
The Design of Object�Oriented

Meta�Architectures

For Programming Languages
�

Guruduth Banavar and Gary Lindstrom

Department of Computer Science

University of Utah� Salt Lake City

Abstract� This paper is a survey of the design of four object�oriented meta�level architectures

for programming languages� We present overviews and compare the salient features of the meta�

architectures of Smalltalk� Common Lisp Object System �CLOS�� a Scheme Compiler� and Etyma�

our framework for modular systems� This comparison clari�es important architectural aspects of the

surveyed systems� such as the space of concepts captured by the architectures� and the abstractions

that embody similar language concepts across the architectures� We �nd that there are considerable

di�erences in the goals and conceptions of these architectures� yet they can all be used for similar

applications� Finally� we point out some strengths and weaknesses of the architectures surveyed�

� Introduction

Object�orientation is a popular design technique that has been used to model application
domains of all varieties ���� A recently emerging trend is to apply the object�oriented �O�
O� method to the design of O�O language processors themselves� thereby harnessing the
much touted advantages of abstraction and reuse in this domain also� For example� the
Meta Objects of the CLOS MetaObject Protocol �MOP� ��� is an O�O model of certain
useful concepts in CLOS� A recently proposed O�O model for a compiler for a non O�O
language� Scheme� �	� is another example� One of the earliest O�O programming systems�
Smalltalk�
� ���� was itself built upon an intricately interconnected group of meta�classes�

The above languages embody O�O meta�level architectures� or meta�architectures for
short� in the sense that they model the fundamental concepts in the language� such as
class and method� as interacting meta�classes� This has resulted in re
ective� 
exible� and
extensible language designs� Many of these advantages stem from the fact that rei�ed
meta�classes are candidates for systematic re
ective access� That is� a system that has a
well�designed meta�architecture can essentially provide users not only with its standard

�This research was sponsored by the Advanced Research Projects Agency �DOD�� monitored by the
Department of the Navy� O�ce of the Chief of Naval Research� under Grant number N���������J����	

The views and conclusions contained in this document are those of the authors and should not be interpreted
as representing o�cial policies� either expressed or implied� of the Advanced Research Projects Agency or
the US Government
 Contact author� G
 Banavar� Computer Science � ���� MEB� University of Utah� Salt
Lake City� UT 
���� USA� e�mail banavar�cs�utah�edu� phone ���
����
��
��
� fax ���
����
���
��


�



interface� but with an alternative interface � a �side door� to the internal architecture�
which is typically a subset of the meta�architecture interface� Information access and
re�nement via this alternative interface can enable applications to �ne�tune a language
implementation to suit its particular needs� Meta�classes can be specialized to suit speci�c
tasks using standard O�O techniques such as inheritance� In a compilation setting� meta�
classes can even be specialized to statically optimize run�time data layout or generate
optimized code for particular special cases�

It is important to clarify the relationship between the concepts of meta�architecture�
re�ection� and metaobject protocol �MOP�� A meta�architecture models� systematically
implements� and documents the fundamental concepts of a system� A meta�architecture is
O�O if the concepts are modeled as collaborating classes� A system is re
ective if its users
have introspective �i�e� read� and�or intercessory �i�e� modi�cation� access to the internal
implementation of the system� Finally� a MOP documents and illustrates a disciplined
method of re
ective access to a carefully chosen subset of a system�s O�O meta�architecture�

The semantics of a programming language is rarely made formally explicit in the lan�
guage implementation� let alone made usefully accessible from within the language itself�
This may be due to the fact that the design of programming languages is generally con�
sidered to be an amorphous creative activity� carried out by the best experts in the �eld�
However� this need not necessarily be the case � an important point of this paper is that
the design discipline encouraged by object�oriented methods can be fruitfully applied to
the design of programming languages themselves� Furthermore� a signi�cant part of the
semantics of a language can be rei�ed as an O�O meta�architecture� A well�designed meta�
architecture enables reuse� re
ection� and the design of a suitable MOP� and thus brings
the advantages mentioned above�

The traditional architecture for processing high level languages involves the following�
usually separate� languages� the source language� the target language �this is not signi�cant
in the case of direct interpreters�� and the processor description �implementation� language�
An important observation is that the meta�architecture of a language is expressed in its
processor description language� From this it follows that a language can have multiple meta�
architectures corresponding to multiple processor descriptions� each designed with di�erent
requirements� It also follows that a language�s meta�architecture need not necessarily
be meta�circular� i�e� expressed in the source language itself� In fact� in order to have
an O�O meta�architecture� a language need not even be object�oriented� However� its
implementation language must� The meta�architectures of dynamic languages such as
Smalltalk are meta�circular since a large part of the language is implemented using the
language itself� as is its meta�architecture�

In this paper� we contrast the three meta�architectures mentioned above� Smalltalk�
CLOS MOP� and the Scheme compiler MOP� along side our own meta�architecture based
on a language called Jigsaw ���� Smalltalk and CLOS are general�purpose O�O languages
that enjoy signi�cant followings� Smalltalk was built ground�up based on a remarkably
coherent meta�architecture� while the meta�architecture for CLOS was retro�tted onto
the language� The Scheme compiler MOP shares the goals of the CLOS MOP� but is
signi�cantly di�erent from the above two since Scheme is not O�O� and its MOP is compile�
time oriented� Finally� our framework� Etyma� attempts to generalize and bring together
many of the concepts from the above meta�architectures�

The paper continues by discussing the design issues investigated in this survey� followed
by detailed descriptions of the four meta�architectures under consideration� Finally� we



provide a summary of architectures and conclude�

� Design Issues

The design of meta�architectures for languages is driven by various considerations� In this
section� we outline some of the issues that govern the design of meta�architectures� the
main categories being �i� the pre�stated design goals of the language as governed by the
requirements of applications� and �ii� the requirements of semantic models of languages�
also driven by applications � i�e� how the abstractions of meta�architectures must capture
the crucial semantics of their languages�

Goals and Application Requirements

Consider the competing goals of generality vs� backward compatibility� A primary
requirement in the design of the CLOS MOP was backward compatibility with several
existing LISP Object systems which were pairwise incompatible� The re�neability of the
object model enabled by the MOP essentially brought about the backward compatibility�
Hence� it was su�cient to model just the object system in the meta�architecture� in such
a manner that backward compatibility can be achieved� One can imagine that the meta�
architecture in such a scenario could be markedly constrained by the existing object models�
On the other hand� the Smalltalk and Etyma meta�architectures were built from scratch
based upon a uniform model� i�e� every concept in these systems is modeled in the meta�
architecture� Moreover� Etyma was designed from the start with the explicit purpose of
abstracting semantic commonalities in module�based languages and systems� As a result�
the abstractions provide a clean module and inheritance model� leaving the rest of the
language design open�

An important application of meta�architectures is the support for 
exibility and ex�
tensibility of a language via re�ection and MOPs� In addition to introspective access� a
MOP typically provides intercessory access to meta�objects� making it possible to re�ne
them incrementally using standard O�O techniques and hence amend the existing language
design itself� The user can de�ne new meta�object classes as specializations �subclasses�
of the standard meta�object classes� re�ning their behavior as necessary� The most impor�
tant goal of the CLOS and Scheme compiler meta�architectures is to provide a metaobject
protocol for users� This has led to the pragmatic design goals of �i� controlled and care�
fully documented user extensibility� �ii� interoperability of separately designed extensions�
�iii� e�ciency via user specialization� and �iv� ease of use� In the context of MOP design�
there is a tradeo� between implementor freedom and user extensibility� The CLOS MOP
designers deal with this tradeo� by explicitly specifying restrictions on the usage of the
MOP�

Given re
ective access to its meta�architecture� a language�s source programs are made
up of base language code interspersed with meta�code� i�e� the code that accesses the
meta�architecture� One design issue in such systems is the execution time of meta�code�
Dynamic environments like Smalltalk and CLOS require meta�code to execute at run�
time� while the Scheme MOP runs meta�code at compile�time� Dynamic architectures
exhibit meta�circularity� and hence a tight coupling between the language and the meta�
architecture� While this coupling enhances application development 
exibility� it causes



the meta�level architecture to become di�cult to disentangle from their base languages for
separate reuse�

The need for self�applicability �meta�circularity� is an important design issue� It is a
fundamental requirement in the dynamic environments of Smalltalk and CLOS MOP� It is
not even possible in Scheme since it is a non O�O language with an O�O meta�architecture�
The requirements of static typing and separate compilation make it impossible to express
the Jigsaw language �on which Etyma is based� using itself� The details of this are beyond
the scope of this paper ����

A language meta�architecture supports reuse of design and code just as a domain speci�c
O�O framework does� O�O frameworks for several domains have been constructed ����
Similarly� an O�O framework can be used as a reusable domain model for O�O languages
and systems � indeed� this is a primary goal of Etyma�

An important use of meta�architectures is as an aid in understanding�maintaining the
system� Another use is the construction of program analysis tools such as browsers and
debuggers� Speci�c meta�architectures have also been used for other applications such as
persistence�

Requirements of Semantic Models

In addition to general goals such as the above� meta�architecture designs have several se�
mantic requirements� For instance� type�checking is an important issue that must be taken
into early consideration when building a meta�architecture� Although meta�architectures
are considered extensible� the design decisions in the area of typing built into existing archi�
tectures pervade the entire model� and make it hard to retro�t signi�cant static semantics�
Another example of a fundamental requirement is the semantics of inheritance�

Feature Smalltalk�
� CLOS MOP Etyma

Inheritance Single Multiple Unbundled
Encapsulation Object�level �none� Object�level
Method dispatch Single Generic�Multi Single
Static Typing No No Structural

Figure �� Selected O�O semantics of surveyed languages

By its very nature� the meta�architecture of a language captures and constrains the
semantics of the base language� The space of high�level language semantics is broad and a
subspace of it must necessarily be carved out by a particular meta�architecture� The larger
the subspace� the more complex and potentially less useful the meta�architecture� Once the
subspace is chosen� the particular way in which semantic concepts within this subspace are
modeled is also signi�cant� Furthermore� the location of the point representing the base
semantics of the language must be chosen within this subspace� Figure � tabularizes a
sample of O�O semantic choice points of the languages surveyed here� In the following sec�
tions� we describe the speci�c semantics captured by meta�architectures for O�O languages
in detail� including support for inheritance� encapsulation� method dispatch� instantiation�
static typing� and abstract classes�

We now turn to a more detailed treatment of speci�c meta�architectures�



� Smalltalk

Smalltalk is based on a uniform model of communicating objects� It has a small number of
concepts � object� class� instance� message� and method� Every concept in the system is
modeled as an object� either instantiable �class object� or not �instance object�� The most
primitive low�level operations in the system are delegated to a virtual machine� Objects
communicate via messages� the semantics of messages are implemented by receivers as
methods�

Smalltalk�s notion of objects is captured by class Object which provides the basic
semantics� including message handling� of all objects in the system� The semantics of
classes is captured by class Class along with its superclass Behavior which de�nes the
state required by classes� such as for instance variables and a method dictionary� Further�
the class CompiledMethod embodies the notion of a class� method� this class de�nes a
method valueWithReceiver� to evaluate itself� The O�O semantics of Smalltalk captured
by the meta�architecture is given in Figure ��

Inheritance The class Class implements a message subclass���� which accepts one
class parameter� the superclass� thus implementing single inheritance� The
subclasses of Class� which are the meta�classes of individual classes� inherit
the method subclass����� thus individual class objects also respond to this
message� The assumption that classes have a single superclass permeates
the system� Inheritance of state and methods is captured by the superclass
of Class� class Behavior� which implements methods to compute the set
of instance variables and methods available to instances of a class�

Message handling Class Object de�nes a method perform�withArguments� that handles
message dispatch using a primitive method of the Smalltalk virtual ma�
chine� There is also a class MessageSend that captures the notion of a
message�send� However� for e�ciency� an instance of this class is not cre�
ated for every message�send in the system�

Encapsulation Instance variables are encapsulated in Smalltalk� Method handling code
searches only the method dictionary of a class� but not the instance vari�
ables� Method objects have access to instance variables since they refer to a
scope object that records the variable objects accessible within that scope�

Instance creation Class Behavior� the superclass of class Class� de�nes a message new��
which calls a primitive message to create an instance of the receiver �which
must be a class��

Figure �� Smalltalk�s O�O semantics

Smalltalk is a �dual hierarchy� language� as are most object�oriented languages� That
is� it has a cleanly articulated class�subclass hierarchy as well as a class�instance hierarchy�
In most languages� however� the class�instance hierarchy is not interesting since it comprises
only two levels � that of all classes and all instances� In Smalltalk� this hierarchy is deeper�
and is recursive� as described below�

Every object in Smalltalk is an instance of some class� Since classes themselves are
objects� each class object is an instance of yet another class� usually referred to as a
metaclass object� For example� a class Foo is an instance of its metaclass� given by the
expression Foo class� Such metaclass objects are themselves instances of an ordinary class



called Metaclass� The metaclass of class Metaclass itself is given by Metaclass class�
which is also an instance of class Metaclass� just as Foo class is� The above recursion
puts an end to the in�nite regression of metaclasses�

Consider the class�subclass hierarchy of metaclasses� Every class in Smalltalk inherits
from class Object� hence the subclass hierarchy is a singly rooted tree� The class Metaclass
mentioned above is also a subclass of Object� The instances of class Metaclass� such
as Foo class� Metaclass class� and even Object class� are all �meta�classes� These
metaclasses are subclasses of class Class� which is a subclass of class Object��

In Smalltalk� the meta�architecture is really �in�nitely open�� in the sense that every
single concept in the system �except some primitive operations that are performed directly
by the virtual machine� is captured as an object which users can not only specialize� but also
browse and access� i�e� directly edit and modify� which of course is strongly discouraged�

� CLOS MOP

As mentioned earlier� a primary requirement in the design of CLOS was backward compat�
ibility with existing LISP systems� It was recognized that these incompatibilities could be
reconciled if a family of languages� rather than a single one� were de�ned� Thus� the CLOS
meta�architecture was designed to facilitate modeling an entire space of language designs�
with the default CLOS design being a distinguished point� Furthermore� a protocol �MOP�
has been carefully designed and documented to access this meta�architecture usefully�

The CLOS object system supports the standard concept of classes� which can be in�
stantiated into instances ���� Class attributes are called slots� A distinguishing feature of
the CLOS model is the notion of generic functions which are de�ned independent of any
class� and can be specialized into methods that are applicable to speci�c classes� Generic
functions can be dispatched based on multiple arguments �multi�methods��

The CLOS meta�architecture speci�es the following basic meta�object classes corre�
sponding to the basic concepts of the language� class� slot�definition� generic�

function� and method� All user�de�ned metaobjects must be designed to be subclasses of
one of the above meta�object classes� The speci�ed default semantics of the CLOS lan�
guage are embodied by specializations of the above classes� with names beginning with
standard���� e�g� standard�class� and standard�method� The manner in which the
meta�architecture captures basic O�O semantics in CLOS is given in Figure 	�

The class�subclass hierarchy of the CLOS meta�architecture is as follows� At the root
is class t which has one subclass standard�object capturing the semantics of all objects
in the system� Every class created in the system must have standard�object as its
superclass� One subclass of standard�object is the class metaobject� of which the basic
meta�object classes mentioned above are subclasses�

The class�instance hierarchy of CLOS essentially has four levels� Individual CLOS
classes are instances of class class or one of its subclasses� Class class is an instance of
�its own subclass� standard�class� as are most other meta�object classes�

The CLOS MOP has functions for systematic introspective access to its meta�objects�
For example� the programmer can access the class meta�object of a given object� the

�The actual subclass hierarchy of Smalltalk is slightly more involved than what is described here� due to
the desirability of symmetric class and metaclass hierarchies� but the given description will su�ce for this
discussion




Inheritance Generic functions specialized on the class metaobject class implement
the semantics of multiple inheritance� A class precedence list� i�e� a total
ordering on a class� superclasses� is computed by the generic compute�

class�precedence�list� The generic function compute�slots com�
putes the full set of slots accessible from instances of the class� The
semantics of slot property union is implemented by compute�effective�

slot�definition which is called by compute�slots� The generic func�
tion class�default�initargs computes the full set of initialization ar�
guments required by the class�

Generic invocation A discriminating function associated with a generic�function metaob�
ject provides the semantics of �multi��method dispatch� The dis�
criminating function is computed by a generic function compute��

discriminating�function� Dispatch proceeds by �rst �nding the set
of applicable methods for the given set of arguments from the set of all
methods associated with the generic function metaobject� via compute�

applicable�methods� and computing an e�ective method via compute�

effective�method�
Slot access The function slot�value� a wrapper for the generic function slot�

value�using�class� is used for slot access� The generic function itself is
specialized to class and slot metaobjects implementing the semantics of
slot access in CLOS objects�

Instance creation The generic function make�instance and allocate�instance� both spe�
cialized to class metaobject class� implement instance creation� Prior
to creating an instance of a class� it is �nalized by computing the actual
structure of the class as described under 	inheritance
 above�

Figure 	� CLOS�s O�O Semantics

class meta�object�s name� superclasses� slots �each of which is a meta�object on its own��
subclasses and methods� The details of each slot meta�object� generic function� and method
can also be accessed� Using these functions� it is possible to� for example� reconstruct a
textual description of an object�s class�

CLOS MOP is a layered protocol� i�e� the protocol speci�es meta�architecture func�
tionality at various levels of detail� with higher levels delegating work to lower levels� so
that user�re�nement can be made at various granularities of semantics� For instance� a top
layer protocol concerned with inheritance is the generic function finalize�inheritance�
which delegates to the next layer� compute�class�precedence�list and compute�slots�
which further delegates to compute�effective�slot�definition�

A large number of applications that the CLOS MOP can be put to are illustrated in ����
These include specialized classes such as counted classes and encapsulated classes� CLOS
MOP has also been utilized to provide a signi�cant persistence facility �
��

� Etyma

Etyma is a general meta�level architecture for O�O languages realized as a C�� framework
�in the sense of ����� The primary abstractions of Etyma are based on a language called
Jigsaw� a module manipulation language designed to model the semantic foundations of



object�orientation� especially inheritance� in all its forms� A basic premise of this work is
that O�O concepts� properly formulated� can be applied not only to traditional program�
ming language design� but for the broader design and implementation of O�O programming
systems� such as linkers�loaders� library management tools� con�guration management sys�
tems� type checkers� etc�� We name our framework Etyma �the plural of �etymon�� taken
from the etymology of �etymology�� since it is a collection of root concepts from which
other concepts are formed by composition or derivation�

In Etyma� as in Jigsaw� the central concept is that of amodule� akin to a class� which can
be informally de�ned here as any software unit that provides a set of services as speci�ed by
its interface� A module consists of a set of labels �identi�ers� each associated with either �i�
a value �e�g� an integer� a function� in a language�s value domain� or a type in the language�s
type domain� or �ii� a location� in which case the label corresponds to a mutable instance
variable� or �iii� a �nested� module or its interface� The key characteristic of this model is
that modules can be combined using a suite of unbundled and general module combinators
to achieve various e�ects of inheritance� sharing� and encapsulation� A summary of the
key semantics captured by the meta�architecture is given in Figure ��

Inheritance The semantics of the usual kinds of inheritance is supported by some combi�
nation of the primitive operators merge� override� and copy as� with vari�
ous other e�ects achieved via the operators rename� restrict� and freeze�
All of these operators are implemented as methods of class Module�

Typing A static type system with subtypes and inherited types is supported� The
structural type of modules is captured by class Interface� Etyma also has
a hierarchy of type meta�classes to capture the type space of programming
languages�

Encapsulation Supported by the hide operator of Module� Hidden attributes are removed
from a module�s interface� and are accessible only by a class� own methods�

Method dispatch Supported by the select method of class Instance� In the default case�
select dynamically dispatches on attribute name�

Abstract classes Modules can have attributes whose types are declared but which are not
de�ned� Such modules correspond to abstract classes� and cannot be
instantiated�

Instantiation Supported by the method instantiate of class Module� which returns an
object of class Instance�

Figure �� Etyma�Jigsaw O�O semantics

The class�subclass hierarchy of Etyma has class Etymon at the root� A subclass Typed�
Value embodies the typed value domain of languages� and another subclass Type embodies
the corresponding type domain� Class Module is a subclass of TypedValue� as is class
Instance� but via class Record� There is a parallel type hierarchy with classes Interface�
InstanceType� and RecordType�

In ���� we have described a preliminary C�� prototype implementation of Etyma� The
design of abstractions in Etyma has been guided mostly by semantic concerns� with ideas
based on a denotational description of the Jigsaw language� Etyma can be used to describe
and build processors for many systems that can be construed to be module�based� Lan�



guages that are derived from the framework are called client languages� and processors for
them are constructed by extending the framework� The client language is in general unre�
lated to the framework implementation language � an extension of Modula�	� Modula���
is presented in ���� and examples of simple languages based on C�� are given in ���� Etyma
is being used as the meta�architectural framework for a larger initiative for evolutionary
support for modular architectures� in which a module�based server�style linker�loader is
being designed as an extension� In this extension� UNIX ��o� and ��so� object �les are
regarded as specializations of class Module� thus enabling the use of comprehensive inheri�
tance semantics ���� and type checking ���� in their composition�

� A MOP for Scheme Compilers

Like the CLOS MOP� this MOP carefully chooses a useful portion of the internal function�
ality of a scheme compiler in order to provide the Scheme programmer with the desirable
attributes of 
exibility and control over layout and access over run�time data� Many of the
details of this MOP are still under development �	� ���� so we only give a general description
of it�

Unlike the CLOSMOP� this is a compile�time MOP� i�e� the accessible meta�architecture
is specializable to control the static behavior of the compiler� Such static specialization is
utilized at run�time� However� meta�code �the code that accesses the MOP� is not executed
at run�time� This architecture decouples the language of the static processor �compiler��
and hence the meta�architecture� from the source language itself � thus it is not meta�
circular� The meta�architecture is expressed in an O�O extension of LISP called Traces
��	�� This meta�architecture attempts to capture certain aspects� such as procedures and
pairs� of a non O�O base language� Scheme�

The primary abstraction in this meta�architecture is what is termed a �contract�� A
contract metaobject represents a group of interrelated source program fragments that must
agree on the layout of run�time data� For example� a lambda abstraction and all applica�
tions of �i�e� calls to� it would be such a group� Contracts essentially capture the notion
that an abstraction and its uses must statically agree on conventions such as run�time lay�
out� Other such static �contracts� include cons pairs along with its accessors car and cdr�
and let environments along with their variable accesses�

Dependencies between abstractions and their uses are traced by 
ow analysis on source
program fragments captured as program graph metaobjects� Source programs are trans�
lated into a register transfer language captured as RTL metaobjects� For instance� when a
function application is required to generate code� it delegates the job to its contract metaob�
ject� which further requests the appropriate program graph metaobjects to generate RTL
metaobjects�

A few applications of the Scheme MOP are illustrated in ����� These include extending
the base Scheme language to support procedures with extra data attached to them� im�
mutable data structures� and procedures that are dispatched based on the number of input
parameters�



� Summary and Conclusions

In this section� we attempt a summary of the meta�architectures surveyed� Of course� it is
impossible to provide a comprehensive summary of the depths of the meta�architectures�
instead we give a broad comparison of some essential aspects�

Figure � shows the abstractions� both O�O �e�g� class� and non�O�O �e�g� function��
captured as meta�classes by the architectures� Figure � gives a comparative summary of
the architectures in the areas of inheritance� method dispatch� encapsulation� and static
typing�

Smalltalk CLOS MOP Etyma Scheme

Meta Metaclass �none� �none� N�A
Class Class standard�class Module�Interface N�A
Instance Object standard�object Instance�InstanceType N�A
Function BlockClosure �none� Function�FunctionType lambda contract
Variable Variable �none� Location�LocationType let contract
Primitive Value Magnitude� etc
 �none� PrimValue�PrimType �primitive� contract

Figure �� Summary of selected abstractions

Inheritance In Smalltalk� the class Behavior and its subclass Class together model
single inheritance semantics� In CLOS MOP� generic functions special�
ized to class class model multiple inheritance semantics� In Etyma� class
Module implements unbundled inheritance operators� The default seman�
tics of inheritance is signi�cantly broader in Etyma�Jigsaw compared with
the defaults in either Smalltalk or CLOS MOP�

Method dispatch In Smalltalk� method dispatch is done by the perform���� method of
class Object� In CLOS MOP� a discriminating function associated with
class generic�function performs method dispatch� In Etyma� it is done
by the method select of class Instance� CLOS MOP� by virtue of its very
general model of generic functions and multi�methods� provides the most
sophisticated method dispatch semantics�

Encapsulation Smalltalk supports strong encapsulation of instance variables� and Et�
yma�Jigsaw encapsulates module attributes subjected to hide operations�
CLOS MOP�s default encapsulation semantics is weak� although metaob�
jects could be specialized using the MOP to support better encapsulation�

Static typing Static typing and separate processing of modules are highly desirable at�
tributes for languages� The Jigsaw language supports static type rules
which have been incorporated into Etyma�s Interface abstraction� Et�
yma also incorporates a comprehensive model of type meta�classes� Such a
model is practically absent in the other meta�architectures�

Figure �� Summary of O�O semantics

Although Smalltalk cannot boast generality in the area of inheritance� it still provides
the most uniform and comprehensive model of concepts as objects in its meta�architecture�



It is also the most comprehensively designed meta�architecture� considering the complexity
of the interacting dual hierarchies of meta�classes� The CLOS MOP� on the other hand�
provides a pragmatic and systematically documented MOP� making it the most useful to
applications� Etyma�Jigsaw provides signi�cant generality compared with the other archi�
tectures� but its utility is yet to be demonstrated� The Scheme MOP is as yet experimental
and in the process of being developed� but is unique and very promising�

Smalltalk is the clear winner in the area of abstractions for non O�O concepts in the
language� The abstractions are general� broadly conceived� and uniform� The Scheme MOP
attempts to capture only those basic concepts in the language which are important from
a compilation standpoint� Etyma is currently attempting to design general abstractions
covering the space of basic values and types in some commonly found languages�

In conclusion� meta�architectures are powerful� 
exible� and extensible by their very na�
ture� There are considerable similarities and di�erences in the goals that the architectures
surveyed here are trying to achieve� as well as in their conceptions� Each was designed
with a di�erent set of requirements� yet they can be used for similar applications� The
space of meta�architectures span from the pragmatic to the very general� In this paper�
we have surveyed the goals� semantic models� and applications of four meta�architectures
� Smalltalk� CLOS MOP� Scheme compiler and Etyma � and highlighted their salient
features�

Acknowledgments

We gratefully acknowledge useful discussions and input from Gregor Kiczales� Bob Kessler� and

Tim Moore�

References

�
� Johnson� R� E� and Russo� V� F�� �
��
�� 	Reusing object�oriented designs�
 Tech� Rep�
UIUCDCS �
�
���� University of Illinois at Urbana�Champagne�

��� Kiczales� G�� des Rivi�eres� J�� and Bobrow� D� G�� �
��
�� The Art of the Metaobject Protocol�
Cambridge� MA� The MIT Press�

��� Lamping� J�� Kiczales� G�� Rodriquez� L�� and Ruf� E�� �
����� 	An architecture for an open
compiler�
 in Proc� of the IMSA ��� Workshop on Re�ection and Meta�level Architectures�

��� Goldberg� A� and Robson� D�� �
����� Smalltalk��	
 The Language and its Implementation�
Addison�Wesley�

��� Bracha� G� and Lindstrom� G�� �
����� 	Modularity meets inheritance�
 in Proc� International

Conference on Computer Languages� �San Francisco� CA�� IEEE Computer Society� pp� ����
���� Also available as Technical Report UUCS��
��
��

��� Bracha� G�� �
����� 	The programming language jigsaw � Mixins� modularity and multiple
inheritance�
� PhD thesis� University of Utah� Technical report UUCS�������� 
�� pp�

��� Keene� S� E�� �
����� Object�Oriented Programming in Common Lisp� Reading� MA� Addison�
Wesley�

��� Lee� A� H�� �
����� 	The persistent object system MetaStore� Persistence via metaprogram�
ming�
� PhD thesis� University of Utah� Technical report UUCS�������� 
�
 pp�



��� Banavar� G� and Lindstrom� G�� �
����� 	A framework for module�based language processors�

Computer Science Department Technical Report UUCS�������� University of Utah�

�
�� Orr� D� B� and Mecklenburg� R� W�� �
����� 	OMOS � An object server for program execu�
tion�
 in Proc� International Workshop on Object Oriented Operating Systems� �Paris�� IEEE
Computer Society� pp� �������� Also available as technical report UUCS��������

�

� Banavar� G�� Lindstrom� G�� and Orr� D�� �
����� 	Type�safe composition of object modules�

in Computer Systems and Education
 In honour of Prof� V� Rajaraman� pp� 
������� Ban�
galore� India� Tata McGraw Hill Publishing Company� Limited� ISBN �������������� Also
available as Technical Report UUCS������
�

�
�� Kiczales� G�� Lamping� J�� and Mendhekar� A�� �
����� 	What a metaobject protocol based
compiler can do for lisp�
 Unpublished report� A modi�ed version to be presented at the
OOPSLA ��� workshop on O�O Compilation�

�
�� Kiczales� G�� �
����� 	Traces �a cut at the 	make isn�t generic
 problem���
 in Proc� of Int�l

Symposium on Object Technologies for Advanced Software� vol� ��� of Lecture Notes in Com�

puter Science� Springer Verlag�


