
A Dossier Driven Persistent Objects Facility

Robert Mecklenburg
Charles Clark
Gary Lindstrom
Benny Yih

UUCS�������

Department of Computer Science
University of Utah

Salt Lake City� UT ����� USA

January ��� ����

Abstract

We describe the design and implementation of a persistent object storage facility based on a dossier
driven approach� Objects are characterized by dossiers which describe both their language de�ned and
	extra
linguistic� properties� These dossiers are generated by a C�� preprocessor in concert with an
augmented� but completely C�� compatible� class description language� The design places very few
burdens on the application programmer and can be used without altering the data member layout of
application objects or inheriting from special classes� The storage format is kept simple to allow the use
of a variety of data storage backends� Finally� by providing a generic object to byte stream conversion
the persistent object facility can also be used in conjunction with an interprocess communication facility
to provide object
level communication between processes��

�This research was sponsored by Hewlett�Packard�s Research Grants Program and by the Advanced Research Projects
Agency �DOD�� monitored by the Department of the Navy� O�ce of the Chief of Naval Research� under Grant number
N�����	
�	J	����� The opinions and conclusions contained in this document are those of the authors and should not
be interpreted as representing o�cial views or policies� either expressed or implied� of the Defense Advanced Research
Projects Agency� the U�S� Government� or Hewlett�Packard�

� Motivation

The basic problem of a persistent object store
POS� is simply stated�

Given a reference to the root node of a graph of objects generate a data stream which can
be used to reconstitute the original object graph at a later time�

Many approaches have been pursued to solve this basic problem
see Section �� for a summary��
The utility of these approaches is governed by the constraints they impose on application code in such
dimensions as
i� language or compiler extensions�
ii� mandatory inheritance from library base classes�

iii� system transformation of application source code�
iv� expansion of object size�
v� mandatory pres

ence of virtual function tables� and
vi� programmer declaration of supporting functions and observance
of programming style restrictions�

We describe a new approach which poses no constraints in
i� �
v�� and minor client obligations in

vi�� Our approach is based on preprocessor
generated dossier objects����� which drive fully polymorphic

i�e�� applicable to all types� load and store functions� In addition to supporting object persistence� our
approach provides a fully general means for transporting object graphs in address space independent
form
i�e�� 	pickled�� with 	unswizzled� pointers�� Our design has been motivated by the stringent
demands of a large
������� line� C�� CAD�CAM�visualization application����

� What Is An Object�

We begin by de�ning our unit of persistence� which we term an object� While some approaches take this
to be C�� class instances� this basis is too narrow for applications such as our CAD client� which make
extensive use of graphs of vectors and structures� with semantically signi�cant sharing relationships�
Hence we de�ne an object to be a contiguous region of memory whose type is known either through
static type information� through dynamic type information
e�g�� virtual function table�� or information
provided by the application programmer� An object is identi�ed in an application by a pointer or
reference to its �rst address along with some notion of its bounds
derived from type information�� We
explicitly disallow pointers to the interior of objects� An object graph consists of a collection of objects
formed into an arbitrary graph by pointers embedded in the objects� An object is identi�ed in the
persistent store by a unique object identi�er
OID�� An application requests objects by OID and can
access the OID of an object given its virtual address in the application�

� Client Constraints

To be as convenient as possible a POS must minimize the impact of its use on application source code
and the software development process while at the same time maximizing functionality� Among the
features of a POS� we feel the following to be important� minimal impact on object layout and class
declarations� allow the use of standard language tools� provide object access from a variety of hardware
platforms� provide object access after class mutation� We discuss each of these requirements in turn�

The POS should not require 	large� changes to class de�nitions� In particular� any system which
requires altering the class layout by adding data members� virtual functions
where none existed before�
or additional base classes is unacceptable� Such a system would impose storage overhead and incompat

ibilities which many applications could not tolerate� However� adding additional virtual functions to a
class with an existing virtual function table would allow more convenient use of the storage facility� If
this modi�cation were allowed
but optional� it would provide for a convenient interface for application
speci�c classes while still allowing library classes
for which there is no source code� to persist�

�

One of the biggest stumbling blocks for POSs is the requirement for non
standard language tools

e�g�� special compilers� to enable objects to persist� These tools either parse an extended language
syntax
translating into standard C��� or generate augmented class implementations
or both�� Our
group� having worked on large software projects using these approaches� �nd them burdensome� chose
to require the class de�nition be written in standard C��� This means that there is only one class
de�nition
with no additional semantic information in other �les� and that applications can be compiled
and run
albeit without persistence� with or without the persistent objects facility� This signi�cantly
simpli�es porting and piece
wise development and testing of applications�

Once a POS is integrated into an application or organization its use quickly becomes fundamental to
the project and the persistent objects themselves become a valuable resource� As such� it is often unac

ceptable to abandon the database when new hardware or software is acquired or when class de�nitions
change� Furthermore� as the size of the database grows evolving the data en masse becomes a signi�cant
burden� We feel a more reasonable approach is to integrate platform heterogeneity and type evolution
cleanly into the persistent store allowing for lazy transformation of objects to the reader�s requirements�

We discuss other� less major� constraints on the POS as they arise�

� An Object Description Language

Next� we address the need for a language in which to describe objects� An object which is an instance
of a primitive C�� type may be described simply by its standard type name� One may reasonably
expect that an object which is an instance of a class may be described by the C�� declaration of that
class� Indeed� to a �rst approximation� that is correct� Unfortunately� there are several 	extra
linguistic�
patterns of use which are not su�ciently described by standard C�� syntax� particularly with respect
to dynamically sized objects
e�g�� strings and other vectors�� The problem is to identify important
idioms required by applications and to provide an annotation mechanism which does not invalidate the
use of standard language tools� In addition to these annotations� the POS may require classes to provide
various semantic handles to allow storage and retrieval�

The most important idiom in C�� which is not adequately described by class declarations is the use
of pointers to access dynamically sized regions of memory� Strictly interpreted� the declaration�

char �path�

identi�es a pointer to an unknown number of characters� By convention the number of characters
is determined by a sentinel value� in this case the null character� The sentinel value technique for
dynamically sized data can be used with any data type� but is most typically used with pointers and
integral types where the zero bit pattern is used as the sentinel� A competing style for identifying the
size of dynamically sized memory regions relies on a pair of data values�

int n� �� size of name

char �name�

where the dynamic size is stored explicitly in a separate data member�

Static data members of a class pose a di�erent sort of problem for a POS� Indeed� one may question
whether static data members should persist at all� Often these data members are used to resolve issues
inherent in run
time data management� For instance� an application might maintain an extent list of all
allocated instances� Such a list acquires a completely di�erent meaning in a persistent store owing to the
shared� distributed� and concurrent nature of the store� Our approach is to store static data members�
but not to manage concurrent access� Aside from ensuring consistent concurrent writes for single data
members we do not assume any further capabilities of the underlying POS such as notifying readers of

�

updates to shared data� Similar to static data members there may be non
static data members which
the programmer does not want saved� For example� an object might contain a pointer to a bu�ered �le
structure which has no meaning
or a di�erent meaning� when stored in a POS� These nodes can be
annotated as orphaned objects� their value will not be stored and their pointers will not be traversed�

How can these annotations be applied to a class de�nition if standard compilers are used and no
additional �les are consulted� There are two basic approaches possible� embedded annotations in com

ments and augmented identi�er names� The �rst approach places comments adjacent to data members
containing keywords identifying various attributes� The second approach uses the data member name
itself
or its type name� to contain the attribute� An example of this might be�

typedef char char��null� �� Null terminated string�

char��null �path�

typedef int int��sized� �� Integer sized string�

int��sized n�

char � name�

We chose this technique for several reasons� it allows the dossier generator to use the C preprocessor

which elides comments�� it does not interfere with a standard commenting style for class declarations�
and it allows us to experiment with a novel annotation technique� Furthermore� annotating the type
of the data member
rather than the member itself� leaves the application programmer free to select
meaningful member names unencumbered by the annotations� The currently supported annotations are�

��null dynamically sized� zero terminated
��sized dynamically sized� this member is the size� following member is the pointer
��orph an orphaned object� don�t save

The �nal class of semantic problems we discuss relates to handling application or environment speci�c
meanings associated with objects� Examples of such problems include storing hash tables and �le handles�
As with other members the writer of the object must annotate the stored instance with information
allowing the reader to reconstitute a similar object with semantics equivalent to the original object� For
a hash table� the reader may have a di�erent hash function or table size and therefore must rehash the
members of the table� For a �le handle� the reader must �nd and open the �le and set the current
position� An annotation on a declaration cannot transmit this information
and indeed� may not have
the information to transmit�� To allow for this type of application speci�c behavior the application
programmer can de�ne load and store hooks which are called by the POS during object I�O� The
load�store hook has a special name and type signature recognized by the dossier generator�

void ��load�store�hook� int when ��

This member function is added to the class declaration of any class requiring special handling during
I�O� The function can be called under three circumstances
indicated by the when parameter�� after
loading an object� before storing and object� and after storing and object�

When an object is restored from the POS several application and implementation speci�c initial

izations must be performed� The most obvious of these is setting the virtual function table pointer�
This can be done in a variety of ways� from using the new placement syntax and having the appli

cation programmer invoke the constructor to copying the pointer from an initialized sample instance�
The later approach does not allow for the application to gain control during object allocation and is
therefore unacceptable� Using the new placement syntax has the problem of compatibility with other
software packages
including the application�s classes�� A compromise requires the application class to
de�ne a special constructor which we call the reconstructor� This approach allows classes to overload

�

new and delete and to gain control during object construction� The reconstructor is identi�ed by its
type signature�

�class�name�� reconstructor�t ��

Finally� to allow convenient use of the POS with polymorphic objects we encourage the application
programmer to declare a virtual function for accessing the dossier of a class�

virtual dossier�c ���get�dossier�� const�

This allows the application and POS interface to access the dossier of conforming objects simply� For
objects which do not support the ��get�dossier member function� the application must provide the
dossier handle explicitly� This results in a simple and convenient interface for classes under application
programmer control� while still allowing other classes to persist� Once the dossier for the root object is
obtained� dossiers for other objects in the graph can be accessed through the root object dossier�

Once an application�s class declarations
e�g�� �h �les� have been adapted to express these extra

linguistic features� they become the application�s class description� These �les are read and analyzed
by a preprocessor based on the C�� grammar
written by James Roskind������ The preprocessor emits
auxiliary C�� �les which construct instances of class dossiers embodying the class descriptions� including
associated annotations� These emitted �les are compiled and linked� along with a support library� into
an application to implement the client side of the POS� Note that client source �les are only read� not
transformed� in this process�

� Capture of Compiler and Platform Characteristics

To build a complete description of objects� including data member layout� the dossier generator must
mirror the algorithms of the current compiler and would therefore not be particularly portable� We avoid
this problem by separating the dossier into machine�compiler independent and dependent portions� The
compiler independent portion is constructed by the dossier generator while the dependent portion is
computed at run
time from auto
con�guring code written into the dossier initializer� The compiler and
machine dependent structures gather three types of information� size and format of data types� location
of data members in objects� and handles on member functions� We discuss each brie�y�

To allow dossier code to read and write objects on di�ering platforms
both hardware and software�
the polymorphic I�O code must know the size of each data type and its format when written to a
persistent store� Size information is easily acquired through the use of the sizeof compiler directive�
Also� byte order and �oating point format must be determined� In the worst case� these characteristics
must be explicitly speci�ed for each platformmaking the dossier source code non
portable� In the normal
case� however� byte order can be determined through simple calculations and IEEE standard �oating
point format can be assumed�

The location of data members and base classes for an object are determined using a technique similar
to the ANSI C offsetofmacro� For each
non
static� data member� its location is determined by taking
its address and subtracting the object�s base address� This requires that the dossier initializer be either
a friend or member function of the class� Base class o�sets are calculated similarly by casting a 	pointer
to derived class� to a 	pointer to base class�� For example� if class D derives from class B� the expression�

��B ����D ��	��
 	

returns the o�set of a B within a D�
The use of a non
zero base address subverts optimizations in various
compilers�� This expression is portable across all platforms
that we are aware of�����

�

Finally� the polymorphic I�O operations must invoke class reconstructors and load�store hooks to
perform their functions� Since the address of a constructor cannot be computed� we wrap the recon

structor in a simple C�� function and store its address in the dossier� For uniformity we use the same
technique to store the load�store hook in the dossier�

� The Storage Algorithm

The basic storage algorithm is a simple graph traversal driven by the graph�s root object and the dossiers�
We begin by retrieving the OID of the object to be saved� If it does not have one� we allocate an OID�
Then we place the object and its OID into the queue of objects waiting to be processed� The rest of the
algorithm proceeds as follows�

Algorithm �

dequeue the next node to process
if the node is unsaved
run the pre
store hook
mark the object as saved
enqueue all embedded pointers
allocate OIDs� if necessary�
store the dossier� if necessary
store the object and dossier OIDs� and machine id
store the object
store the OID of the target of every embedded pointer
run the post
store hook

Dossiers are just objects so they are stored� along with the objects they describe� using the same
algorithm� Of course� only one copy of the same dossier is stored and that dossier is referenced by
all instances of that class through the OID of the dossier� Since a dossier is an object it must have a
descriptor� or meta�dossier� to be read and written� This meta
dossier is a permanent component in the
support library and is never written to or read from a POS or communication channel� The meta
dossier
is generated by running the dossier generator over its own data structures�

The storage format is designed to be 	retargetable� to di�erent object storage engines and is therefore
a mix of low
level formats and high
level information� The storage engines currently in use are a trans

actional DBM and a simple Unix �le interface
an Exodus interface is planned�� Writing is performed
in the simplest possible way� by copying the machine representation of each data member value to the
POS� It is the responsibility of the reader to decipher the writer�s format� Since objects are often read
and written on a single platform this proves reasonably e�cient for local communication and temporary
storage�

Retrieving object graphs is similar� The retrieval is initiated by the application with the OID of the
root node of an object graph� This node is entered into a queue of nodes yet to be read and proceeds as
follows�

Algorithm �

dequeue the next node to process
if the node is not yet read
load the dossier of the object
load the binary image of the object
invoke the reconstructor to allocate memory for the object
record the new object�s address and OID
copy the values of data members from the binary image to the new object
for each pointer member set the new address� if available

�

if not available� place pointer member on patch queue
run the post
load hook

else
return the address of the object

traverse patch queue� setting remaining pointer members

The object is loaded as a set of binary values from the original object� The dossier is used to pick through
this bag of bits to identify data members and their values� The new values for pointers are accessed by
the OID of the target object� Due to cyclic graph structures some objects will not have been read yet�
so pointers to these objects must be queued until the desired object has been read�

� Heterogeneity

Heterogeneity is handled by providing a machine description object which contains information concern

ing hardware and compiler speci�c data� In Algorithm � a machine identi�er is stored along with the
OIDs of the object and its dossier� This machine identi�er references a structure describing the hardware
characteristics
e�g�� byte order� �oating point format� and software characteristics
e�g�� member layout�
of the writer� When the data for an object is copied from the binary image of the writer to the run
time
memory allocated for the reader machine dependent translations are performed�

Although the translations from one hardware platform to another must be hand
crafted� the actual
process of converting values from one format to the other is controlled through the dossiers� To avoid
writing n� conversion routines a standard intermediate format can be used to reduce the number of
conversion routines to �n�

� Object Evolution

Invariably� the classes for objects stored in the POS will change due to changes in the user�s requirements
and added functionality� It is important that old data continue to be accessible to current applications�
There are three basic approaches to evolving an object instance from one class declaration to another�

�� provide accessor functions�

�� copy using a 	static� algorithm�

�� copy using a 	dynamic� algorithm�

The �rst technique requires that an application be enhanced with accessors that know the old and new
type and o�set of the desired data member� This accessor is invoked on the old object and returns a
value as if from a new object� This is unsuitable for many applications due to its highly hand
crafted
nature� The second technique uses the dossier of the old and new objects to copy data member values
one by one from the old to the new object using some �xed algorithm� Types that have changed may
be converted if the conversion is su�ciently simple
e�g�� int to �oat� and discarded otherwise
assuming
that the old value has no translation�� New data members may be initialized to some default value
e�g��
zero�� Experience with one large project indicates that this is a useful evolution technique for many
simple object transformations����� Nevertheless� it is insu�cient as the only
or even primary� type
evolution mechanism� The �nal technique allows the application programmer to provide a function to
translate an object from one version of a class to another�

Dossiers can be annotated with version information and translation functions capable of converting
from one version of an object to another� The dossier driven type evolution system can then chain

�

conversion functions to evolve from one version of an object to the next until the desired version has
been computed� A mixture of the second and third techniques described above is being implemented for
our POS�

	 Current status

The dossier generator is largely complete� It can generate dossiers for a large subset of C�� including
all annotations described above� The omissions are due mainly to the highly decomposed nature of the
Roskind grammar
i�e�� rare or obscure grammar productions have not been �eshed out�� An initial
version of the polymorphic load and store code is nearing completion
for a single platform�� The
interface to the persistent store has been de�ned and two distinct stores have been implemented� The
�rst uses a version of DBM supporting transaction semantics� The other converts objects to a serial
byte stream for use across interprocess communication channels� We plan to add an interface to the
EXODUS storage manager��� shortly�

Although the design described here is quite general there are a number of limitations in the current
system� Most important� we do not support pointers to the interior of objects
although the load store
hooks allow crude handling of some cases�� We also do not support unions in the current system� Only
two styles of dynamically sized data members are supported although many others can be envisioned�
We are dissatis�ed with the treatment of static data members mainly due to the uncertain semantics of
persistent� shared members�

In terms of portability and simplicity of the solution there are several short comings� Of these� the
most important is the requirement that the application programmer alter class de�nitions to include
a reconstructor� load�store hooks
optional�� and the dossier accessor function
optional�� Another
problem is the possibility that the byte order and �oating point format must be explicitly indicated in
the dossier making it non
portable�

�
 Future work

The most important features currently unavailable in our system are heterogeneity and class evolution�
To provide a universal and stable POS these are fundamental requirements� The design of these features
is largely complete and an initial implementation should be completed soon� We hope to support both
a simple static evolution algorithm and the dynamic one described in Section �� We are also investigat

ing the ability to lazily load individual nodes of the object graph� Given our current implementation
constraints this will probably require complete object encapsulation� In addition� dynamically load

ing class de�nitions in the form of dossiers and member functions is possible through the use of our
object�meta
object server�����

A portable� comprehensive dossier facility has applications in a variety of areas� Two applications
related to our research are inter
language object transmission���� and dynamic recon�guration of software
systems����

�� Related Work

Persistent objects has been an area of intense research over the last few years and there are a large
number of approaches� Table � provides a brief summary of some of these systems� A more in depth
discussion of four representative systems is provided in the full paper�

�

System Description
Language

Dossiers Preprocessor Invocation Implementation Graph
Traversal

Arjuna
��� ���

Restricted
C��

no yes special base
class

rpc no

Avalon ���� Augmented
C��

no yes special base
class� stable
keyword

rpc w�
transactions

inline code
in r�w

C�� ��� ��� none yes� not user
visible

yes object register
method

vm and
pointer
swizzling

yes

E
���� ��� ���

none no modi�ed
g��

parallel class
hierarchy

vm and
pointer
swizzling

n�a

EC�� ���� Restricted
C��

no yes named object�
special base
class

rpc inline code
in r�w

NIHCL ���� none no no special base
class� r�w
functions

ASCII �les inline code
in r�w

O��
���� �� ��

Augmented
C��

yes compiler overloaded new�
special base
class

tagged byte
stream

yes

ObjectStore
����

DB schema yes yes overloaded new vm and
pointer
swizzling

no

OBST
��� ��� ���

Augmented
C��

no yes create in
container object

copied on
container
commit

names as
roots

SOS
���� ��� ���

Augmented
C��

no modi�ed
g��

special base
class�
overloaded new

object fault
on special
pointer class

special
pointer class

Texas
���� ���

a�out yes� packed in �
tables

tdesc overloaded new vm and
pointer
swizzling

n�a�

Utah
Dossiers

Augmented
C��

yes� persistent
objects

Roskind
grammar

based

fufu�

r�w functions distributed
rpc w� tagged
byte stream

dossier
driven

Table �� Summary of persistent objects systems and their approach�

�

�� Conclusions

By using dossiers as the foundation for a persistent object store we have built a �exible� portable
storage facility capable of supporting class evolution and platform heterogeneity� The dossier generator
requires minimal alteration of class descriptions and can be used where implemenation source code is not
available� Furthermore� the ability to manipulate objects polymorphically allows us to serialize arbitrary
object graphs and restore them providing the basis for inter
process object transmission and RPC stub
generation� A prototype of the dossier generator� polymorphic I�O code� and object store are nearing
completion and initial experiments are encouraging�

References

��� Rakesh Agrawal� Shaul Dar� and Narain H� Gehani� The o�� database programming language�
Implementation and experience� In Proceedings of the IEEE �th International Conference on Data
Engineering� IEEE Computer Press� �����

��� Alpha � Project� Integrated computer aided design and manufacturing� An overview of Alpha ��
Technical report� University of Utah� Dept� of Computer Science� March �� �����

��� Vinny Cahill� Chris Horn� Andre Kramer� Maurice Martin� and Gradimir Starovic� C�� and ei�el���
languages for distribution and persistence� In Proceedings of the ���� OSF Microkernel Applications
Workshop� Grenoble� France� �����

��� Michael J� Carey� David J� DeWitt� Joel E� Richardson� and Eugene J� Shekita� Storage manage

ment for objects in EXODUS� In Won Kim and Frederick H� Lochovsky� editors� Object�Oriented
Concepts� Databases� and Applications� pages �������� Addison
Wesley� �����

��� John B� Carter� Bryan Ford� Mike Hibler� Ravindra Kuramkote� Je�rey Law� Jay Lepreau� Dou

glas B� Orr� Leigh Stoller� and Mark Swanson� FLEX� A tool for building e�cient and �exible
systems� In Proc� Fourth Workshop on Workstation Operating Systems� October �����

��� Eduardo Casais� Michael Ranft� Bernhard Schiefer� Dietmar Theobald� andWalter Zimmer� OBST �
an overview� Technical report� Forschungszentrum Informatik
FZI�� D
����� Karlsruhe� Germany�
�����

��� S� Dar� N� H� Gehani� and H� V� Jagadish� CQL��� A SQL for a c�� based object
oriented
DBMS� In A� Pirotte� C� Delobel� and G� Gottlob� editors� Advances in Database Technology �
EDBT ��	
 Proceedings of the �rd International Conference on Extending Database Technology�
Vienna� Austria� March� ����� ����� Springer
Verlag�

��� G�N� Dixon� G�D� Parrington� S�K� Shrivastava� and S�M� Wheater� The treatment of persistent
objects in Arjuna� In Stephen Cook� editor� Proceedings of the ���� European Conference on Object�
Oriented Programming� pages �������� University of Nottingham� July ��
��� ����� Cambridge
University Press�

��� Margaret A� Ellis and Bjarne Stroustrup� The Annotated C

 Reference Manual� Addison
Wesley�
Reading� MA� �����

���� Je�rey L� Eppinger� Lily B� Mummert� and Alfred Z� Spector� editors� Camelot and Avalon
 A
Distributed Transaction Facility� Data Management Systems� Morgan Kaufmann Publishers� Menlo
Park� CA� �����

���� N� H� Gehani� OdeFS� A �le system interface to an object
oriented database� Technical report�
AT�T Bell Laboratories� Murray Hill� New Jersey ������ �����

�

���� Keith E� Gorlen� Sanford M� Orlow� and Perry S� Plexico� Data Abstraction and Object�Oriented
Programming in C

� John Wiley � Sons� �����

���� John A� Interrante and Mark A� Linton� Runtime access to type information in C��� In USENIX
Proceedings C

