self-describing” for-
mat, with information about the source lan-
guage, the machine architecture, and the in-
terface, all packaged within the object mod-
ule in a readily accessible format. However,
this is far from reality — the closest approx-
imation is an object file that has been com-
piled with the debugging option* -g, which

tObject files compiled without the debugging op-
tion contain no type information, and those compiled
with the debugging option contain more information
than is necessary for type-checking linkage, e.g. types
of local variables, line numbers, etc..

instructs the compiler to generate type infor-
mation in a standard encoded format.

Although conceptually simple, the actual
process of extracting type information from
the generated debugging information is tech-
nically challenging, and in our prototype in-
volved the following steps. The GNU C com-
piler, gcc, does not generate debugging in-
formation for C extern symbols, since de-
bugging is normally performed on executable
files in which all external references have
been resolved. To solve this, we modified the
back end of gcc to generate debugging infor-
mation for all symbols. For accessing the sec-
tions of the object file that contain debugging
information (.stab and .stabstr), we use
Cygnus Corporation’s Binary File Descrip-
tor (BFD) library [8], and parse the “stabs”
format debug strings [13] using a yacc/lex
generated parser.

We are implementing an O-O framework
in C++ [2] that embodies the formal module
model that was briefly described in Section
2. The abstractions (classes) in the frame-
work implement the type rules discussed in
the previous section. For instance, the frame-
work class CPrimType implements the partial
order of primitive types introduced before.
A framework class called Interface imple-
ments the type rules for module operations
such as merge. The parser mentioned in the
previous paragraph instantiates the appro-

/* Module 01: */ /* Module 02: */ /* Module 03: */
/* Automatically generated */

struct S { struct S { struct S1 {
short x; float x; short x;
float y; } float y;
} }
extern struct S £ (); struct S {
struct S £) { float x;
/¥ ... %/ void g O { }
} /¥ ... %/ extern struct S £ ();
} struct S f_stub () {

struct S1 si;

struct S* s = (struct S*) &si;
struct S ret_s;

xs = ();

ret_s.x = (float) sl.x;

return ret_s;

Modules 01 and 02 are combined with the expression:
(((02 rename f f_stub) merge 03) hide f_stub) merge 01

Figure 7: Automatic Conversion of structs Using Structural Subtyping

/* Module 01: */ /* Module 02: */ /* Module 03: */
R1 £ (T1 y) { extern R2 f (T2); extern R1 £ (T1);
/x ... %/
} void g O { R2 f_stub (T2 x) {
R2 z = £ (/*T2 valuex*/); return R1_toR2 (f (T2_to Ti(x));
} }
R2 R1_toR2 (R1 1) {
/x ... %/
}
T1 T2 toT1 (T2 t) {
/x ... %/
}

Modules 01 and 02 are combined with the expression: (02 rename f f_stub) merge 03 merge 01

Figure 8: Programmer-defined Data Conversion

priate classes in our O-O framework to create
the interface of the object module.

For using our type-checked linkage facil-
ity, the source programs currently must be
written in ANSI C, and function declarations
specified using “new-style” prototypes. Fur-
thermore, usage of header files can be mini-
mized; explicit declarations of external func-
tions can be provided instead. Programs
that are to be type-checked at link time must
be (re)compiled with our (modified) compiler
using the debug (-g) option.

One legitimate concern is the size of object
files as a result of the inclusion of debugging
information. The size of object files does in-
crease significantly due to debugging infor-
mation, but this problem is exacerbated by
the inclusion of huge library header files. Our
solution to this problem is that given type-
checking at link-time, it is not necessary to
include header files in the traditional way.
Instead, programs can explicitly declare pro-
totypes for those external (library) functions
that are called. A discussion of the disadvan-
tages of header files used in the traditional
manner is found below in Section 6.

6 Related Work

Integrated Development Environments
(IDE’s) for strongly typed languages, e.g.
Eiffel [14], undoubtedly utilize mechanisms
for type-checking separately compiled mod-
ules, since they have complete knowledge
and control over source and object modules.
However, our work differs from IDE’s in that
we provide a systemwide linkage facility that
attempts to typecheck combined modules in-
dependent of language processors. Further-
more, the programmability of our linker en-
ables “fine tuning” the compatibility of (pos-
sibly heterogeneous) object modules at link
time.

Use of header files has been a longstanding
attempt at type-safety of separate compila-

tion. The Annotated C++ Reference Man-

ual [10] (page 122) explains the inadequacy
of header files as follows:

“... C tried to ensure the consis-
tency of separately compiled programs
by controlling the information given
to the compiler in header files. This
approach works fine up to a point,
but does involve extra-linguistic mech-
anisms, is usually error-prone, and can
be costly because of the need to have
other programs (in addition to the
linker and the compiler) know about
the detailed structure of a program.”

Instead of including header files, it is clearly
more modular and less error-prone to explic-
itly declare the expected external function-
ality (e.g. library functions), let the linker
check consistency at link time, and correct
inconsistencies via programming.

With the objective of enabling type-safe
linkage within the constraints of existing
linkers, Stroustrup [19, 10] describes a mech-
anism for encoding functions with the types
of input arguments. However, this mecha-
nism is inadequate for our purposes since (i)
certain classes of type errors cannot be de-
tected (page 126 of [10]) since variable types
and function return types are not encoded,
(ii) although it could be extended to deal
with structural typing of C aggregate types,
it does not scale well to arbitrarily large
types, e.g. large structs, and (iii) we want
to do not only type-checking, but also useful
adaptation during link-time, hence we must
utilize sophisticated linker technology.

The Berkeley Pascal Compiler pc [9] is
similar to our effort in that it employs
debugging information to check type con-
sistency across separately compiled mod-
ules. The compiler routinely generates stab-
format type information into object modules,
which is used by a binding phase of the com-
piler to check consistency before delegating
the actual linking to 1d. However, the crucial
advantage with our approach is that we per-

form type-checking as a controlled and pro-
grammable link-time activity.

There i1s a plethora of literature related
to stub generation[4, 12, 3, 20]. The Poly-
gen system [7] is representative of auto-
matic stub generation for programming in a
heterogeneous environment. Polygen pack-
ages heterogeneous modules by utilizing a
programmer-defined specification of their in-
terfaces and execution environments speci-
fied in a common module language. The
packaging process involves generation of
client and server stubs that handle module
interconnection and data type coercion dy-
namically. Our technique differs from Poly-
gen in that we enable the combination of pre-
compiled object modules by automatic ex-
traction of interfaces and via link-time pro-
gramming.

7 Ongoing Work

We are currently completing our implemen-
tation, and look forward to get more experi-
ence in using such a type-safe linkage facility.
We acknowledge the shift in the traditional
cycle of programming that may be required
as a result of using a programmable type-
checking linker. Also, automatically gener-
ating stub functions for all varieties of type
compatible functions is considerably hard.
For example, generating sensible stubs for
function calls involving reference parameters
(i.e. pointer parameters in C) is somewhat
more difficult and is currently being worked
on.

We foresee several applications for our
type-safe linkage facility. In the immediate
future, we plan to extend this technique to
apply to O-O languages such as C++4, whose
type systems are significantly more complex
than the simple type system of C. Further-
more, if type equivalence and subtyping rules
can be established across programming lan-
guages, our facility enables multilingual pro-
gramming.

Link-time type checking of module combi-
nation also opens up the possibility of more
expressive type systems. The current status
of static type systems for O-O languages is
unable to deal with, for example, polymor-
phic inheritance operators which has several
software engineering applications.

We are currently in the process of extend-
ing OMOS to include a small LISP inter-
preter to replace the special-purpose module
expression language. This change will allow
conditional processing of modules, definition
of functions, etc. In addition, we are produc-
ing an interface to OMOS that will allow it
to subsume the role of the system linker.

8 Conclusion

We have described a programmable linkage
facility for separately compiled ANSI C ob-
ject modules. The programming model of
our linker is based on a formal notion of
modules and their composition via a suite
of strongly typed operators. We design the
type system of ANSI C into our linker and
typecheck composition by extracting the in-
terfaces of object modules compiled with de-
bugging information. Furthermore, we auto-
matically generate conversion stubs for com-
patible encapsulated types, and permit easy
incorporation of arbitrary user-defined type
conversion stubs at link time. We have thus
demonstrated a powerful, flexible, and type-
safe linkage facility.

Acknowledgments

We are very thankful to Robert Mecklenburg
and Jay Lepreau for numerous useful comments,
and to Pete Hoogenboom and Jeffrey Law for
sharing their knowledge of the inner workings
of current compilers and linkers. The insights
and support of Tim Moore, Benny Yih, and all
other Mach Shared Objects project participants
are also gratefully acknowledged.

References

[1]

Roberto M. Amadio and Luca Cardelli.
Subtyping recursive types. ACM Transac-
tions on Programming Languages and Sys-
tems, 15(4), September, 1993.

Guruduth Banavar and Gary Lindstrom.
A framework for module-based language
processors. Computer Science Department
Technical Report UUCS-93-006, University
of Utah, March 5, 1993.

B.N. Bershad, T.E. Anderson, E.D. La-
zowska, and H.M. Levy. Lightweight re-
mote procedure call. Association for Com-

puting Machinery Transactions on Com-
puter Systems, 8(1):37-55, February 1990.

A.D. Birrell and B.J. Nelson. Implement-
ing remote procedure calls.
for Computing Machinery Transactions on
Computer Systems, 2(1):39-59, February
1984.

Association

Gilad Bracha. The Programming Language
Jigsaw: Mizins, Modularity and Multiple
Inheritance. PhD thesis, University of
Utah, March 1992. Technical report UUCS-
92-007; 143 pp.

Kim B. Bruce. A paradigmatic object-
oriented programming language: Design
static typing and semantics. Technical Re-
port CS-92-01, Williams College, January
31, 1992.

John R. Callahan and James M. Purtilo. A
packaging system for heterogeneous execu-
tion environments. IFEFE Transactions on
Software Engineering, 17(6):626-635, June
1991.

Steve Chamberlain. libbfd. Free Software
Foundation, Inc. Contributed by Cygnus
Support, March, 1992.

4.3 Berkeley Software Distribution. UNIX
Programmer’s Supplementary Documents.

University of California, Berkeley, Califor-
nia 94720, April 1986.

[10]

[11]

[17]

[18]

[19]

[20]

Margaret A. Ellis and Bjarne Stroustrup.
The Annotated C++ Reference Manual.
Addison-Wesley, Reading, MA, 1990.

Brian W. Kernighan and Dennis M.
Ritchie. The C Programming Language.
Prentice-Hall, Englewood Cliffs, NJ, 1988.

B. Lyon. Sun remote procedure call spec-
ification. Technical report, SUN Microsys-
tems, 1984.

Julia Menapace, Jim Kingdon, and David
The “stabs” debug format.
Free Software Foundation, Inc. Contributed
by Cygnus Support, 1993.

MacKenzie.

Bertrand Meyer. Eiffel, the environment,
August 1989.

Ed. Greg Nelson. Systems Programming
with Modula-3. Prentice Hall, Englewood
Cliffs, NJ, 1991.

Douglas Orr, John Bonn, Jay Lepreau,
and Robert Mecklenburg. Fast and flexible
shared libraries. In Proc. USENIX Sum-
mer Conference, pages 237-251, Cincin-
nati, June 1993.

Douglas B. Orr and Robert W. Mecklen-
burg. OMOS — An object server for pro-
gram execution.
Workshop on Object Oriented Operating
Systems, pages 200-209, Paris, September
1992. IEEE Computer Society. Also avail-
able as technical report UUCS-92-033.

In Proc. International

Douglas B. Orr, Robert W. Mecklenburg,
Peter J. Hoogenboom, and Jay Lepreau.
Dynamic program monitoring and trans-
formation using the OMOS object server.
In Proceedings of the 26th Hawaii Inter-
national Conference on System Sciences,
pages 232-241, January 1993. Also avail-
able as technical report UUCS-92-034.

Bjarne Stroustrup. Type-safe linkage for
CH++. In USENIX C++ Conference, 1988.

Satish R. Thatte. Automated synthesis of
interface adapters for reusable classes. In
Symposium on Principles of Programming
Languages, January, 1994.

