
Case Studies in Symbolic Model Checking

Ganesh Gopalakrishnan� Dilip Khandekar� Ravi Kuramkote and Ratan Nalumasu

UUCS�������

Department of Computer Science
University of Utah

Salt Lake City� UT �����

March ��� ����

Abstract

Formal veri�cation of hardware and software systems has long been recognized as an essential step
in the development process of a system� It is of importance especially in concurrent systems that are
more di	cult to debug than sequential systems� Tools that are powerful enough to verify real
life
systems have become available recently� Model checking tools have become quite popular because
of their ability to carry out proofs with minimal human intervention� In this paper we report
our experience with SMV� a symbolic model veri�er on practical problems of signi�cant sizes� We
present veri�cation of a software system� a distributed shared memory protocol� and a hardware
system� the crossbar arbiter� We discuss modeling of these systems in SMV and their veri�cation
using temporal logic CTL queries� We also describe the problems encountered in tackling these
examples and suggest possible solutions�



Case Studies in Symbolic Model Checking

Ganesh Gopalakrishnan� Dilip Khandekar� Ravi Kuramkote and Ratan Nalumasu

Department of Computer Science

University of Utah

Salt Lake City� UT �����

email� fganesh�khands�kuramkot�ratang�cs�utah�edu

� Introduction

The need to formally verify hardware and software systems before they are deployed the real world
has been recognized for several decades now� This is especially true of concurrent systems that are
even more di	cult to debug than sequential systems� For example� many of the protocols that get
employed in real
life systems often look deceptively simple at �rst glance� and yet often contain
hidden errors� In many cases� these errors cannot be revealed through simulation alone� Tools
that are powerful enough to verify real
life systems of signi�cant sizes have� however� only recently
become available� thanks to developments such as e	cient Boolean reasoning methods� As a result�
there is a real opportunity amongst practitioners of formal methods to apply these tools to real
life
examples and to teach tomorrow�s designers�today�s students�the use of these tools for solving
practically signi�cant problems� This paper is about our e
orts in this regard�

Among formal veri�cation tools that can verify concurrent systems� model checking tools have
become quite popular� There are several reasons for this� First� their ability to carry out proofs
with relatively very little human intervention makes it possible for designers to automatically carry
out many of the proofs� thus freeing them up for more creative tasks� Second� most concurrent
hardware and software systems are one
ofs� and hence it is very di	cult to recoup human e
ort
put into one project for use in another�

In this paper� we report on our experience in using SMV ���� a symbolic model checker� in
a graduate class on Program Veri�cation� on practical problems of signi�cant sizes� SMV has
previously been extensively used by several researchers ��� �� in verifying non
trivial hardware and
software systems� In this paper we present the following case studies� �i� veri�cation of a distributed
shared memory protocol ��� that is widely known� �ii� veri�cation of a new crossbar arbiter that
the �rst author�s group has developed� We also discuss the problems encountered while tackling
these examples using SMV� and suggest possible solutions� We divide this discussion into three
sections� �i� aspects related to the expressive power of the CTL formalism� �ii� aspects related
to state explosion� and �iii� aspects related to the particular implementation of SMV� The main
contribution of this paper is that it provides detailed veri�cation case studies on problems of great
interest to designers of distributed protocols as well as designers of asynchronous circuits that might
be used in realizing these protocols�

The remainder of the paper is organized as follows� In Section � we discuss the veri�cation of
the centralized version of the distributed shared memory �DSM� protocol ���� Section � presents
the veri�cation of a distributed version of the same protocol� This widely used protocol implements
a demand
paged virtual memory system across a collection of computing nodes �Figure ��� Both
the centralized and the distributed DSM protocols described in this paper are widely referred to�
and form the basis of several new protocols of a similar nature� for example ��� ��� Descriptions of
these protocols were taken verbatim� in the form of pseudo
code� from ���� and encoded in SMV�



Processor2 Processor3Processor1

Memory1 Memory2 Memory3

...

...

...

Figure �� Abstraction of distributed shared memory provided by computing nodes

Admittedly this is a less than perfect process� because pseudo
code descriptions can be ambiguous
and therefore can be mis
interpreted� However� pseudo
code descriptions form the link between the
designers� thoughts and the �nal implementation� hence� it is of considerable practical importance to
scrutinize the purported algorithm while it is at a pseudo
code level� for this o
ers the opportunity
to detect errors su	ciently early� and helps in resolving ambiguities� if any� Also� we do not have
access to the �nal implementation of the algorithms of ���� therefore� remarks regarding correctness
made in this paper apply only to the pseudo
code�

In Section �� we present the veri�cation of a symmetric crossbar arbiter�an asynchronous
arbiter described in ���� This example provides useful insight into asynchronous circuit veri�cation
using SMV� We provide concluding remarks in Section ��

� Shared Virtual Memory� Centralized Manager

Consider a collection of computer nodes� each supporting one or more processes� Suppose each of
these processes wants to view the aggregate of the memory available on all the computer nodes as
one homogeneous shared memory� This view can be supported by treating the memory available
at each node as a cache� and providing mechanisms for demand
paging across the computer nodes�
Any scheme of this nature has to maintain the coherence of the individual memory units with
respect to the logical abstraction of a shared memory�

In the centralized algorithm� one of the nodes is selected as the manager node� The manager
node has an information�table with each entry in it corresponding to a page� More speci�cally� an
information
table entry for a page consists of the owner of the page �the node that last wrote into
the page�� the copyset of the page �i�e�� which nodes have the page available for use in the read
mode�� and a lock �semaphore� to give the manager exclusive access to the information
table entry�
In addition� every node �including the manager� maintains a page table that has� for each entry
corresponding to a page� information on the page access mode and a lock to provide exclusive access
to a page table entry� Every node has a read�fault handler and a write�fault handler to handle local
read�write
faults� Each node also has a read server� a write server� and an invalidate server� These
servers handle remote requests as elaborated in Section ����

��� Overview of the Results

Our main result concerning the veri�cation of the centralized protocol is summarized before we
go into the details� The pseudo
code appearing in ��� is scanty in detail about certain boundary
cases� If special care is not taken in modeling these boundary cases� deadlocks will result� We were
satis�ed that this observation was con�rmed by SMV� as detailed in Section �� However� to our
pleasant surprise� we could also spot another deadlock that was more subtle and was previously
unknown to us� This experience clearly demonstrates SMV�s ability to detect errors in pseudo
code
statements of non
trivial algorithms�



��� Details of the Centralized DSM Protocol

We now present the algorithms used by the various fault handlers and servers�

����� Read�fault Handler

Upon encountering a read
fault� the read
fault handler �RFH�

RFH�� locks the page
table entry corresponding to the faulted page�

RFH�� asks the manager for the page in read mode�

RFH�� upon receipt of the page� sends con�rmation to the manager�

RFH�� sets the local page
table entry access mode to read�

RFH�� unlocks the page
table entry�

����� Write�fault Handler

Upon encountering a write
fault� the write
fault handler �WFH�

WFH�� locks the page
table entry corresponding to the faulted page�

WFH�� asks the manager for the page in write mode�

WFH�� upon receipt of the page� sends con�rmation to the manager�

WFH�� sets the local page
table entry access mode to write�

WFH�� unlocks the page
table entry�

����� Read Server Running on the Manager Node

Upon encountering an external read request� the manager read server �MRS�

MRS�� locks the information
table entry for the page in question�

MRS�� includes the requester in the copyset�

MRS�� asks the node that owns the page being requested to send a copy directly to the requester�

MRS�� waits for con�rmation from the requester�

MRS�� unlocks the information
table entry�

����� Write Server Running on the Manager Node

Upon encountering an external read request� the manager write server �MWS�

MWS�� locks the information
table entry for the page in question�

MWS�� for each node in the copyset of the page in question� invokes its invalidate server �only
the requester node can hold a page in the write mode 
 all the copies of this page must be
invalidated��

MWS�� assigns the copyset to the empty set�

MWS�� asks the owner node to send a copy of the page directly to the requester�

MWS�� waits for con�rmation from the requester�

MWS�� marks the requester as the new owner in the information
table entry for this page�

MWS�� unlocks the information
table entry�



����� Read Server at the Owner Node

Upon encountering a read request� the owner read server �ORS�

ORS�� locks the page
table entry�

ORS�� sets the access mode of the page to read� in the page
table entry �so if the owner had write
access before� it relinquishes this privilege��

ORS�� sends copy of the page to the requester�

ORS�� unlocks the page
table entry�

����� Write Server at the Owner Node

Upon encountering a write request� the owner write server �OWS�

OWS�� locks the page
table entry�

OWS�� sets the access mode to invalid�

OWS�� sets a copy of the page to the requester�

OWS�� unlocks the page
table entry�

����� Invalidate Server 	anywhere


An invalidate server at any node merely sets the access mode of the page to invalid� It does not
lock the page
table entry� as setting the invalidation bit is an atomic step�

��� Discussions

State
explosion is a constant threat while using a symbolic model
checker for signi�cantly sized
problems� It is almost always necessary to take advantage of the symmetries in the problem�
thereby minimizing the number of di
erent situations modeled� For example� without any loss of
generality� we can model a version of the protocol using only one page� As far as the number of
nodes go� a minimum of three was felt necessary �to model the owner node� the manager node�
and the requesting node as three separate entities�� However� state explosion prevented us from
doing this� and we could model only a maximum of two nodes� despite considerable e
orts put into
variable orderings� We feel that the practical applicability of SMV can be greatly enhanced if the
system o
ers users with su	cient insight into the problem being modeled� what might be causing
the state explosion� and also help him�her determine a suitable variable ordering� Work done in
��� and ��� relating to the complexity characteristics of BDDs should help in this regard�

����� The First Deadlock

The �rst deadlock situation detected by SMV is the following� Consider two nodes� � and �� with
node � owning the only page in the system in the read mode� �This can happen immediately after
the following sequence� node � wrote into the page� node � had a read
fault into the page� therefore
node � reverted back to the read mode� but still remaining the owner�� Now suppose node � has a
write
fault for the page� Hence� the fault handler locks the page table entry at node � for the page
�state WFH��� A request then goes to the manager write server for the page� The manager locks
the information
table entry �MWS��� Since node � is the owner� the manager requests the owner
to send page to itself ���� Node ��s read server tries to lock its page table entry �ORS�� which node



(b) Deadlock 2

Node 0 Node 1 (owner in read mode) Manager

Node 1
PTE

InfoMRS1

MRS4

PTE
Node 0

RFH1

await confirmation

WFH1

WFH2

MWS1ORS1

ask

(a) Deadlock 1

Node 1
PTE

WFH1

WFH2

ORS1

await page

Node 1 (owner in read mode)

Figure �� Resource Dependency Graphs Upon Deadlocks� Centralized Algorithm

� has already locked at WFH�� This is a direct deadlock �see Figure ��a� which shows the cycle in
the resource dependency graph�� The problem arose because the pseudo
code did not �rst check
whether node � was the owner�if it did� it could have avoided going to the centralized manager�
Pseudo
code routines typically leave out detail such as this�

This deadlock was known to us even before we embarked on veri�cation� As this example shows�
considerable caution has to be exercised in translating pseudo
code into actual code� Therefore� it
was satisfying that SMV could detect this deadlock�

����� The Second Deadlock

The second deadlock is more subtle in nature� and its existence was previously unknown to us� The
scenario is as follows� Node � owns the page in the read mode and has a write
fault for the page�
The write
fault handler of node � locks the page table entry for the page �WFH���

Meanwhile node � has a read
fault and its request goes to the manager� The manager locks its
information
table entry �MRS�� and requests the owner�s read server �i�e�� node ��s read server� to
send the page directly to node � which is the requester� Node ��s read server now tries to lock the
page table entry �ORS��� but hangs as node � has already locked this entry at WFH��

Node ��s fault handler is meanwhile not blocked� It sends a request to the manager to have the
page�s access mode converted from read to write� The manager tries to lock its information
table
entry �MWS�� which has already been locked at MRS�� At this stage there is a deadlock� �See
Figure ��b� which shows the cycle in the resource dependency graph��



The solution is to prevent the race between node ��s write
fault handler�s actions and node ��s
read
fault handler�s actions� Several solutions are possible and we have not pursued any particular
solution� as that was not the purpose of our exercise�

� Shared Virtual Memory� Distributed Manager

The veri�cation of the dynamic distributed manager �DDM� algorithm proposed in ��� is detailed
in this section� In the DDM� there is no centralized manager� Every node has su	cient information
to locate the required page� The nodes use message passing mechanism to communicate with each
other� A page has three modes associated with it� invalid� read� and write� A processor not having
a local copy of the page has it mapped invalid� A page can be shared by several processors in read
mode� while a page can reside in write mode only at one node� All processors sharing a page must
invalidate it when one node wants to write into the page�

Each node maintains a probable owner for each page it has a copy of� The probable owner is
that processor which this node �thinks� to be the actual owner of the page� It may be the case
that the probable owner may not be the actual owner� in case it isn�t� the probable owner will have
its own probable owner for that page� The algorithm guarantees that a message forwarded along
such a �probable owner chain� will �nally reach the actual owner of that page� thereby ensuring
that the page will be located�

��� Overview of the Results

In our SMV descriptions� we could model two processors� Modeling three processes would have
covered most situations �we think three processes are su	cient� but do not have a proof for this��
For certain queries� we could model the behavior of three processes� however only after manually
eliminating many of the capabilities of the processes� This approach of specializing the process
descriptions in response to the queries being handled is error
prone� We eagerly await more powerful
versions of SMV that have the ability to handle much more state and�or o
er insight into where
state explosion is happening� Modulo these limitations� however� we could establish a large number
of interesting properties with success� One fairly obvious deadlock �that can be blamed on the
abstractness of the pseudo
code� was also detected�

��� Details of the Distributed DSM Protocol

Details of the DDM protocol are now provided for each of the operations supported� Upon read
hit� the state of the page does not change� Upon write hit� the access type of the page is changed
to write�

����� Read�fault Handler

Upon encountering a read
fault� the node

RFH�� asks the probable owner of the page to give read access to the page�

RFH�� when the page arrives� it sets the probable owner for that page to itself� and changes the
page access type to read�



����� Write�fault Handler

Upon encountering a write
fault� the node

WFH�� asks the probable owner to give write access to the page�

WFH�� sends an invalidation message for the page to the copyset of the page�

WFH�� sets its probable owner �eld to point to itself�

WFH�� when the page arrives� it sets the access mode of the page to write�

����� Read Server at the Owner Node

Upon encountering a read request� the owner read server �ORS�

ORS�� if it is the owner of the page� then

ORS�a� adds self to the copyset of the page�
ORS�b� changes the access
type of the page to read�
ORS�c� sends the page and its copyset to the requester�
ORS�d� in the local page table� records that the probable owner of the page is the requestor�

else

ORS�a� forwards the request to the probable owner of the page�
ORS�b� sets the probable owner to be the requestor�

����� Write Server at the Owner Node

Upon encountering a write request� the owner write server �OWS�

OWS�� If it is the owner� then

OWS�a� sets the access mode of the page to invalid�
OWS�b� sends the page and the copyset of the page to the requestor�
OWS�c� in the local page
table� sets the probable owner of the page to the requestor�

else

OWS�a� forwards the request to the probable owner�
OWS�b� sets the probable owner to the requester�

����� Invalidate Server 	anywhere


For each invalidation request�

IS�� sets the access mode to invalid�

IS�� sets the probable owner �eld to the requestor�

The processes in SMV are modeled as follows� Each node in the DSM system is a process at
the top level in SMV� This process also acts like a read�write fault handler� Each process has as
its sub
process the read�write server and invalidate server�

The communication between the processors was modeled in SMV using globally shared vari

ables as well as more modular constructs that simulate message passing� Modeling all the process
interactions without using shared variables would have resulted in SMV code that more closely
resembles the pseudo
code� This direction was abandoned as it resulted in state explosion�



��� Discussions

Using SMV� the following properties were established of the speci�cation of the DDM algorithm�

� �Suppose processor P� does not have the page� wants read access to the page� and thinks
that probable owner is P�� Suppose processor P� is not the owner and thinks that P� is the
probable owner� suppose P� is the actual owner� Then the the message from P� to P� will
be forwarded to P�� which will then grant read access to P���

� �If the processor wants to write into the page which it does not currently have� it will eventu

ally have access to the page in the write mode�� Similarly the read access was also successfully
validated�

� �A page can be shared by two processors in the read mode��

� �If a page is in the write mode at some node� it cannot reside in either the read or the write
modes in any other processor��

� �A page has to reside somewhere� it cannot be invalid in all the processors��

� �If a page is being shared by the two processors in the read mode and one of them wants to
write into the page� then it will get the page in the write mode� while the other node has to
invalidate its copy of the page��

The following error �attributable to the abstract nature of the pseudo
code� was detected�
Suppose a node N that owns a page has it in read mode and wants to write into it� The resulting
write fault will cause the write fault handler on node N to lock the page table entry and send a
message to the probable owner� The message will traverse the probable owner chain �whose length
can be zero or more� and eventually arrive back at node N� The write server on node N tries to
lock the page table entry� but will hang as it has already been locked by the write fault handler�
Again the error is due to the pseudo
code not being very speci�c about boundary conditions�

It is� however� very easy to ignore these boundary conditions and proceed with the coding of
the algorithm� thereby making such errors even more hard to detect� The use of model checking
tools such as SMV early in the design process can prevent this from happening�

� Hardware Veri�cation� Veri�cation of a Crossbar Arbiter

A symmetric crossbar arbiter ��� arbitrates requests for connections to be made on an N � N

crossbar switch� Assume that at any particular instant of time� a subset the N� switches can be
requested to be closed� In response to any such request� the arbiter must grant the maximum
possible number of requests �at most N� that do not con�ict on any row or column �i�e�� that
do not share any row
 or column
wire of the crossbar�� In ���� we have developed a family of
arbiters that meet the above speci�cations� As opposed to the circuits used by ���� our circuits
are all asynchronous in nature� Furthermore� they are based on a new asynchronous component
developed by the �rst author called the lockable C�element ���� We illustrate our veri�cation e
orts
on one of these circuits given in Figure �� called the wavefront arbiter�

The operation of the wavefront arbiter is as follows� Each element shown in the �gure is a
lockable C�element�or� LockC for short� A LockC behaves similar to a M�uller C
element� except
it has an extra input called lock and an extra output called lack �not shown in the diagram to
avoid clutter�we also avoid showing some of the logic associated with each LockC� again to avoid
clutter��

When no external requests are present� all the lock inputs are kept deasserted� As a result� any
LockC can �re whenever it is enabled� Under these circumstances� the circuit shown in Figure ��



00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

Start

All these
gates are
LockCs

Figure �� A Symmetric Crossbar Arbiter Design

propagates diagonal wavefronts that propagate from the top
left corner towards the bottom
right
corner� More precisely the array will always �except during a brief moment� have two diagonal
wavefronts �owing through it from the top
left corner towards the bottom
right corner� Further

more� these two diagonals will always be the closest two such diagonals that do not have any
row
wire or column
wire in common� �This spacing is achieved by the wrapped torus connection
to the resetting input of the LockC elements��

One snapshot of these two diagonals is shown in Figure �� We connect the two diagonals with a
curved line to signify that these two diagonals are �connected�� when one diagonal moves forwards�
so does the other� For example� the position of the diagonals shown in the �gure is ��� ��� ��� and
��� the next position of the diagonals will be ��� ��� ��� and ��� after that the diagonals will be at
��� ��� ��� �� �at this time there will be only one diagonal�� the next diagonal will then manifest
at �� and ��� ��� ���

Suppose station i� j wants to close the crossbar switch i� j� It requests permission by applying
a lock input to LockC i� j� If a wavefront is passing through LockC i� j or is just about to do
so� the e
ect of the lock input is non
deterministic� the wavefront may either be pinned down at
location i� j� or it may be allowed to slip through� �Whatever be the outcome� the decision is crisp�
without metastability�� If the wavefront slips through� then the request at i� j has to be held till the
wavefront comes to i� j once again� In this case� the wavefront is sure to be pinned down because
the lock was applied much earlier with respect to this arrival of the wavefront�

When a wavefront is �nally pinned down at location i� j� a lack output is produced �with the
help of a few logic gates which are not shown�� The lack signal can be taken as permission to close
switch i� j� After the use of switch i� j is over� lock is deasserted� whereupon lack is deasserted�
and the wavefront that is pinned down is allowed to move forwards once again� Because of the
asynchronous signaling protocols employed� even after a wavefront is pinned down at one location
�for example at ���� it can still move ahead at other fronts� In other words� the wavefront can warp



till it is about to encroach into �forbidden regions�� So� for example� the portion of the wavefront
at location �� can move to �� and �� even after being pinned down at ���

��� Overview of the Results

We speci�ed the wavefront arbiter in SMV and veri�ed the following properties�

� Safety Conditions� �A column cannot be assigned to two rows simultaneously� or a row
can not be assigned two columns simultaneously�� For example�

AG �c�������trapped �� �c�������trapped	


AG �c�������trapped �� �c�������trapped	


� Deadlocks� �No LockC loses the ability to access a column �and similarly� a row��� For
example�

AG EF c�������trapped


� Progress� �If lock is asserted� the wave is guaranteed to be eventually trapped�� For example�

AG �c�������ll�lock �� AF c�������trapped	


Due to state explosion� the size of the largest array that could be veri�ed was �x�� An informal
��paper and pencil�� inductive proof of correctness for arbitrary sizes is easy to provide� Carrying
out induction in the framework of SMV �through the use of a suitable network invariant ���� is
presently being looked into�

��� Details of the Crossbar Arbiter and its Veri�cation

The wavefront arbiter was speci�ed at the structural level� Each cell contains an XOR gate and a
LockC gate� Modules such as the LockC can be elegantly speci�ed in SMV owing to its capability
to describe concurrent processes� For illustration� the description of the LockC is given below�



MODULE LockC�row�in� column�in� out� �� A LockC is specified the way it is used

�� in the wavefront arbiter

VAR

ll � process lock�lack�a�b�c�

ASSIGN

next�out� �� case

ll�lack � out� �� after lack� freeze out

row�in�column�in � row�in� �� o�w� when enabled� fire

	 � out� �� when not enabled� hold

esac�

DEFINE �� defines when token is trapped

trapped �� lack 
 �row�in � column�in� 
 �row�in � �out��

FAIR

running

�� END Lockable�C�Element

MODULE lock�lack�a�b�c� �� Modify lock� and lack asynchronously

VAR

lock � boolean�

lack � boolean�

ASSIGN �� Locally generate to simulate the PE�i� requests�

init�lock� �� ��

init�lack� �� ��

next�lack� �� lock� �� arbitrary delay between lock and lack is achieved

�� due to the use of the variable 
running


next�lock� �� case

�a�b� 
 �a��c� 
 lack � �� �� unlock after token trapped

	 � 	� �� o�w� try trapping token

esac�

FAIR

running

�� END MODULE

The wavefront arbiter was described by replicating the XOR and LockC gates using the FOR
construct of SMV�

��� Discussions

The state space of the wavefront arbiter grows exponentially with the array size� as the cells of the
arbiter can be in all possible combinations of their states� This was observed in our inability to
verify arbiters of sizes higher than �x�� Application of induction techniques to the arbiter circuit
ended to be not so straightforward as the examples dealt with in ���� The main idea used in ��� is
to identify a network invariant and then to design a generic module that can simulate an arbitrary
number of the modules in the original design� This approach is straightforward to apply when
the design consists of entities such as a single shared global bus on which an arbitrary number of
components can be replicated� In that case� a cut
point on the bus can be identi�ed and a generic
module representing an arbitrary number of modules connected to a shared bus can be plugged in
at the cut
point� The number of inputs and outputs of the generic module do not depend on the
size of the arbitrary
sized array being modeled by it�

Unfortunately� in case of arbiter� each of the cells takes one input from its top neighbor and
another input from its left neighbor� A generic module that represents �the remainder of the
wavefront arbiter array� does not have a �xed number of inputs� Induction can still be carried out
in the two dimensions separately� However� in that case� the behavior of a row
slice or a column
size
is not quite as intuitive�

The wavefront arbiter presented in Figure � is ine	cient in one respect� When a wavefront is
trapped at location i� j� location i� �� j� � cannot make any connections� even though it does not
share a row
 or column with i� j� This disadvantage is overcome by another arbiter designed by us�



l+x+o

l
+
x
+
o

l+x+o

l
+
x
+
o

l+x+o

l
+
x
+
o

l+x+o

l
+
x
+
o

l+x+o

l
+
x
+
o

l+x+o

l
+
x
+
o

l+x+o

l
+
x
+
o

l+x+o

l
+
x
+
o

l+x+o

l
+
x
+
o

l+x+o

l
+
x
+
o

l+x+o

l
+
x
+
o

l+x+o

l
+
x
+
o

l+x+o

l
+
x
+
o

l+x+o

l
+
x
+
o

l+x+o

l
+
x
+
o

l+x+o

l
+
x
+
o

l+x+o consists
of a one-input
lockc, the XNOR
gate that detects
that a token has
been trapped, 
and the OR gate
that generates
the acknowledge.

The input to
l+x+o is the lock
signal and the
output is the
ack signal.