 Conference� pages �������� USENIX Association� �����

���� Charles Lamb� Gordon Landis� Jack Orenstein� and Dan Weinreb� The ObjectStore database
system� Communications of the ACM� ��
���������� October �����

���� Robert W� Mecklenburg� The speci�cation for a binary �le format for alpha � models� Alpha �
technical report ��
�� University of Utah� �����

���� Robert W� Mecklenburg� Towards a Language Independent Object System� PhD thesis� University
of Utah� Salt Lake City� Utah� June �����

���� Michael Mock� Reinhold Kroeger� and Vinny Cahill� Implementing atomic objects with the RelaX
transaction facility� Computing Systems� �
����������� Summer �����

���� Douglas B� Orr and Robert W� Mecklenburg� OMOS an object server for program execution�
In Proc� International Workshop on Object Oriented Operating Systems� pages �������� Paris�
September ����� IEEE Computer Society� Also available as technical report UUCS
��
����

���� Joel E� Richardson and Michael J� Carey� Persistence in the E language� Issues and implementation�
Software�Practice and Experience� ��
�������������� December �����

���� Joel E� Richardson and Michael J� Carey� Implementing persistence in E� In John Rosenberg and
David Koch� editors� Persistent Object Systems
 Proceedings of the Third International Workshop�
Workshops in Computing� pages �������� Springer
Verlag� Newcastle� Australia� January ��
���
����� �����

���� Joel E� Richardson� Michael J� Carey� and Daniel T� Schuh� The design of the E programming
language� Technical Report ���� Computer Science Department� University of Wisconsin� Madison�
WI� February �����

���� Jim Roskind� A yacc
able c�� ��� grammar� and the resulting ambiguities� July �����

���� Bernhard Schiefer� Dietmar Theobald� and J!urgen Uhl� User�s guide� OBST release ���� Technical
report� Forschungszentrum Informatik
FZI�� D
����� Karlsruhe� Germany� July �����

���� Manuel Sequeira and Jos"e Alves Marques� Can c�� be used for programming distributed and
persistent objects� In Proceedings ���� International Workshop on Object Orientation in Operating
Systems� pages �������� Palo Alto� CA� October ��
��� ����� IEEE Computer Society Press�

���� Marc Shapiro� Prototyping a distributed object
oriented operating system on Unix� In Proceedings
of the First USENIX�SERC Workshop on Experiences with Distributed and Multiprocesor Systems�
pages �������� Fort Lauderdale� FL� October �
�� ����� Usenix Association�

���� Marc Shapiro� Yvon Gourhant� Sabine Habert� Laurence Mosseri� Michel Ru�n� and C"eline Valot�
SOS� An object
oriented operating systems assessment and perspectives� Computing Systems�
�
����������� Fall �����

���� Marc Shapiro and Laurence Mosseri� A simple object storage system� In John Rosenberg and
David Koch� editors� Persistent Object Systems
 Proceedings of the Third International Workshop�
Workshops in Computing� pages �������� Springer
Verlag� Newcastle� Australia� January ��
���
����� �����

��

���� Santosh K� Shrivastava et al� The Arjuna System Programmer�s Guide� Arjuna Research Group�
Computing Laboratory� University of Newcastle upon Tyne� UK� February ����� Public Release
����

���� Vivek Singhal� Sheetal V� Kakkad� and Paul R� Wilson� Texas� An e�cient� portable persistent
store� In Proceedings of The Fifth International Workshop on Persistent Object Systems �POS�V��
San Miniato� Italy� September� ����� �����

���� J!urgen Uhl� Dietmar Theobald� Bernhard Schiefer� Michael Ranft� Walter Zimmer� and Jochen Alt�
The object management system of STONE� OBST release ���� Technical report� Forschungszentrum
Informatik
FZI�� D
����� Karlsruhe� Germany� July �����

���� Paul R� Wilson and Sheetal V� Kakkad� Pointer swizzling at page fault time� E�ciently and
compatibly supporting huge address spaces on standard hardware� In Proceedings of the Second
International Workshop on Object Orientation in Operating Systems� pages �������� Dourdan�
France� September ��
��� ����� IEEE Computer Society Press�

��

