Case Studies in Symbolic Model Checking

Ganesh Gopalakrishnan, Dilip Khandekar, Ravi Kuramkote and Ratan Nalumasu

UUCS-94-009

Department of Computer Science
University of Utah
Salt Lake City, UT 84112

March 15, 1994

Abstract

Formal verification of hardware and software systems has long been recognized as an essential step
in the development process of a system. It is of importance especially in concurrent systems that are
more difficult to debug than sequential systems. Tools that are powerful enough to verify real-life
systems have become available recently. Model checking tools have become quite popular because
of their ability to carry out proofs with minimal human intervention. In this paper we report
our experience with SMV, a symbolic model verifier on practical problems of significant sizes. We
present verification of a software system, a distributed shared memory protocol, and a hardware
system, the crossbar arbiter. We discuss modeling of these systems in SMV and their verification
using temporal logic CTL queries. We also describe the problems encountered in tackling these
examples and suggest possible solutions.

Case Studies in Symbolic Model Checking

Ganesh Gopalakrishnan, Dilip Khandekar, Ravi Kuramkote and Ratan Nalumasu

Department of Computer Science
University of Utah
Salt Lake City, UT 84112

email: {ganesh khands,kuramkot,ratan}@cs.utah.edu

1 Introduction

The need to formally verify hardware and software systems before they are deployed the real world
has been recognized for several decades now. This is especially true of concurrent systems that are
even more difficult to debug than sequential systems. For example, many of the protocols that get
employed in real-life systems often look deceptively simple at first glance, and yet often contain
hidden errors. In many cases, these errors cannot be revealed through simulation alone. Tools
that are powerful enough to verify real-life systems of significant sizes have, however, only recently
become available, thanks to developments such as efficient Boolean reasoning methods. As a result,
there is a real opportunity amongst practitioners of formal methods to apply these tools to real-life
examples and to teach tomorrow’s designers—today’s students—the use of these tools for solving
practically significant problems. This paper is about our efforts in this regard.

Among formal verification tools that can verify concurrent systems, model checking tools have
become quite popular. There are several reasons for this. First, their ability to carry out proofs
with relatively very little human intervention makes it possible for designers to automatically carry
out many of the proofs, thus freeing them up for more creative tasks. Second, most concurrent
hardware and software systems are one-ofs, and hence it is very difficult to recoup human effort
put into one project for use in another.

In this paper, we report on our experience in using SMV [1], a symbolic model checker, in
a graduate class on Program Verification, on practical problems of significant sizes. SMV has
previously been extensively used by several researchers [1, 2] in verifying non-trivial hardware and
software systems. In this paper we present the following case studies: (i) verification of a distributed
shared memory protocol [3] that is widely known; (ii) verification of a new crossbar arbiter that
the first author’s group has developed. We also discuss the problems encountered while tackling
these examples using SMV, and suggest possible solutions. We divide this discussion into three
sections: (i) aspects related to the expressive power of the CTL formalism; (ii) aspects related
to state explosion; and (iii) aspects related to the particular implementation of SMV. The main
contribution of this paper is that it provides detailed verification case studies on problems of great
interest to designers of distributed protocols as well as designers of asynchronous circuits that might
be used in realizing these protocols.

The remainder of the paper is organized as follows. In Section 2 we discuss the verification of
the centralized version of the distributed shared memory (DSM) protocol [3]. Section 3 presents
the verification of a distributed version of the same protocol. This widely used protocol implements
a demand-paged virtual memory system across a collection of computing nodes (Figure 1). Both
the centralized and the distributed DSM protocols described in this paper are widely referred to,
and form the basis of several new protocols of a similar nature, for example [4, 5]. Descriptions of
these protocols were taken verbatim, in the form of pseudo-code, from [3], and encoded in SMV.

Processorl Processor2 Processor3

Memoryl Memory2 Memory3

Figure 1: Abstraction of distributed shared memory provided by computing nodes

Admittedly this is a less than perfect process, because pseudo-code descriptions can be ambiguous
and therefore can be mis-interpreted. However, pseudo-code descriptions form the link between the
designers’ thoughts and the final implementation; hence, it is of considerable practical importance to
scrutinize the purported algorithm while it is at a pseudo-code level, for this offers the opportunity
to detect errors sufficiently early, and helps in resolving ambiguities, if any. Also, we do not have
access to the final implementation of the algorithms of [3]; therefore, remarks regarding correctness
made in this paper apply only to the pseudo-code.

In Section 4, we present the verification of a symmetric crossbar arbiter—an asynchronous
arbiter described in [6]. This example provides useful insight into asynchronous circuit verification
using SMV. We provide concluding remarks in Section 5.

2 Shared Virtual Memory: Centralized Manager

Consider a collection of computer nodes, each supporting one or more processes. Suppose each of
these processes wants to view the aggregate of the memory available on all the computer nodes as
one homogeneous shared memory. This view can be supported by treating the memory available
at each node as a cache, and providing mechanisms for demand-paging across the computer nodes.
Any scheme of this nature has to maintain the coherence of the individual memory units with
respect to the logical abstraction of a shared memory.

In the centralized algorithm, one of the nodes is selected as the manager node. The manager
node has an information-table with each entry in it corresponding to a page. More specifically, an
information-table entry for a page consists of the owner of the page (the node that last wrote into
the page), the copyset of the page (i.e., which nodes have the page available for use in the read
mode), and a lock (semaphore) to give the manager exclusive access to the information-table entry.
In addition, every node (including the manager) maintains a page table that has, for each entry
corresponding to a page, information on the page access mode and a lock to provide exclusive access
to a page table entry. Every node has a read-fault handler and a write-fault handler to handle local
read /write-faults. Each node also has a read server, a write server, and an invalidate server. These
servers handle remote requests as elaborated in Section 2.2.

2.1 Overview of the Results

Our main result concerning the verification of the centralized protocol is summarized before we
go into the details. The pseudo-code appearing in [3] is scanty in detail about certain boundary
cases. If special care is not taken in modeling these boundary cases, deadlocks will result. We were
satisfied that this observation was confirmed by SMV, as detailed in Section 2. However, to our
pleasant surprise, we could also spot another deadlock that was more subtle and was previously
unknown to us. This experience clearly demonstrates SMV’s ability to detect errors in pseudo-code
statements of non-trivial algorithms.

2.2 Details of the Centralized DSM Protocol

We now present the algorithms used by the various fault handlers and servers.

2.2.1 Read-fault Handler
Upon encountering a read-fault, the read-fault handler (RFH)

RFH1: locks the page-table entry corresponding to the faulted page;
RFH2: asks the manager for the page in read mode;

RFH3: upon receipt of the page, sends confirmation to the manager;
RFH4: sets the local page-table entry access mode to read;

RFH5: unlocks the page-table entry.

2.2.2 Write-fault Handler
Upon encountering a write-fault, the write-fault handler (WFH)

WEFHI1: locks the page-table entry corresponding to the faulted page;
WEFH2: asks the manager for the page in write mode;

WEFH3: upon receipt of the page, sends confirmation to the manager;
WEH4: sets the local page-table entry access mode to write;

WEFHb5: unlocks the page-table entry.

2.2.3 Read Server Running on the Manager Node
Upon encountering an external read request, the manager read server (MRS)

MRSI1: locks the information-table entry for the page in question;

MRS2: includes the requester in the copyset;

MRS3: asks the node that owns the page being requested to send a copy directly to the requester;
MRS4: waits for confirmation from the requester;

MRS5: unlocks the information-table entry.

2.2.4 Write Server Running on the Manager Node
Upon encountering an external read request, the manager write server (MWS)

MWSI1: locks the information-table entry for the page in question;

MWS2: for each node in the copyset of the page in question, invokes its invalidate server (only
the requester node can hold a page in the write mode - all the copies of this page must be
invalidated);

MWS3: assigns the copyset to the empty set;

MWS4: asks the owner node to send a copy of the page directly to the requester;

MWSh5: waits for confirmation from the requester;

MWS6: marks the requester as the new owner in the information-table entry for this page;
MWST: unlocks the information-table entry.

2.2.5 Read Server at the Owner Node

Upon encountering a read request, the owner read server (ORS)

ORS1: locks the page-table entry;

ORS2: sets the access mode of the page to read, in the page-table entry (so if the owner had write
access before, it relinquishes this privilege);

ORS3: sends copy of the page to the requester;
ORS4: unlocks the page-table entry.

2.2.6 Write Server at the Owner Node

Upon encountering a write request, the owner write server (OWS)

OWS1: locks the page-table entry;

OWS2: sets the access mode to invalid;

OWS3: sets a copy of the page to the requester;
OWS4: unlocks the page-table entry.

2.2.7 Invalidate Server (anywhere)

An invalidate server at any node merely sets the access mode of the page to invalid. 1t does not
lock the page-table entry, as setting the invalidation bit is an atomic step.

2.3 Discussions

State-explosion is a constant threat while using a symbolic model-checker for significantly sized
problems. It is almost always necessary to take advantage of the symmetries in the problem,
thereby minimizing the number of different situations modeled. For example, without any loss of
generality, we can model a version of the protocol using only one page. As far as the number of
nodes go, a minimum of three was felt necessary (to model the owner node, the manager node,
and the requesting node as three separate entities). However, state explosion prevented us from
doing this, and we could model only a maximum of two nodes, despite considerable efforts put into
variable orderings. We feel that the practical applicability of SMV can be greatly enhanced if the
system offers users with sufficient insight into the problem being modeled, what might be causing
the state explosion, and also help him/her determine a suitable variable ordering. Work done in
[1] and [7] relating to the complexity characteristics of BDDs should help in this regard.

2.3.1 The First Deadlock

The first deadlock situation detected by SMV is the following. Consider two nodes, 0 and 1, with
node 1 owning the only page in the system in the read mode. (This can happen immediately after
the following sequence: node 1 wrote into the page; node 0 had a read-fault into the page; therefore
node 1 reverted back to the read mode, but still remaining the owner.) Now suppose node 1 has a
write-fault for the page. Hence, the fault handler locks the page table entry at node 1 for the page
(state WEFH1). A request then goes to the manager write server for the page. The manager locks
the information-table entry (MWS1). Since node 1 is the owner, the manager requests the owner
to send page to itself (!). Node 1’s read server tries to lock its page table entry (ORS1) which node

(a) Deadlock 1

Node 1 (owner in read mode)
Node 1
PTE
awai t page
(b) Deadlock 2
Node O Node 1 (owner in read mode) Manager
Node 0 Info MWS1
PTE

await confirmation

Figure 2: Resource Dependency Graphs Upon Deadlocks: Centralized Algorithm

1 has already locked at WEFH1! This is a direct deadlock (see Figure 2(a) which shows the cycle in
the resource dependency graph.) The problem arose because the pseudo-code did not first check
whether node 1 was the owner—if it did, it could have avoided going to the centralized manager!
Pseudo-code routines typically leave out detail such as this.

This deadlock was known to us even before we embarked on verification. As this example shows,
considerable caution has to be exercised in translating pseudo-code into actual code. Therefore, it
was satisfying that SMV could detect this deadlock.

2.3.2 The Second Deadlock

The second deadlock is more subtle in nature, and its existence was previously unknown to us. The
scenario is as follows. Node 1 owns the page in the read mode and has a write-fault for the page.
The write-fault handler of node 1 locks the page table entry for the page (WFH1).

Meanwhile node 0 has a read-fault and its request goes to the manager. The manager locks its
information-table entry (MRS1) and requests the owner’s read server (i.e., node 1’s read server) to
send the page directly to node 0 which is the requester. Node 1’s read server now tries to lock the
page table entry (ORS1), but hangs as node 1 has already locked this entry at WEFHI.

Node 1’s fault handler is meanwhile not blocked. It sends a request to the manager to have the
page’s access mode converted from read to write. The manager tries to lock its information-table
entry (MWS1) which has already been locked at MRS1. At this stage there is a deadlock! (See
Figure 2(b) which shows the cycle in the resource dependency graph.)

The solution is to prevent the race between node 1’s write-fault handler’s actions and node 0’s
read-fault handler’s actions. Several solutions are possible and we have not pursued any particular
solution, as that was not the purpose of our exercise.

3 Shared Virtual Memory: Distributed Manager

The verification of the dynamic distributed manager (DDM) algorithm proposed in [3] is detailed
in this section. In the DDM, there is no centralized manager. Every node has sufficient information
to locate the required page. The nodes use message passing mechanism to communicate with each
other. A page has three modes associated with it: invalid, read, and write. A processor not having
a local copy of the page has it mapped invalid. A page can be shared by several processors in read
mode, while a page can reside in write mode only at one node. All processors sharing a page must
invalidate it when one node wants to write into the page.

Each node maintains a probable owner for each page it has a copy of. The probable owner is
that processor which this node “thinks” to be the actual owner of the page. It may be the case
that the probable owner may not be the actual owner; in case it isn’t, the probable owner will have
its own probable owner for that page. The algorithm guarantees that a message forwarded along
such a “probable owner chain” will finally reach the actual owner of that page, thereby ensuring
that the page will be located.

3.1 Overview of the Results

In our SMV descriptions, we could model two processors. Modeling three processes would have
covered most situations (we think three processes are sufficient, but do not have a proof for this).
For certain queries, we could model the behavior of three processes, however only after manually
eliminating many of the capabilities of the processes. This approach of specializing the process
descriptions in response to the queries being handled is error-prone. We eagerly await more powerful
versions of SMV that have the ability to handle much more state and/or offer insight into where
state explosion is happening. Modulo these limitations, however, we could establish a large number
of interesting properties with success. One fairly obvious deadlock (that can be blamed on the
abstractness of the pseudo-code) was also detected.

3.2 Details of the Distributed DSM Protocol

Details of the DDM protocol are now provided for each of the operations supported. Upon read
hit, the state of the page does not change. Upon write hit, the access type of the page is changed
to write.

3.2.1 Read-fault Handler

Upon encountering a read-fault, the node

RFH1: asks the probable owner of the page to give read access to the page;

RFH2: when the page arrives, it sets the probable owner for that page to itself, and changes the
page access type to read.

3.2.2 Write-fault Handler

Upon encountering a write-fault, the node

WEFHI1: asks the probable owner to give write access to the page;

WFH2: sends an invalidation message for the page to the copyset of the page;
WFH3: sets its probable owner field to point to itself;

WEFH4: when the page arrives, it sets the access mode of the page to write.

3.2.3 Read Server at the Owner Node

Upon encountering a read request, the owner read server (ORS)

ORS1: if it is the owner of the page, then

ORS1a: adds self to the copyset of the page;

ORS1b: changes the access-type of the page to read;

ORS1c: sends the page and its copyset to the requester;

ORS1d: in the local page table, records that the probable owner of the page is the requestor.

else

ORS2a: forwards the request to the probable owner of the page;
ORS2b: sets the probable owner to be the requestor.

3.2.4 Write Server at the Owner Node
Upon encountering a write request, the owner write server (OWS)

OWS1: If it is the owner, then

OWSla: sets the access mode of the page to invalid;
OWS1b: sends the page and the copyset of the page to the requestor;
OWSlec: in the local page-table, sets the probable owner of the page to the requestor.

else

OWS2a: forwards the request to the probable owner;
OWS2b: sets the probable owner to the requester.

3.2.5 Invalidate Server (anywhere)

For each invalidation request,

IS1: sets the access mode to invalid;
[S2: sets the probable owner field to the requestor.

The processes in SMV are modeled as follows. Each node in the DSM system is a process at
the top level in SMV. This process also acts like a read/write fault handler. Each process has as
its sub-process the read/write server and invalidate server.

The communication between the processors was modeled in SMV using globally shared vari-
ables as well as more modular constructs that simulate message passing. Modeling all the process
interactions without using shared variables would have resulted in SMV code that more closely
resembles the pseudo-code. This direction was abandoned as it resulted in state explosion.

3.3 Discussions
Using SMV, the following properties were established of the specification of the DDM algorithm:

e “Suppose processor P3 does not have the page, wants read access to the page, and thinks
that probable owner is P1. Suppose processor P1 is not the owner and thinks that P2 is the
probable owner; suppose P2 is the actual owner. Then the the message from P3 to P1 will
be forwarded to P2, which will then grant read access to P3.”

e “If the processor wants to write into the page which it does not currently have, it will eventu-
ally have access to the page in the write mode.” Similarly the read access was also successfully
validated.

e “A page can be shared by two processors in the read mode.”

e “If a page is in the write mode at some node, it cannot reside in either the read or the write
modes in any other processor.”

e “A page has to reside somewhere; it cannot be invalid in all the processors.”

e “If a page is being shared by the two processors in the read mode and one of them wants to
write into the page, then it will get the page in the write mode, while the other node has to
invalidate its copy of the page.”

The following error (attributable to the abstract nature of the pseudo-code) was detected.
Suppose a node N that owns a page has it in read mode and wants to write into it. The resulting
write fault will cause the write fault handler on node N to lock the page table entry and send a
message to the probable owner. The message will traverse the probable owner chain (whose length
can be zero or more) and eventually arrive back at node N. The write server on node N tries to
lock the page table entry, but will hang as it has already been locked by the write fault handler.
Again the error is due to the pseudo-code not being very specific about boundary conditions.

It is, however, very easy to ignore these boundary conditions and proceed with the coding of
the algorithm, thereby making such errors even more hard to detect. The use of model checking
tools such as SMV early in the design process can prevent this from happening.

4 Hardware Verification: Verification of a Crossbar Arbiter

A symmetric crossbar arbiter [8] arbitrates requests for connections to be made on an N x N
crossbar switch. Assume that at any particular instant of time, a subset the N? switches can be
requested to be closed. In response to any such request, the arbiter must grant the maximum
possible number of requests (at most N) that do not conflict on any row or column (i.e., that
do not share any row- or column-wire of the crossbar). In [6], we have developed a family of
arbiters that meet the above specifications. As opposed to the circuits used by [8], our circuits
are all asynchronous in nature. Furthermore, they are based on a new asynchronous component
developed by the first author called the lockable C-element [9]. We illustrate our verification efforts
on one of these circuits given in Figure 3, called the wavefront arbiter.

The operation of the wavefront arbiter is as follows. FEach element shown in the figure is a
lockable C-element—or, LockC for short. A LockC behaves similar to a Miiller C-element, except
it has an extra input called lock and an extra output called lack (not shown in the diagram to
avoid clutter—we also avoid showing some of the logic associated with each LockC, again to avoid
clutter).

When no external requests are present, all the lock inputs are kept deasserted. As a result, any
LockC can fire whenever it is enabled. Under these circumstances, the circuit shown in Figure 3,

l_. Start

|

(¢

Al these |
gates are
LockCs .

-“
0’.
o

g
0“
:
g
-
-
"‘. ‘
g
] O
g
u”
20 21
.‘..
g
R

30 31

Figure 3: A Symmetrip‘érossbar Arbiter Design

propagates diagonal wavefronts that propégatgom the top-left corner towards the bottom-right
corner. More precisely the array will always (except during a brief moment) have two diagonal
wavefronts flowing through it from the top-left corner towards the bottom-right corner. Further-
more, these two diagonals will always be the closest two such diagonals that do not have any
row-wire or column-wire in common. (This spacing is achieved by the wrapped torus connection
to the resetting input of the LockC elements.)

One snapshot of these two diagonals is shown in Figure 3. We connect the two diagonals with a
curved line to signify that these two diagonals are “connected”: when one diagonal moves forwards,
so does the other. For example, the position of the diagonals shown in the figure is 01, 10, 32, and
23; the next position of the diagonals will be 02, 11, 20, and 33; after that the diagonals will be at
03, 12, 21, 30 (at this time there will be only one diagonal); the next diagonal will then manifest
at 00 and 31, 22, 13.

Suppose station 7, j wants to close the crossbar switch ¢, j. It requests permission by applying
a lock input to LockC ¢, j. If a wavefront is passing through LockC ¢, 7 or is just about to do
so, the effect of the lock input is non-deterministic: the wavefront may either be pinned down at
location i, j, or it may be allowed to slip through. (Whatever be the outcome, the decision is crisp,
without metastability.) If the wavefront slips through, then the request at ¢, 7 has to be held till the
wavefront comes to ¢, j once again. In this case, the wavefront is sure to be pinned down because
the lock was applied much earlier with respect to this arrival of the wavefront.

When a wavefront is finally pinned down at location ¢, 7, a lack output is produced (with the
help of a few logic gates which are not shown). The lack signal can be taken as permission to close
switch 7, j. After the use of switch ¢, 7 is over, lock is deasserted, whereupon lack is deasserted,
and the wavefront that is pinned down is allowed to move forwards once again. Because of the
asynchronous signaling protocols employed, even after a wavefront is pinned down at one location
(for example at 01), it can still move ahead at other fronts. In other words, the wavefront can warp

till it is about to encroach into “forbidden regions”. So, for example, the portion of the wavefront
at location 10 can move to 20 and 30 even after being pinned down at 01.

4.1 Overview of the Results

We specified the wavefront arbiter in SMV and verified the following properties:

e Safety Conditions: “A column cannot be assigned to two rows simultaneously, or a row
can not be assigned two columns simultaneously.” For example,

AG (c[0][0] .trapped -> !'c[1][0].trapped);
AG (c[0][0] .trapped -> !'c[0][1].trapped);

e Deadlocks: “No LockC loses the ability to access a column (and similarly, a row).” For
example,

AG EF c[0][1].trapped;
e Progress: “Iflock is asserted, the wave is guaranteed to be eventually trapped.” For example,
AG (c[0]1[0].11.10ock -> AF c[0][0].trapped);

Due to state explosion, the size of the largest array that could be verified was 3x3. An informal
(“paper and pencil”) inductive proof of correctness for arbitrary sizes is easy to provide. Carrying
out induction in the framework of SMV (through the use of a suitable network invariant [1]) is
presently being looked into.

4.2 Details of the Crossbar Arbiter and its Verification

The wavefront arbiter was specified at the structural level. Each cell contains an XOR gate and a
LockC gate. Modules such as the LockC can be elegantly specified in SMV owing to its capability
to describe concurrent processes. For illustration, the description of the LockC is given below.

MODULE LockC(row-in, column-in, out) -- A LockC is specified the way it is used
-- in the wavefront arbiter

VAR
11 : process lock-lack(a,b,c)
ASSIGN
next(out) := case
11.1lack : out; -- after lack, freeze out
row-in=column-in : row-in; -- o/w, when enabled, fire
1 : out; -- when not enabled, hold

esac;
DEFINE -- defines when token is trapped
trapped := lack & (row-in = column-in) & (row-in = !out);
FAIR
running
-- END Lockable-C-Element

MODULE lock-lack(a,b,c) -- Modify lock, and lack asynchronously
VAR
lock : boolean;
lack : boolean;
ASSIGN -- Locally generate to simulate the PE(i) requests.
init(lock) := 0;
init(lack) := 0;

next(lack) := lock; -- arbitrary delay between lock and lack is achieved
-- due to the use of the variable ’running’
next(lock) := case
(a=b) & (a=!c) & lack : O; -- unlock after token trapped
1 : 1; -- o/w, try trapping token
esac;
FAIR
running
-- END MODULE

The wavefront arbiter was described by replicating the XOR and LockC gates using the FOR
construct of SMV.

4.3 Discussions

The state space of the wavefront arbiter grows exponentially with the array size, as the cells of the
arbiter can be in all possible combinations of their states. This was observed in our inability to
verify arbiters of sizes higher than 3x3. Application of induction techniques to the arbiter circuit
ended to be not so straightforward as the examples dealt with in [1]. The main idea used in [1] is
to identify a network invariant and then to design a generic module that can simulate an arbitrary
number of the modules in the original design. This approach is straightforward to apply when
the design consists of entities such as a single shared global bus on which an arbitrary number of
components can be replicated. In that case, a cut-point on the bus can be identified and a generic
module representing an arbitrary number of modules connected to a shared bus can be plugged in
at the cut-point. The number of inputs and outputs of the generic module do not depend on the
size of the arbitrary-sized array being modeled by it.

Unfortunately, in case of arbiter, each of the cells takes one input from its top neighbor and
another input from its left neighbor. A generic module that represents “the remainder of the
wavefront arbiter array” does not have a fixed number of inputs. Induction can still be carried out
in the two dimensions separately. However, in that case, the behavior of a row-slice or a column-size
is not quite as intuitive.

The wavefront arbiter presented in Figure 3 is inefficient in one respect. When a wavefront is
trapped at location ¢, j, location ¢+ 1, 7+ 1 cannot make any connections, even though it does not
share a row- or column with ¢, 7. This disadvantage is overcome by another arbiter designed by us,

g 4 g £\
¥ ¥ ¥ Iy
| +x+o0 | +x+o | +x+o | +x+o0
A A A A .
g 3 ° ° [+x+0 consists
I 3 ¥ - of a one-input
— = = = lockc, the XNOR
| +x+0 | +x+0 | +x+0 I +x+o0 gate that detects
that a token has
been trapped,

and the OR gate
A A A A that generates

3 £ g) the acknowledge.
+ ¥ F +
The input to
[+x+0 ,Exm ,Exw .Exw l+x+0 is the lock
signal and the

output is the

ack signal.
A A A A 9
[} o o o
+ + + +
x x x x -
+ ¥ ¥ +

I +x+0 I +x+0 w

Figure 4: Crisscrossing One Dimensional Arbiters

I
I
I

called the “crisscrossing one-dimensional arbiters” (Figure 4). This circuit has also been verified

using SMV.

5 Concluding Remarks

In the long run, SMV must be interfaced to design systems. As a preliminary step in that direc-
tion, we have developed a graphical interface to SMV using which Petri-nets can be drawn and
automatically compile into SMV descriptions. We are sure that this tool called Petriland (which
was developed by Jim St.Germain, a student of the Program Verification class taught by the first
author) will greatly simplify the encoding of designs.

The present implementation of SMV is not very much oriented towards specifying systems
with shared writable variables (that can be written from multiple places). Due to its emphasis on
compositional specifications, the SMV system requires the programmer to explicitly indicate every
shared writable variable update, even if the update is merely to hold the same value across one
time-step. This makes the modeling of many protocols notationally very tedious. A tool such as
Petriland can again help here because it generates SMV code that uses only TRANS assertions to
directly specify the state transitions underlying the Petri-net being modeled.

The circuits used to realize our crossbar arbiters require certain one-sided timing constraints to
be obeyed in their implementation. Although these timing constraints can be encoded in SMV, we
believe that other formalisms (e.g., [10, 11, 12]) may be more suitable for this level of verification.

In conclusion, we are pleased with how SMV has fared in our hardware and software verification
experiments. Coding styles that will prevent state explosion from occurring must be developed and
discussed. The SMV system must also provide insight to the user on the source of state explosion
and provide better insight into its operation.

The examples discussed in this paper, a few other examples (including the description and
validation of the Cache Coherence protocol obeyed by the Alpha Demonstration Unit [13] written
by Yarden Livnat), and the code of Petriland are available upon request from ganesh@cs.utah.edu.

Acknowledgements: Many thanks to all the students who participated in CS 611, “Program
Verification” whose efforts made these experiments possible, and to NSF who supported this work
in part through award MIP-9215878.

References

[1]
[2]

[3]

Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Press, 1993.

1992. Tutorial #9 on Formal Verification offered during the 1992 DAC by Fdmund Clarke et.
al.

Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems. ACM Trans-
actions on Computer Systems, 7(4):321-359, November 1989.

J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Implementation and performance of Munin.
In Proceedings of the 13th ACM Symposium on Operating Systems Principles, pages 152-164,
October 1991.

J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Techniques for reducing consistency-related
communication in distributed shared memory systems. ACM transactions on Computer Sys-
tems, August 1994. To appear.

Ganesh Gopalakrishnan. Some unusual micropipeline circuits. Technical Report UUCS-93-015,
University of Utah, Department of Computer Science, 1993.

Alan Hu and David Dill. Reducing bdd size by exploiting functional dependencies. In Pro-
ceedings of the 30th ACM/IEEFE Design Automation Conference, pages 266271, 1993.

Yuval Tamir and Hsin-Chou Chi. Symmetric crossbar arbitration. IEFFE Transactions on
Parallel and Distributed Systems, 4(1):13-27, January 1993.

Armin Liebchen and Ganesh Gopalakrishnan. Dynamic reordering of high latency transac-

tions in time-warp simulation using a modified micropipeline. In International Conference on
Computer Design (ICCD), pages 336-340, 1992.

Jerry Burch. Trace Algebra for Automatic Verification of Real-Time Concurrent Systems. PhD
thesis, Carnegie-Mellon University, August 1992. Technical Report CMU-CS5-92-179.

David L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-independent
Circuits. MIT Press, 1989. An ACM Distinguished Dissertation.

Ganesh Gopalakrishnan, Nick Michell, Erik Brunvand, and Steven M. Nowick. A correct-
ness criterion for asynchronous circuit verification and optimization. IEEFE Transactions on
Computer-Aided Design, 1992. Accepted for Publication.

Charles P. Thacker, David G. Conroy, and Lawrence C. Stewart. The alpha demonstration
unit: A high-performance multiprocessor. Communications of the ACM, 36(2):55-66, February
1993.