Figure �� Crisscrossing One Dimensional Arbiters

called the �crisscrossing one
dimensional arbiters� �Figure ��� This circuit has also been veri�ed
using SMV�

� Concluding Remarks

In the long run� SMV must be interfaced to design systems� As a preliminary step in that direc

tion� we have developed a graphical interface to SMV using which Petri
nets can be drawn and
automatically compile into SMV descriptions� We are sure that this tool called Petriland �which
was developed by Jim St�Germain� a student of the Program Veri�cation class taught by the �rst
author� will greatly simplify the encoding of designs�

The present implementation of SMV is not very much oriented towards specifying systems
with shared writable variables �that can be written from multiple places�� Due to its emphasis on
compositional speci�cations� the SMV system requires the programmer to explicitly indicate every
shared writable variable update� even if the update is merely to hold the same value across one
time
step� This makes the modeling of many protocols notationally very tedious� A tool such as
Petriland can again help here because it generates SMV code that uses only TRANS assertions to
directly specify the state transitions underlying the Petri
net being modeled�

The circuits used to realize our crossbar arbiters require certain one
sided timing constraints to
be obeyed in their implementation� Although these timing constraints can be encoded in SMV� we
believe that other formalisms �e�g�� ���� ��� ���� may be more suitable for this level of veri�cation�

In conclusion� we are pleased with how SMV has fared in our hardware and software veri�cation
experiments� Coding styles that will prevent state explosion from occurring must be developed and
discussed� The SMV system must also provide insight to the user on the source of state explosion
and provide better insight into its operation�

The examples discussed in this paper� a few other examples �including the description and
validation of the Cache Coherence protocol obeyed by the Alpha Demonstration Unit ���� written
by Yarden Livnat�� and the code of Petriland are available upon request from ganesh�cs�utah�edu�



Acknowledgements� Many thanks to all the students who participated in CS ���� �Program
Veri�cation� whose e
orts made these experiments possible� and to NSF who supported this work
in part through award MIP
��������

References

��� Kenneth L� McMillan� Symbolic Model Checking� Kluwer Academic Press� �����

��� ����� Tutorial �� on Formal Veri�cation o�ered during the ���� DAC by Edmund Clarke et�
al�

��� Kai Li and Paul Hudak� Memory coherence in shared virtual memory systems� ACM Trans�
actions on Computer Systems� �������� ���� November �����

��� J�B� Carter� J�K� Bennett� and W� Zwaenepoel� Implementation and performance of Munin�
In Proceedings of the �	th ACM Symposium on Operating Systems Principles� pages ��� ����
October �����

��� J�B� Carter� J�K� Bennett� and W� Zwaenepoel� Techniques for reducing consistency
related
communication in distributed shared memory systems� ACM transactions on Computer Sys�
tems� August ����� To appear�

��� Ganesh Gopalakrishnan� Some unusual micropipeline circuits� Technical Report UUCS
��
����
University of Utah� Department of Computer Science� �����

��� Alan Hu and David Dill� Reducing bdd size by exploiting functional dependencies� In Pro�
ceedings of the 	
th ACM�IEEE Design Automation Conference� pages ��� ���� �����

��� Yuval Tamir and Hsin
Chou Chi� Symmetric crossbar arbitration� IEEE Transactions on
Parallel and Distributed Systems� ������� ��� January �����

��� Armin Liebchen and Ganesh Gopalakrishnan� Dynamic reordering of high latency transac

tions in time
warp simulation using a modi�ed micropipeline� In International Conference on
Computer Design �ICCD�� pages ��� ���� �����

���� Jerry Burch� Trace Algebra for Automatic Veri�cation of Real�Time Concurrent Systems� PhD
thesis� Carnegie
Mellon University� August ����� Technical Report CMU�CS�����
��

���� David L� Dill� Trace Theory for Automatic Hierarchical Veri�cation of Speed�independent
Circuits� MIT Press� ����� An ACM Distinguished Dissertation�

���� Ganesh Gopalakrishnan� Nick Michell� Erik Brunvand� and Steven M� Nowick� A correct

ness criterion for asynchronous circuit veri�cation and optimization� IEEE Transactions on
Computer�Aided Design� ����� Accepted for Publication�

���� Charles P� Thacker� David G� Conroy� and Lawrence C� Stewart� The alpha demonstration
unit� A high
performance multiprocessor� Communications of the ACM� �������� ��� February
�����


