THE DESIGN OF OBJECT-ORIENTED
META-ARCHITECTURES
FOR PROGRAMMING LANGUAGES"

Guruduth Banavar and Gary Lindstrom

Department of Computer Science
University of Utah, Salt Lake City

Abstract. This paper is a survey of the design of four object-oriented meta-level architectures
for programming languages. We present overviews and compare the salient features of the meta-
architectures of Smalltalk, Common Lisp Object System (CLOS), a Scheme Compiler, and Etyma,
our framework for modular systems. This comparison clarifies important architectural aspects of the
surveyed systems, such as the space of concepts captured by the architectures, and the abstractions
that embody similar language concepts across the architectures. We find that there are considerable
differences in the goals and conceptions of these architectures, yet they can all be used for similar
applications. Finally, we point out some strengths and weaknesses of the architectures surveyed.

1 Introduction

Object-orientation is a popular design technique that has been used to model application
domains of all varieties [1]. A recently emerging trend is to apply the object-oriented (O-
O) method to the design of O-O language processors themselves, thereby harnessing the
much touted advantages of abstraction and reuse in this domain also. For example, the
Meta Objects of the CLOS MetaObject Protocol (MOP) [2] is an O-O model of certain
useful concepts in CLOS. A recently proposed O-O model for a compiler for a non O-O
language, Scheme, [3] is another example. One of the earliest O-O programming systems,
Smalltalk-80 [4], was itself built upon an intricately interconnected group of meta-classes.

The above languages embody O-O meta-level architectures, or meta-architectures for
short, in the sense that they model the fundamental concepts in the language, such as
class and method, as interacting meta-classes. This has resulted in reflective, flexible, and
extensible language designs. Many of these advantages stem from the fact that reified
meta-classes are candidates for systematic reflective access. That is, a system that has a
well-designed meta-architecture can essentially provide users not only with its standard

*This research was sponsored by the Advanced Research Projects Agency (DOD), monitored by the
Department of the Navy, Office of the Chief of Naval Research, under Grant number N00014-91-J-4046.
The views and conclusions contained in this document are those of the authors and should not be interpreted
as representing official policies, either expressed or implied, of the Advanced Research Projects Agency or
the US Government. Contact author: G. Banavar, Computer Science - 3190 MEB, University of Utah, Salt
Lake City, UT 84112 USA, e-mail banavar@cs.utah.edu, phone +1-801-581-8378, fax +1-801-581-5843.

interface, but with an alternative interface — a “side door” to the internal architecture,
which is typically a subset of the meta-architecture interface. Information access and
refinement via this alternative interface can enable applications to fine-tune a language
implementation to suit its particular needs. Meta-classes can be specialized to suit specific
tasks using standard O-O techniques such as inheritance. In a compilation setting, meta-
classes can even be specialized to statically optimize run-time data layout or generate
optimized code for particular special cases.

It is important to clarify the relationship between the concepts of meta-architecture,
reflection, and metaobject protocol (MOP). A meta-architecture models, systematically
implements, and documents the fundamental concepts of a system. A meta-architecture is
0-0 if the concepts are modeled as collaborating classes. A system is reflective if its users
have introspective (i.e. read) and/or intercessory (i.e. modification) access to the internal
implementation of the system. Finally, a MOP documents and illustrates a disciplined
method of reflective access to a carefully chosen subset of a system’s O-O meta-architecture.

The semantics of a programming language is rarely made formally explicit in the lan-
guage implementation, let alone made usefully accessible from within the language itself.
This may be due to the fact that the design of programming languages is generally con-
sidered to be an amorphous creative activity, carried out by the best experts in the field.
However, this need not necessarily be the case — an important point of this paper is that
the design discipline encouraged by object-oriented methods can be fruitfully applied to
the design of programming languages themselves. Furthermore, a significant part of the
semantics of a language can be reified as an O-O meta-architecture. A well-designed meta-
architecture enables reuse, reflection, and the design of a suitable MOP, and thus brings
the advantages mentioned above.

The traditional architecture for processing high level languages involves the following,
usually separate, languages: the source language, the target language (this is not significant
in the case of direct interpreters), and the processor description (implementation) language.
An important observation is that the meta-architecture of a language is expressed in its
processor description language. From this it follows that a language can have multiple meta-
architectures corresponding to multiple processor descriptions, each designed with different
requirements. It also follows that a language’s meta-architecture need not necessarily
be meta-circular, i.e. expressed in the source language itself. In fact, in order to have
an O-O meta-architecture, a language need not even be object-oriented. However, its
implementation language must. The meta-architectures of dynamic languages such as
Smalltalk are meta-circular since a large part of the language is implemented using the
language itself, as is its meta-architecture.

In this paper, we contrast the three meta-architectures mentioned above, Smalltalk,
CLOS MOP, and the Scheme compiler MOP, along side our own meta-architecture based
on a language called Jigsaw [5]. Smalltalk and CLOS are general-purpose O-O languages
that enjoy significant followings. Smalltalk was built ground-up based on a remarkably
coherent meta-architecture, while the meta-architecture for CLOS was retrofitted onto
the language. The Scheme compiler MOP shares the goals of the CLOS MOP, but is
significantly different from the above two since Scheme is not O-0, and its MOP is compile-
time oriented. Finally, our framework, Etyma, attempts to generalize and bring together
many of the concepts from the above meta-architectures.

The paper continues by discussing the design issues investigated in this survey, followed
by detailed descriptions of the four meta-architectures under consideration. Finally, we

provide a summary of architectures and conclude.

2 Design Issues

The design of meta-architectures for languages is driven by various considerations. In this
section, we outline some of the issues that govern the design of meta-architectures, the
main categories being (i) the pre-stated design goals of the language as governed by the
requirements of applications, and (ii) the requirements of semantic models of languages,
also driven by applications — i.e. how the abstractions of meta-architectures must capture
the crucial semantics of their languages.

Goals and Application Requirements

Consider the competing goals of generality vs. backward compatibility. A primary
requirement in the design of the CLOS MOP was backward compatibility with several
existing LISP Object systems which were pairwise incompatible. The refineability of the
object model enabled by the MOP essentially brought about the backward compatibility.
Hence, it was sufficient to model just the object system in the meta-architecture, in such
a manner that backward compatibility can be achieved. One can imagine that the meta-
architecture in such a scenario could be markedly constrained by the existing object models.
On the other hand, the Smalltalk and Etyma meta-architectures were built from scratch
based upon a uniform model, i.e. every concept in these systems is modeled in the meta-
architecture. Moreover, Etyma was designed from the start with the explicit purpose of
abstracting semantic commonalities in module-based languages and systems. As a result,
the abstractions provide a clean module and inheritance model, leaving the rest of the
language design open.

An important application of meta-architectures is the support for flexibility and ex-
tensibility of a language via reflection and MOPs. In addition to introspective access, a
MOP typically provides intercessory access to meta-objects, making it possible to refine
them incrementally using standard O-O techniques and hence amend the existing language
design itself. The user can define new meta-object classes as specializations (subclasses)
of the standard meta-object classes, refining their behavior as necessary. The most impor-
tant goal of the CLOS and Scheme compiler meta-architectures is to provide a metaobject
protocol for users. This has led to the pragmatic design goals of (i) controlled and care-
fully documented user extensibility, (ii) interoperability of separately designed extensions,
(iii) efficiency via user specialization, and (iv) ease of use. In the context of MOP design,
there is a tradeofl between implementor freedom and user extensibility. The CLOS MOP
designers deal with this tradeofl’ by explicitly specifying restrictions on the usage of the
MOP.

Given reflective access to its meta-architecture, a language’s source programs are made
up of base language code interspersed with meta-code, i.e. the code that accesses the
meta-architecture. One design issue in such systems is the ezecution time of meta-code.
Dynamic environments like Smalltalk and CLOS require meta-code to execute at run-
time, while the Scheme MOP runs meta-code at compile-time. Dynamic architectures
exhibit meta-circularity, and hence a tight coupling between the language and the meta-
architecture. While this coupling enhances application development flexibility, it causes

the meta-level architecture to become difficult to disentangle from their base languages for
separate reuse.

The need for self-applicability (meta-circularity) is an important design issue. It is a
fundamental requirement in the dynamic environments of Smalltalk and CLOS MOP. It is
not even possible in Scheme since it is a non O-O language with an O-O meta-architecture.
The requirements of static typing and separate compilation make it impossible to express
the Jigsaw language (on which Etyma is based) using itself. The details of this are beyond
the scope of this paper [6].

A language meta-architecture supports reuse of design and code just as a domain specific
O-O framework does. O-O frameworks for several domains have been constructed [1].
Similarly, an O-O framework can be used as a reusable domain model for O-O languages
and systems — indeed, this is a primary goal of Etyma.

An important use of meta-architectures is as an aid in understanding/maintaining the
system. Another use is the construction of program analysis tools such as browsers and
debuggers. Specific meta-architectures have also been used for other applications such as
persistence.

Requirements of Semantic Models

In addition to general goals such as the above, meta-architecture designs have several se-
mantic requirements. For instance, type-checking is an important issue that must be taken
into early consideration when building a meta-architecture. Although meta-architectures
are considered extensible, the design decisions in the area of typing built into existing archi-
tectures pervade the entire model, and make it hard to retrofit significant static semantics.
Another example of a fundamental requirement is the semantics of inheritance.

| Feature | Smalltalk-80 | CLOS MOP | Etyma |
Inheritance Single Multiple Unbundled
Encapsulation Object-level | (none) Object-level
Method dispatch | Single Generic/Multi | Single
Static Typing No No Structural

Figure 1: Selected O-O semantics of surveyed languages

By its very nature, the meta-architecture of a language captures and constrains the
semantics of the base language. The space of high-level language semantics is broad and a
subspace of it must necessarily be carved out by a particular meta-architecture. The larger
the subspace, the more complex and potentially less useful the meta-architecture. Once the
subspace is chosen, the particular way in which semantic concepts within this subspace are
modeled is also significant. Furthermore, the location of the point representing the base
semantics of the language must be chosen within this subspace. Figure 1 tabularizes a
sample of O-O semantic choice points of the languages surveyed here. In the following sec-
tions, we describe the specific semantics captured by meta-architectures for O-O languages
in detail, including support for inheritance, encapsulation, method dispatch, instantiation,
static typing, and abstract classes.

We now turn to a more detailed treatment of specific meta-architectures.

3 Smalltalk

Smalltalk is based on a uniform model of communicating objects. It has a small number of
concepts — object, class, instance, message, and method. Every concept in the system is
modeled as an object, either instantiable (class object) or not (instance object). The most
primitive low-level operations in the system are delegated to a virtual machine. Objects
communicate via messages; the semantics of messages are implemented by receivers as
methods.

Smalltalk’s notion of objects is captured by class Object which provides the basic
semantics, including message handling, of all objects in the system. The semantics of
classes is captured by class Class along with its superclass Behavior which defines the
state required by classes, such as for instance variables and a method dictionary. Further,
the class CompiledMethod embodies the notion of a class” method; this class defines a
method valueWithReceiver: to evaluate itself. The O-O semantics of Smalltalk captured
by the meta-architecture is given in Figure 2.

Inheritance The class Class implements a message subclass: ... which accepts one
class parameter, the superclass, thus implementing single inheritance. The
subclasses of Class, which are the meta-classes of individual classes, inherit
the method subclass: ..., thus individual class objects also respond to this
message. The assumption that classes have a single superclass permeates
the system. Inheritance of state and methods is captured by the superclass
of Class, class Behavior, which implements methods to compute the set
of instance variables and methods available to instances of a class.

Message handling Class Object defines a method perform:withArguments: that handles
message dispatch using a primitive method of the Smalltalk virtual ma-
chine. There is also a class MessageSend that captures the notion of a
message-send. However, for efficiency, an instance of this class is not cre-
ated for every message-send in the system.

Encapsulation Instance variables are encapsulated in Smalltalk. Method handling code
searches only the method dictionary of a class, but not the instance vari-
ables. Method objects have access to instance variables since they refer to a
scope object that records the variable objects accessible within that scope.

Instance creation Class Behavior, the superclass of class Class, defines a message new:,
which calls a primitive message to create an instance of the receiver (which
must be a class).

Figure 2: Smalltalk’s O-O semantics

Smalltalk is a “dual hierarchy” language, as are most object-oriented languages. That
is, it has a cleanly articulated class-subclass hierarchy as well as a class-instance hierarchy.
In most languages, however, the class-instance hierarchy is not interesting since it comprises
only two levels — that of all classes and all instances. In Smalltalk, this hierarchy is deeper,
and is recursive, as described below.

Every object in Smalltalk is an instance of some class. Since classes themselves are
objects, each class object is an instance of yet another class, usually referred to as a
metaclass object. For example, a class Foo is an instance of its metaclass, given by the
expression Foo class. Such metaclass objects are themselves instances of an ordinary class

called Metaclass. The metaclass of class Metaclass itself is given by Metaclass class,
which is also an instance of class Metaclass, just as Foo class is. The above recursion
puts an end to the infinite regression of metaclasses.

Consider the class-subclass hierarchy of metaclasses. Every class in Smalltalk inherits
from class Object; hence the subclass hierarchy is a singly rooted tree. The class Metaclass
mentioned above is also a subclass of Object. The instances of class Metaclass, such
as Foo class, Metaclass class, and even Object class, are all (meta)classes. These
metaclasses are subclasses of class Class, which is a subclass of class Object®.

In Smalltalk, the meta-architecture is really “infinitely open,” in the sense that every
single concept in the system (except some primitive operations that are performed directly
by the virtual machine) is captured as an object which users can not only specialize, but also
browse and access, i.e. directly edit and modify, which of course is strongly discouraged.

4 CLOS MOP

As mentioned earlier, a primary requirement in the design of CLOS was backward compat-
ibility with existing LISP systems. It was recognized that these incompatibilities could be
reconciled if a family of languages, rather than a single one, were defined. Thus, the CLOS
meta-architecture was designed to facilitate modeling an entire space of language designs,
with the default CLOS design being a distinguished point. Furthermore, a protocol (MOP)
has been carefully designed and documented to access this meta-architecture usefully.

The CLOS object system supports the standard concept of classes, which can be in-
stantiated into instances [7]. Class attributes are called slots. A distinguishing feature of
the CLOS model is the notion of generic functions which are defined independent of any
class, and can be specialized into methods that are applicable to specific classes. Generic
functions can be dispatched based on multiple arguments (multi-methods).

The CLOS meta-architecture specifies the following basic meta-object classes corre-
sponding to the basic concepts of the language: class, slot-definition, generic-
function, and method. All user-defined metaobjects must be designed to be subclasses of
one of the above meta-object classes. The specified default semantics of the CLOS lan-
guage are embodied by specializations of the above classes; with names beginning with
standard-.., e.g. standard-class, and standard-method. The manner in which the
meta-architecture captures basic O-O semantics in CLOS is given in Figure 3.

The class-subclass hierarchy of the CLOS meta-architecture is as follows. At the root
is class t which has one subclass standard-object capturing the semantics of all objects
in the system. Every class created in the system must have standard-object as its
superclass. One subclass of standard-object is the class metaobject, of which the basic
meta-object classes mentioned above are subclasses.

The class-instance hierarchy of CLOS essentially has four levels. Individual CLOS
classes are instances of class class or one of its subclasses. Class class is an instance of
(its own subclass) standard-class, as are most other meta-object classes.

The CLOS MOP has functions for systematic introspective access to its meta-objects.
For example, the programmer can access the class meta-object of a given object, the

!The actual subclass hierarchy of Smalltalk is slightly more involved than what is described here, due to
the desirability of symmetric class and metaclass hierarchies, but the given description will suffice for this
discussion.

Inheritance Generic functions specialized on the class metaobject class implement
the semantics of multiple inheritance. A class precedence list, 1.e. a total
ordering on a class’ superclasses, is computed by the generic compute-
class-precedence-list. The generic function compute-slots com-
putes the full set of slots accessible from instances of the class. The
semantics of slot property union is implemented by compute-effective-
slot-definition which is called by compute-slots. The generic func-
tion class-default-initargs computes the full set of initialization ar-
guments required by the class.

Generic invocation A discriminating function associated with a generic-function metaob-
ject provides the semantics of (multi-)method dispatch. The dis-
criminating function is computed by a generic function compute--—
discriminating-function. Dispatch proceeds by first finding the set
of applicable methods for the given set of arguments from the set of all
methods associated with the generic function metaobject, via compute-
applicable-methods, and computing an effective method via compute-
effective-method.

Slot access The function slot-value, a wrapper for the generic function slot-
value-using-class, is used for slot access. The generic function itself is
specialized to class and slot metaobjects implementing the semantics of
slot access in CLOS objects.

Instance creation The generic function make-instance and allocate-instance, both spe-
cialized to class metaobject class, implement instance creation. Prior
to creating an instance of a class; it 18 finalized by computing the actual
structure of the class as described under “inheritance” above.

Figure 3: CLOS’s O-O Semantics

class meta-object’s name, superclasses, slots (each of which is a meta-object on its own),
subclasses and methods. The details of each slot meta-object, generic function, and method
can also be accessed. Using these functions, it is possible to, for example, reconstruct a
textual description of an object’s class.

CLOS MOP is a layered protocol, i.e. the protocol specifies meta-architecture func-
tionality at various levels of detail, with higher levels delegating work to lower levels, so
that user-refinement can be made at various granularities of semantics. For instance, a top
layer protocol concerned with inheritance is the generic function finalize-inheritance,
which delegates to the next layer, compute-class-precedence-list and compute-slots,
which further delegates to compute-effective-slot-definition.

A large number of applications that the CLOS MOP can be put to are illustrated in [2].
These include specialized classes such as counted classes and encapsulated classes. CLOS
MOP has also been utilized to provide a significant persistence facility [8].

5 Etyma

Etyma is a general meta-level architecture for O-O languages realized as a C++ framework
(in the sense of [1]). The primary abstractions of Etyma are based on a language called
Jigsaw, a module manipulation language designed to model the semantic foundations of

object-orientation, especially inheritance, in all its forms. A basic premise of this work is
that O-O concepts, properly formulated, can be applied not only to traditional program-
ming language design, but for the broader design and implementation of O-O programming
systems, such as linkers/loaders, library management tools, configuration management sys-
tems, type checkers, etc.. We name our framework Etyma (the plural of “etymon,” taken
from the etymology of “etymology”) since it is a collection of root concepts from which
other concepts are formed by composition or derivation.

In Etyma, as in Jigsaw, the central concept is that of a module, akin to a class, which can
be informally defined here as any software unit that provides a set of services as specified by
its interface. A module consists of a set of labels (identifiers) each associated with either (i)
a value (e.g. an integer, a function) in a language’s value domain, or a type in the language’s
type domain, or (ii) a location, in which case the label corresponds to a mutable instance
variable, or (iii) a (nested) module or its interface. The key characteristic of this model is
that modules can be combined using a suite of unbundled and general module combinators
to achieve various effects of inheritance, sharing, and encapsulation. A summary of the
key semantics captured by the meta-architecture is given in Figure 4.

Inheritance The semantics of the usual kinds of inheritance is supported by some combi-
nation of the primitive operators merge, override, and copy_as, with vari-
ous other effects achieved via the operators rename, restrict, and freeze.
All of these operators are implemented as methods of class Module.

Typing A static type system with subtypes and inherited types is supported. The
structural type of modules is captured by class Interface. Etyma also has
a hierarchy of type meta-classes to capture the type space of programming
languages.

Encapsulation Supported by the hide operator of Module. Hidden attributes are removed
from a module’s interface, and are accessible only by a class’ own methods.

Method dispatch Supported by the select method of class Instance. In the default case,
select dynamically dispatches on attribute name.

Abstract classes Modules can have attributes whose types are declared but which are not
defined. Such modules correspond to abstract classes, and cannot be
instantiated.

Instantiation Supported by the method instantiate of class Module, which returns an
object of class Instance.

Figure 4: Etyma/Jigsaw O-O semantics

The class-subclass hierarchy of Etyma has class Etymon at the root. A subclass Typed-
Value embodies the typed value domain of languages, and another subclass Type embodies
the corresponding type domain. Class Module is a subclass of TypedValue, as is class
Instance, but via class Record. There is a parallel type hierarchy with classes Interface,
InstanceType, and RecordType.

In [9], we have described a preliminary C++ prototype implementation of Etyma. The
design of abstractions in Etyma has been guided mostly by semantic concerns, with ideas
based on a denotational description of the Jigsaw language. Etyma can be used to describe
and build processors for many systems that can be construed to be module-based. Lan-

guages that are derived from the framework are called client languages, and processors for
them are constructed by extending the framework. The client language is in general unre-
lated to the framework implementation language — an extension of Modula-3, Modula-7,
is presented in [5], and examples of simple languages based on C++ are given in [9]. Etyma
is being used as the meta-architectural framework for a larger initiative for evolutionary
support for modular architectures, in which a module-based server-style linker/loader is
being designed as an extension. In this extension, UNIX “.0” and “.s0” object files are
regarded as specializations of class Module, thus enabling the use of comprehensive inheri-
tance semantics [10] and type checking [11] in their composition.

6 A MOP for Scheme Compilers

Like the CLOS MOP, this MOP carefully chooses a useful portion of the internal function-
ality of a scheme compiler in order to provide the Scheme programmer with the desirable
attributes of flexibility and control over layout and access over run-time data. Many of the
details of this MOP are still under development [3, 12], so we only give a general description
of it.

Unlike the CLOS MOP, this is a compile-time MOP, i.e. the accessible meta-architecture
is specializable to control the static behavior of the compiler. Such static specialization is
utilized at run-time. However, meta-code (the code that accesses the MOP) is not executed
at run-time. This architecture decouples the language of the static processor (compiler),
and hence the meta-architecture, from the source language itself — thus it is not meta-
circular. The meta-architecture is expressed in an O-O extension of LISP called Traces
[13]. This meta-architecture attempts to capture certain aspects, such as procedures and
pairs, of a non O-O base language, Scheme.

The primary abstraction in this meta-architecture is what is termed a “contract.” A
contract metaobject represents a group of interrelated source program fragments that must
agree on the layout of run-time data. For example, a lambda abstraction and all applica-
tions of (i.e. calls to) it would be such a group. Contracts essentially capture the notion
that an abstraction and its uses must statically agree on conventions such as run-time lay-
out. Other such static “contracts” include cons pairs along with its accessors car and cdr,
and let environments along with their variable accesses.

Dependencies between abstractions and their uses are traced by flow analysis on source
program fragments captured as program graph metaobjects. Source programs are trans-
lated into a register transfer language captured as RTL metaobjects. For instance, when a
function application is required to generate code, it delegates the job to its contract metaob-
ject, which further requests the appropriate program graph metaobjects to generate RTL
metaobjects.

A few applications of the Scheme MOP are illustrated in [12]. These include extending
the base Scheme language to support procedures with extra data attached to them, im-
mutable data structures, and procedures that are dispatched based on the number of input
parameters.

7 Summary and Conclusions

In this section, we attempt a summary of the meta-architectures surveyed. Of course, it is
impossible to provide a comprehensive summary of the depths of the meta-architectures;
instead we give a broad comparison of some essential aspects.

Figure 5 shows the abstractions, both O-O (e.g. class) and non-O-O (e.g. function),
captured as meta-classes by the architectures. Figure 6 gives a comparative summary of
the architectures in the areas of inheritance, method dispatch, encapsulation, and static

typing.

| | Smalltalk | CLOS MOP | Etyma | Scheme
Meta Metaclass (none) (none) N/A
Class Class standard-class | Module/Interface N/A
Instance Object standard-object | Instance/InstanceType | N/A
Function BlockClosure (none) Function/FunctionType | lambda contract
Variable Variable (none) Location/LocationType | let contract
Primitive Value | Magnitude, etc. | (none) PrimValue/PrimType [primitive] contract

Figure 5: Summary of selected abstractions

Inheritance

Method dispatch

Encapsulation

Static typing

In Smalltalk, the class Behavior and its subclass Class together model
single inheritance semantics. In CLOS MOP, generic functions special-
1zed to class class model multiple inheritance semantics. In Etyma, class
Module implements unbundled inheritance operators. The default seman-
tics of inheritance is significantly broader in Etyma/Jigsaw compared with
the defaults in either Smalltalk or CLOS MOP.

In Smalltalk, method dispatch is done by the perform:... method of
class Object. In CLOS MOP, a discriminating function associated with
class generic-function performs method dispatch. In Etyma, it is done
by the method select of class Instance. CLOS MOP, by virtue of its very
general model of generic functions and multi-methods, provides the most
sophisticated method dispatch semantics.

Smalltalk supports strong encapsulation of instance variables, and Et-
yma/Jigsaw encapsulates module attributes subjected to hide operations.
CLOS MOP’s default encapsulation semantics is weak, although metaob-
jects could be specialized using the MOP to support better encapsulation.
Static typing and separate processing of modules are highly desirable at-
tributes for languages. The Jigsaw language supports static type rules
which have been incorporated into Etyma’s Interface abstraction. Et-
yma also incorporates a comprehensive model of type meta-classes. Such a
model is practically absent in the other meta-architectures.

Figure 6: Summary of O-O semantics

Although Smalltalk cannot boast generality in the area of inheritance, it still provides
the most uniform and comprehensive model of concepts as objects in its meta-architecture.

It is also the most comprehensively designed meta-architecture, considering the complexity
of the interacting dual hierarchies of meta-classes. The CLOS MOP, on the other hand,
provides a pragmatic and systematically documented MOP, making it the most useful to
applications. Etyma/Jigsaw provides significant generality compared with the other archi-
tectures, but its utility is yet to be demonstrated. The Scheme MOP is as yet experimental
and in the process of being developed, but is unique and very promising.

Smalltalk is the clear winner in the area of abstractions for non O-O concepts in the
language. The abstractions are general, broadly conceived, and uniform. The Scheme MOP
attempts to capture only those basic concepts in the language which are important from
a compilation standpoint. Etyma is currently attempting to design general abstractions
covering the space of basic values and types in some commonly found languages.

In conclusion, meta-architectures are powerful, flexible, and extensible by their very na-
ture. There are considerable similarities and differences in the goals that the architectures
surveyed here are trying to achieve, as well as in their conceptions. Each was designed
with a different set of requirements, yet they can be used for similar applications. The
space of meta-architectures span from the pragmatic to the very general. In this paper,
we have surveyed the goals, semantic models, and applications of four meta-architectures
— Smalltalk, CLOS MOP, Scheme compiler and Etyma — and highlighted their salient
features.

Acknowledgments

We gratefully acknowledge useful discussions and input from Gregor Kiczales, Bob Kessler, and
Tim Moore.

References

[1] Johnson, R. E. and Russo, V. F., (1991), “Reusing object-oriented designs,” Tech. Rep.
UIUCDCS 91-1696, University of Illinois at Urbana-Champagne.

[2] Kiczales, G., des Riviéres, J., and Bobrow, D. G., (1991), The Art of the Metaobject Protocol.
Cambridge, MA: The MIT Press.

[3] Lamping, J., Kiczales, G., Rodriquez, L., and Ruf, E., (1992), “An architecture for an open
compiler,” in Proc. of the IMSA ’92 Workshop on Reflection and Meta-level Architectures.

[4] Goldberg, A. and Robson, D., (1983), Smalltalk-80: The Language and its Implementation.
Addison-Wesley.

[5] Bracha, G. and Lindstrom, G., (1992), “Modularity meets inheritance,” in Proc. International
Conference on Computer Languages, (San Francisco, CA), IEEE Computer Society, pp. 282—
290. Also available as Technical Report UUCS-91-017.

[6] Bracha, G., (1992), “The programming language jigsaw: Mixins, modularity and multiple
inheritance,”. PhD thesis, University of Utah. Technical report UUCS-92-007; 143 pp.

[7] Keene, S. E., (1989), Object-Oriented Programming in Common Lisp. Reading, MA: Addison-
Wesley.

[8] Lee, A. H., (1992), “The persistent object system MetaStore: Persistence via metaprogram-
ming,”. PhD thesis, University of Utah. Technical report UUCS-92-027; 171 pp.

[9]

Banavar, G. and Lindstrom, G., (1993), “A framework for module-based language processors,”
Computer Science Department Technical Report UUCS-93-006, University of Utah.

Orr, D. B. and Mecklenburg, R. W., (1992), “OMOS — An object server for program execu-
tion,” in Proc. International Workshop on Object Oriented Operating Systems, (Paris), IEEE
Computer Society, pp. 200-209. Also available as technical report UUCS-92-033.

Banavar, G., Lindstrom, G., and Orr, D., (1994), “Type-safe composition of object modules,”
in Computer Systems and Education: In honour of Prof. V. Rajaraman, pp. 188-200, Ban-
galore, India: Tata McGraw Hill Publishing Company, Limited. ISBN 0-07-462044-4. Also
available as Technical Report UUCS-94-001.

Kiczales, G., Lamping, J., and Mendhekar, A., (1994), “What a metaobject protocol based
compiler can do for lisp.” Unpublished report. A modified version to be presented at the
OOPSLA ’94 workshop on O-O Compilation.

Kiczales, G., (1993), “Traces (a cut at the “make isn’t generic” problem).,” in Proc. of Int’l
Symposium on Object Technologies for Advanced Software, vol. 742 of Lecture Notes in Com-
puter Science, Springer Verlag.

