
Layered� Server�based Support

for Object�Oriented Application Development

Guruduth Banavar Douglas Orr Gary Lindstrom

Department of Computer Science

University of Utah� Salt Lake City� UT ����� USA

fbanavar�dbo�lindstromg�cs�utah�edu

Abstract

This paper advocates the idea that the physical mod�
ularity ��le structure� of application components sup�
ported by conventional OS environments can be ele�
vated to the level of logical modularity� which in turn
can directly support application development in an
object�oriented manner� We demonstrate this idea
through a system�wide server that manages the ma�
nipulation of such components e�ectively� The server
is designed to be a fundamental operating system ser�
vice responsible for binding and mapping component
instances into client address spaces�

We show how this model solves some longstanding
problems with the management of application com�
ponents in existing application development environ�
ments� We demonstrate that this model�s e�ective�
ness derives from its support for the cornerstones of
OO programming� classes and their instances� encap�
sulation� and several forms of inheritance�

� Introduction
In a traditional application development environ�

ment such as UNIX� application components ulti�
mately take the form of �les of various kinds � source�
object� executable� and library �les� Entire appli�
cations are typically built by putting together these
components using in�exible� and sometimes ad�hoc�
techniques such as preprocessor directives and exter�
nal linkage� all managed via make�le directives�

It is also natural for application developers to gener�
ate components corresponding to incremental changes
to already existing application components� especially
if they subscribe to the software engineering princi�
ple known as �extension by addition�� This principle
holds that it is better to extend software not by direct
modi�cation� but by disciplined addition of incremen�
tal units of software� Advantages of �extension by
addition� include better tracking of changes and more
reliable semantic conformance by software increments�
Most importantly� the increments themselves have the

potential to be reused in similar settings�

This perspective leads one to conclude that tradi�
tional OS environments inadequately support compo�
nent manipulation and binding for modern application
development� Object�oriented �OO	 programming of�
fers a potential solution to this inadequacy� In OO
programming� inheritance is a mechanism that aids
in the e
ective management of software units and
incremental changes to them� Indeed� in advanced
OO languages� increments as well as base components
have independent standing �e�g�� �mixins�	� Other
aspects of OO programming� notably encapsulation�
have demonstrated bene�ts to large�scale software de�
velopment via enhanced abstraction� There is much to
gain from supporting these features within the infras�
tructure of an application development environment�
beyond whatever support is provided by the languages
in which application components are written�

In this paper� we demonstrate a principled� yet
�exible� way in which to e
ectively construct appli�
cations from components� This facility is orthogonal
to make�les� and does not impose new techniques for
building individual application components� Instead�
it relies on the idea that the physical modularity of
traditional application components �i�e� �les	 can be
endowed the power and �exibility of logical modular�
ity� Such logical modules can then be manipulated
using the concepts of compositional modularity� where
�rst�class modules �de�ned in Section ���	 are viewed
as building blocks that can be transformed and com�
posed in various ways to construct entire application
programs� Individual modules� or entire applications�
can then be instantiated into the address spaces of
particular client processes� Compositional modular�
ity has a �rm foundation 
��� and has been shown to
be �exible enough to support several important e
ects
and styles of object�oriented programming 
���

This approach has other advantages besides making
system building more principled and �exible� First� it


