
Object�Oriented Programming in Scheme

with First�Class Modules and Operator�Based Inheritance

Guruduth Banavar�

Gary Lindstrom

Department of Computer Science

University of Utah� Salt Lake City� UT �����

Abstract

We characterize object�oriented programming as structuring and manipulating a uniform
space of �rst�class values representing modules� a distillation of the notion of classes� Operators
over modules individually achieve e�ects such as encapsulation� sharing� and static binding� A
variety of idioms of O�O programming �nd convenient expression within this model� including
several forms of single and multiple inheritance� abstract classes� class variables� inheritance
hierarchy combination� and re�ection� We show that this programming style simpli�es O�O
programming via enhanced uniformity� and supports a �exible model of object�orientation that
provides an attractive alternative to meta�programming� Finally� we show that these notions of
O�O programming are language independent� by implementing a Modular Scheme prototype as
a completion of a generic O�O framework for modularity�

Paper Category� Research� Topic Area� Language design and implementation�

� Introduction

Class�based object�oriented programming is usually thought of as creating a graph structured inher�

itance hierarchy of classes� instantiating some of these classes� and computing with these instances�

Instances are typically ��rst�class� values in the language� i�e� they can be created� stored� accessed�

and passed into and out of functions� Classes� on the other hand� are usually not �rst�class values�

and inheritance is often considered an operational and static structuring activity�

Some dynamic languages like CLOS ���	 and Smalltalk ��
	 permit access to classes at run�time�

usually as objects of other �meta��classes� However� even in dynamic O�O languages� there is often

a disparity between the manner in which classes and other values are manipulated� Classes are

often not on an equal footing with other values
 for example� classes are not passed into and out

of functions or stored and retrieved as attributes of other classes� When a more equitable status

for classes is desired� meta�programming is resorted to� A meta�level architecture assumes the role

of capturing and exposing the properties of classes� objects� and their interactions via a collection

�Primary contact author� E�mail� banavar�cs�utah�edu� Phone� ������������	
�� fax� ��������������	�

�



of collaborating meta�classes� Programmability of these meta�classes is a powerful means by which

languages achieve �exibility�

In this paper� we present an alternative model of O�O programming that we assert to be

powerful� �exible� and uniform� all without recourse to meta�programming� In this model� classes

are regarded as values just like everything else in the language� Classes can be created� stored in

variables� passed into and out of functions� nested arbitrarily� and inherited by other classes through

expressions over classes� Classes are instantiated and computation performed with these instances

by accessing their data attributes and calling their function attributes� Encapsulation� sharing�

and static binding are achieved via individual operators over classes� This point of view gives rise

to an expressive programming style that models most existing idioms of O�O programming while

providing the �exibility to express many others�

We illustrate this programming style with the programming language Scheme ���	� extended

with an abstraction mechanism called modules� Hence� we call our language Modular Scheme� We

believe that the present day notion of object�orientation is really the most advanced stage of an

evolution towards modularity in programming languages� Modularity aims to achieve important

requirements of large�scale software development such as encapsulation� separate development and

ease of maintenance� Module systems for many languages have traditionally supported these re�

quirements with notions of isolated name spaces� visibility control via export operations and sharing

and reuse via import operations� O�O languages support these same requirements� indeed more

e�ectively� via analogous notions of objects� public�private attributes� and reuse via inheritance�

In recognition of their role as the fundamental unit of modern�day software construction� we have

chosen to refer to a distilled notion of classes as �modules� in this work�

The Scheme module system presented in this paper has the following important features�

�� It supports the requirements of large�scale software development such as encapsulation� sep�

arate development� and inter�module conformability�

�� In the spirit of Scheme� it supports modules as �rst�class entities� and it is dynamic and in�

teractive� Also� the notion of modules and their instances have a clear denotational semantics

based upon record�generators�

�� It supports several idioms of object�oriented programming such as single� pre�x�based� mixin�

based� and multiple inheritance� method de�nition and call wrapping� abstract classes� class

variables� inheritance hierarchy combination� and re�ection�

�� It is language independent� In fact� it has been implemented by reusing the design and code

of a generic O�O framework for modules�

We introduce our model in Section �� comparing and contrasting it to conventional module

systems� In Section �� we illustrate how our model supports common notions of single inheri�

�



tance� Section � illustrates support for three variants of multiple inheritance� In Section 
� we

brie�y cover the semantics and applications of nested modules� a particularly expressive feature of

Modular Scheme� In Section �� we describe an implementation of our language as a completion of

a generic O�O framework� We then relate our work with other research� and present conclusions�

� Modules and Instances

We introduce our model of modules by relating it to module systems for Scheme such as those

given in ���� ��	� In these systems� a module is essentially an environment for binding names to

values� A module is a name scope that explicitly provides �exports� names and requires �imports�

other names� All names in the environment are directly accessible within the environment itself�

whereas public names imported from other environments are dynamically bound�

In contrast� modules in our model conceptually abstract over environments� Module intercon�

nection is established by actually combining modules� with interconnection validation at combi�

nation time� Individual instances of modules represent concrete environments such as those in

traditional systems� Speci�cally� modules abstract over the notion of what �self� means until they

are instantiated ���	� This enables a remarkable degree of �exibility in their manipulation�

In Modular Scheme� a module consists of a list of attributes with no order signi�cance� At�

tributes are of two kinds� Mutable attributes are similar to Scheme variables� and can store any

Scheme value� Immutable attributes are symbols bound to Scheme values in a read�only manner�

i�e� they can be accessed but not assigned to�

A module is a Scheme value that is created with the mk�module primitive� Modules can be

manipulated� but their attributes cannot be accessed or evaluated until they are instantiated via

the mk�instance primitive� The syntax of these two primitives is�

�mk�module hmutable�attribute�listi himmutable�attribute�listi�
�mk�instance hmodule�expri�

The attributes of an instance can be accessed via the attr�ref primitive and assigned to via

the attr�set� primitive� Procedures within a module can access sibling attributes via the self�ref

primitive� and assign to them with the self�set� primitive� �These primitives are explained in more

detail in Section �����

Figure � box �a� shows a module bound to a Scheme variable vehicle�fuel� The module has one

mutable attribute fuel� and two immutable attributes� empty�� bound to a procedure which checks

to see if the fuel tank is empty� and �ll� bound to a procedure that �lls the fuel tank of the vehicle

to capacity� The �ll method refers to an attribute capacity that is not de�ned within the module�

but is expected to be the fuel capacity of the vehicle in gallons� In the vocabulary of traditional

module systems� the above module exports the three symbols fuel� empty�� and �ll and implicitly

imports one symbol capacity�

�



�a�

�de�ne vehicle�fuel �mk�module
��fuel ���
��empty� �lambda ��

�� �self�ref fuel� ����
��ll �lambda ��

�self�set� fuel �self�ref capacity�������

�b�

�de�ne vehicle��fuel �hide vehicle�fuel 	�fuel���
�describe vehicle��fuel�

��
��fuel ���empty� �lambda �� �� �self�ref �priv�attr� ���� � � �

�c�

�de�ne vehicle�capacity �mk�module ��
��capacity 
��
�more�capacity� �lambda �v�

�� �attr�ref v capacity� �self�ref capacity�������

�d� �de�ne vehicle �merge vehicle��fuel vehicle�capacity��
�de�ne v
 �mk�instance vehicle��

Figure �� Module de�nition� combination� and instantiation

��� Encapsulation

One of the most important requirements of module systems is encapsulation� This is supported by

the primitive hide� which returns a new module that encapsulates the given attributes�

�hide hmodule�expri hattr�name�list�expri�

In box �b� of Figure �� the hide expression creates a new module with an encapsulated fuel

attribute with an internal� inaccessible name� This is shown by the describe primitive as �priv�

attr�� Hiding results in what is known as object�level encapsulation� i�e� the hidden attributes

of a particular instance of a module are accessible only by self�reference primitives �e�g� self�ref�

within that individual instance� They are not accessible externally �e�g� via attr�ref�� not even by

the incoming parameter of a binary method such as the v parameter of the more�capacity� method

of module vehicle�capacity shown in box �c� of Figure ���

��� Interconnection

The module vehicle�capacity given in Figure � box �c� exports two symbols� capacity� that represents

the fuel capacity of a vehicle in gallons� and more�capacity�� bound to a procedure that determines

if the incoming vehicle argument has more fuel capacity than the current vehicle�

�This style of encapsulation is similar to Smalltalk� and in contrast to the �class�level
 encapsulation of C���

�



The module vehicle�fuel can be combined with vehicle�capacity to satisfy its import requirements�

This can be accomplished as shown in box �d� via the primitive merge� which has the following

syntax�

�merge hmodule�expr� i hmodule�expr� i�

The primitive merge does not permit combining modules with con�icting de�ned attributes� i�e�

attributes that are de�ned to have the same name�

The new merged module vehicle in box �d� exports �ve symbols and imports none�� An instance

of this module� such as v� in box �d�� represents exactly the kind of module interconnectivity that

can be speci�ed by the use of import�export operations in traditional module systems�

��� Attribute Access

In this section� we describe attributes and their access in more detail� Mutable attributes are

bound to fresh locations upon module instantiation� and initialized with the value associated with

each attribute� The initialization value of a mutable attribute can be changed via the primitive

override� described in Section �� Immutable attributes are bound prior to instantiation� but can

be re�bound via override� We will refer to immutable attributes that are bound to procedures as

methods� borrowing from O�O programming� Immutable attributes can also be bound to other

modules� called nested modules� dealt with in Section 
�

The attributes of an instance are accessed with the following primitives�

�attr�ref hinstance�expri hattribute�namei harg�expr� i�
�attr�refc hinstance�expri hattribute�namei�
�attr�set� hinstance�expri hattribute�namei hexpri�

The values of both mutable and immutable attributes are accessed with the primitive attr�ref�

If the referenced attribute is a method� it is applied with the given argument�s� and its value

returned� Syntactically� accessing the value of a non�method attribute via attr�ref is exactly the

same as applying a method with no arguments� A method can also be accessed as a �rst�class

closure� without applying it� via the primitive attr�refc� For non�method attributes� attr�refc is

semantically equivalent to attr�ref� Mutable attributes are assigned with the primitive attr�set��

A method can access the instance within which it is executing via the expression �self�� Thus�

a method can access a sibling attribute within the same instance as �attr�ref �self� hattr�namei��

However� encapsulated attributes cannot be accessed in this manner� For this� a method uses the

analogous primitives self�ref and self�refc to access the values of attributes� and self�set� to assign

to mutable attributes� of the instance within which it is executing�

�self�ref hattribute�namei harg�expr� i�

�One can check if the import requirements of individual modules are satis�ed by using the introspection primitives

described in Section 	���






�a�
�de�ne new�capacity

�mk�module �� ��capacity ������
�de�ne new�vehicle �override vehicle new�capacity��

�b�

�de�ne vehicle� �copy�as vehicle 	�capacity� 	�default�capacity���
�describe vehicle��

��
��capacity 
���default�capacity 
����ll �lambda �� �self�set� fuel �self�ref ���

Figure �� Rebinding and copying

�self�refc hattribute�namei�
�self�set� hattribute�namei hexpri�

Accesses via these primitivies are called self�references� whereas accesses via attr�ref and attr�set�

are called external references� Figure � shows examples of the use of some of these primitives�

��� Abstract Modules

An attribute is called unde�ned if it is self�referenced� or referenced from a nested module� but is

not speci�ed in the module� A module is abstract if any attribute is left unde�ned� In keeping

with dynamic typing in Scheme� an abstract module can be instantiated� since it is possible that

some methods can run to completion if they do not refer to unde�ned attributes� It is a checked

run�time error to refer to an unde�ned attribute�

� Single Inheritance

We now go beyond traditional module systems and show how our model supports idioms of O�O

programming� We start with single inheritance� but we need to �rst introduce two primitives�

�override hmodule�expr� i hmodule�expr� i�
�copy�as hmodule�expri hfrom�name�list�expri hto�name�list�expri�

The operator override produces a new module by combining its arguments� If there are con�ict�

ing attributes� it chooses hmodule�expr� i�s binding over hmodule�expr� i�s in the resulting module�

For example� the abstract module new�capacity in box �a� of Figure � cannot be merged with vehi�

cle since the two modules have a con�icting attribute capacity� However� new�capacity can override

vehicle� as shown� This way� immutable attributes can be re�bound� and mutable attributes can be

associated with new initial values�

The primitive copy�as copies the de�nitions of attributes in hfrom�name�list�expri to attributes

with corresponding names in hto�name�list�expri� The from argument attributes must be de�ned�

�



�a�

�de�ne�class vehicle 
f
��fuel ���
��capacity 
��
��ll �lambda �� �self�set� fuel �self�ref capacity����
�display �lambda �� �format 
t �fuel � � a �capacity � a� �

�self�ref fuel� �self�ref capacity������

�b�

�de�ne�class land�vehicle vehicle
��
��wheels ��
�display �lambda ��

�self�ref super�display�
�format 
t �wheels � � a � �self�ref wheels������

�c�

�de�ne land�vehicle
�hide �override �copy�as vehicle 	�display� 	�super�display��

�mk�module ��
��wheels ��
�display �lambda ��

�self�ref super�display�
�format 
t �wheels � � a � �self�ref wheels�������

	�super�display���

Figure �� Single inheritance

An example is shown in box �b� of Figure ��

��� Super

With the operators discussed thus far� we can describe support for single inheritance� Many single

inheritance systems such as Smalltalk��� and Modula�� �object types� modulo static typing� ��	

share the notion of a class consisting of methods and encapsulated instance variables� In these

systems� it is possible to specify a class declaration similar to that shown in box �a� of Figure ��

The de�ne�class construct will be explained below� In this example� the attribute fuel is intended

to be encapsulated as an instance variable� and the Scheme constant �f �false� indicates that the

class has no superclasses� Such a class declaration is equivalent to writing a mk�module expression�

and hiding the fuel attribute of the resultant module�

Subsequently� a subclass land�vehicle of vehicle can typically be speci�ed in such systems in a

manner similar to box �b�� In this de�nition� a new attribute wheels is added� and the display

binding is overridden with a method that accesses the shadowed method as �self�ref super�display��

Such a subclass de�nition is exactly equivalent to specifying the module expression shown in box

�c�� In this expression� a module with attributes wheels and display is created� and is used to

�



�a� �let ��con�icts �con�icts�between mod
 �attrs�of mod�����
�copy�as mod
 con�icts �prepend �super�� con�icts���

�b� �hide vehicle �mutable�attrs�of vehicle��

�c� �de�ned� vehicle �self�refs�in vehicle more�capacity���

Figure �� Introspection

override the superclass vehicle in which the display attribute is copied as super�display� We then

hide away the copied super�display attribute to get a module with exactly one display method in the

public interface� as desired�

One can write a macro in Modular Scheme to translate de�ne�class expressions such as those

for vehicle and land�vehicle into module expressions� In fact� a library of several such useful macros

accompanies Modular Scheme� One macro for single inheritance accepts the following syntax�

�de�ne�class hnamei hsuperi hinst�var�listi hmethod�listi�

The general form of the module expression shown in box �c� of Figure � turns out to be a

useful idiom in Modular Scheme� It can be used for expressing other e�ects such as pre�x�based

inheritance� wrapping� and mixin combination� described later� We shall refer to this form as the

copy�override�hide idiom�

��� Introspection

The macro de�ne�class given above automatically �nds con�icting attributes between two modules

by using an introspective primitive called con�icts�between� It then uses the copy�override�hide

idiom as shown in Figure � to achieve single inheritance�

There are several primitives available for determining various kinds of information about mod�

ules and instances� Some of them are�

�con�icts�between hmodule�expri hattr�name�list�expri�
�module�of hinstance�expri�
�attrs�of hmodule�expri�
�mutable�attrs�of hmodule�expri�
�de�ned� hmodule�expri hattr�name�list�expri�
�self�refs�in hmodule�expri hattr�name�list�expri�

As mentioned� the primitive con�icts�between returns a list of attribute names that are de�ned

in the given module and also exist in the given list� For example� all the attributes of a module

that con�ict with another module can be copied by using the expression in box �a� of Figure ��

The module from which an instance was created can be obtained with the primitive module�of�

Thus� �module�of �self�� is similar to self class in Smalltalk� like current in Ei�el ���	� and myclass

�



in ��	� The names of the publicly accessible attributes of a module are accessible via the attrs�

of primitives� For example� the mutable attributes of a module can be encapsulated with the

expression in box �b� of Figure �� The primitive de�ned� is used to determine if an attribute is

de�ned in a module� It returns �f if any one of the given attributes names is unde�ned in the given

module� If all of them are de�ned� it returns the incoming list of attribute names�

It is sometimes useful to know the names of public attributes that are self�referenced within

a method� The primitive self�refs�in returns a �at list comprising the set of all the self�referenced

public attributes within the bindings of the given attribute names� Argument attribute names

that are non�existent or bound to non�method values are ignored� For example� to determine if a

method will execute without run�time errors relating to locally unde�ned public attributes �private

attributes are always de�ned�� one can evaluate the expression in box �c��

It is worthmentioning that the introspective operations given above do not violate encapsulation

since we do not permit any access to the private attributes of modules�

��� Adaptation

Apart from hide and copy�as� there are three other primitives which can be used to create new

modules by adapting some aspect of the attributes of existing modules�

�freeze hmodule�expri hattr�name�list�expri�
�rename hmodule�expri hfrom�name�list�expri hto�name�list�expri�
�restrict hmodule�expri hattr�name�list�expri�

The primitive freeze statically binds self�references to the given attributes� provided they are

de�ned in the module� Freezing the attribute capacity in the module vehicle causes self�references to

capacity to be statically bound� but the attribute capacity itself is available in the public interface for

further manipulation� e�g� rebinding by combination�� As shown in box �a� of Figure 
� frozen self�

references to capacity are transformed to refer to a private version of the attribute� Operationally�

the binding of the private version is shared with the public version� as long as the public version is

not re�bound to a new value via overriding� This implies that frozen references to mutable attributes

are always shared� since mutable attributes can never be re�bound
 they can just be initialized to

new values�

The primitive rename changes the names of the de�nitions of� and self�references to� attributes

in hfrom�name�list�expri to the corresponding ones in hto�name�list�expri� An example is shown in

box �b�� Unde�ned attributes� i�e� attributes that are not de�ned but are self�referenced� can also

be renamed�
�This e�ect is similar to converting accesses to a virtual C�� method into accesses to a non�virtual method� The

di�erence is that C�� allows non�virtual methods to be in the public interface of a class � the general philosophy

here is that all public attributes are rebindable� or virtual� like in Smalltalk�

�



�a�

�de�ne vehicle� �freeze vehicle 	�capacity���
�describe vehicle��

��
��capacity 
����ll �lambda �� �self�set� fuel �self�ref �priv�attr��� ���

�b�

�de�ne vehicle� �rename vehicle 	�capacity� 	�fuel�capacity���
�describe vehicle��

��
��fuel�capacity 
����ll �lambda �� �self�set� fuel �self�ref fuel�capacity������

�c�

�de�ne vehicle� �restrict vehicle 	�capacity���
�describe vehicle��

��
���ll �lambda �� �self�set� fuel �self�ref capacity�����

Figure 
� Adaptation

The primitive restrict simply removes the de�nitions of the given �de�ned� attribute names from

the module� i�e� makes them unde�ned� An example is shown in box �c� of Figure 
�

These module manipulation primitives are applicative� in the sense that they return new mod�

ules without destructively modifying their arguments� However� destructive versions of the opera�

tors are also available� so that composite module operations can be expressed without compromising

e�ciency by making unnecessary copies� The name of the destructive version of a primitive is writ�

ten as the corresponding name of the non�destructive primitive su�xed with a ���� e�g� hide� is the

destructive version of hide� Destructive module primitives are to be used with caution� and used

only for optimizing stable programs�

��� Pre�xing

The programming language Beta ���	 supports a form of single inheritance called pre�xing which is

quite di�erent from the single inheritance presented in Section �� In pre�xing� a superclass method

that expects to be re�bound by a subclass de�nition uses a construct called inner somewhere in its

body� In instances of the superclass� calls to inner amount to null statements� or no�ops� Subclasses

can rede�ne the method� and in turn call inner� In subclass instances� the superclass method is

executed �rst� and the subclass� rede�nition is executed upon encountering the inner statement�

The above e�ect can be achieved in Modular Scheme with the macro de�ne�pre�x� illustrated

with the vehicle example in Figure �� Box �a� focuses on the display method of the vehicle class� The

expression �self�ref inner�display� corresponds to the inner construct� This class de�nition expands

to the module expression shown in box �b�� where a dummy inner�display attribute is merged in�

In fact� the de�ne�pre�x macro adds such a dummy attribute �prepended with inner�� for every

��



�a�
�de�ne�pre�x vehicle 
f

�� � � �
�� � � �display �lambda �� � � � �self�ref inner�display� � � � ����

�b�

�de�ne vehicle �mk�module �� � � �
�� � �
�display �lambda �� � � � �self�ref inner�display� � � � ��
�inner�display 
t����

�c�
�de�ne�pre�x land�vehicle vehicle

�� � � �
�� � � �display �lambda �� � � � �self�ref inner�display� � � � ����

�d�

�de�ne land�vehicle
�hide �override �copy�as �merge�inner sub� 	�display� 	�sub�display��

�rename vehicle 	�inner�display� 	�sub�display���
	�sub�display����

Figure �� Pre�xing

immutable attribute in the de�nition� A subclass land�vehicle of vehicle is de�ned in box �c��

which expands to the expression in box �d�� In this expression� the subclass is �rst merged in

with a dummy inner�display with the function �merge�inner sub�� The subclass� display method is

then copied as sub�display and overridden with the superclass in which inner�display is renamed to

sub�display� Lastly� sub�display is hidden away so that there is only one display method�

This example also uses the copy�override�hide idiom introduced in Section ���� The di�erence

here is that the superclass overrides the subclass as opposed to the reverse in Section ���� Indeed�

this is the di�erence between pre�x�based and super�based forms of single inheritance�

��� Wrapping

Wrapping� similar to the CLOS notion of 	around methods� is useful in many contexts� In fact�

wrapping method de�nitions can be used to simulate 	before and 	after methods of CLOS as well�

since new code can be interposed before or after the call to the old code� It is easy to wrap method

de�nitions using the copy�override�hide idiom shown earlier� Modular Scheme provides a macro

called wrap�method to achieve this e�ect� but we shall omit its description here to conserve space�

A more interesting and less often explored e�ect is to wrap self�referenced calls to particular

methods� Say we have a module veh�sim shown in box �a� of Figure �� which is intended to be

combined with the vehicle module� Its method sim��ll calls the unde�ned method �ll upon some

condition �ll�condition� Say we want to count the number of calls to �ll that sim��ll makes� We do

not want to wrap the method �ll in vehicle� since we want to count only calls from sim��ll� Also�

��



�a�

�de�ne veh�sim �mk�module �� � � �
��sim��ll �lambda �v�

�if ��ll�condition v�
�self�ref �ll�������

�b�

�de�ne counted�veh�sim
�let ��count�sim �merge veh�sim �mk�module ��count ��� ������

�wrap�call count�sim �ll
�lambda ��

�self�set� count �� �self�ref count� 
��
�self�ref �ll�����

�c�

�hide �merge �rename count�sim 	��ll� 	�wrap��ll��
�mk�module ��

��wrap��ll �lambda ��
�self�set� count �� �self�ref count� 
��
�self�ref �ll������

	�wrap��ll��

Figure �� Wrapping calls to methods

we cannot wrap the sim��ll method to do this� since every call to it does not necessarily result in a

call to �ll� due to the �ll�condition test�

Thus� we need to wrap calls to �ll from the veh�sim module using the wrap�call macro shown

in box �b�� We add a mutable attribute count to veh�sim� and wrap its calls to �ll to increment

the counter� The module expression that the wrap�call expands into is given in box �c�� In this

expression� we �rst rename the unde�ned attribute �ll to wrap��ll� thus changing the self�references

correspondingly� We then merge in a wrap��ll method that increments count and calls the old �ll

method in the resulting module�

The general form of the expression in box �c� is another useful idiom in the language� and will

be referred to as the rename�merge�hide idiom� The distinction between the copy�override�hide

idiom and the rename�merge�hide idiom is worth exploring� Figure � pictorially shows the use of

these idioms for method de�nitions in the �rst row and method calls in the second� In the �gure�

shaded boxes represent hidden methods�

For method de�nitions� both the idioms are used when a method METH ofM� is being rede�ned

by M
� and the old de�nition of the method is referred to in the rede�nition as METH�� The

di�erence is that copy�override�hide is used when M��s references to METH are to refer to the new

METH in the combined module� Rename�merge�hide is used when M��s references are to refer to

the old de�nition renamed as METH�� while M
�s references are to refer to the rede�nition� As

an example scenario� rename�merge�hide is not appropriate to achieve the right e�ect of single

��



METH

METHMETHMETH

METH’

METH

WRAP
Cannot

calls

COPY

METH’ METH’

METH

METH

WRAP

M
E

T
H

O
D

 C
A

L
L

M
E

T
H

O
D

 D
E

F
IN

IT
IO

N

COPY-OVERRIDE-HIDE RENAME-MERGE-HIDEIDIOM

M4

M3

M2

M1

M5

Figure �� Idioms in Modular Scheme

inheritance� For example� in box �c� of Figure �� renaming vehicle�s display method instead of

copying it would not work� since in that case self�references to display in vehicle would also be

renamed � we want self�references in the superclass to refer to the new� rebound display method�

For method calls� only the rename�merge�hide idiom applies� since unde�ned attributes cannot

be copied� In Figure �� module M� has a call to METH which is wrapped to produce M
 as shown�

An example was given in the �rst half of this section�

� Multiple Inheritance

We have seen in the previous section how to express the creation of a subclass from a single

superclass� With multiple inheritance� there is the additional problem of how to compose the

superclasses by resolving con�icts and sharing attributes between them� Typically� a language

supporting multiple inheritance makes available to the programmer a small number of choices

for attribute sharing and con�ict resolution� The advantage of O�O programming with operator�

based inheritance is that the programmer has numerous options for� and �ne�grained control over�

decisions taken while combining multiple modules� Also� inheritance history does not intrude into

operator semantics� making the approach more compositional�

��� Mixins and Linearized Multiple Inheritance

Consider the case of linearized multiple inheritance as in Flavors and Loops� where the graph of

ancestor classes of a class are linearized into a single inheritance hierarchy� Each of these languages

speci�es a di�erent default rule for the linearization of ancestor classes� For example� both these

��



�a�

�de�ne land�veh�chars �mk�module ��
��wheels ��
�display �lambda �� �self�ref super�display�

�format 
t �wheels � � a � �self�ref wheels�������
�de�ne sea�veh�chars �mk�module ��

��surface 
t�
�display �lambda �� �self�ref super�display�

�format 
t �surface � � a � �self�ref surface�������

�b�
�de�ne�subclass land�vehicle �land�veh�chars vehicle��
�de�ne�subclass sea�vehicle �sea�veh�chars vehicle��
�de�ne�subclass amphibian �land�veh�chars sea�veh�chars vehicle��

�c�

�de�ne amphibian
�hide �override �copy�as vehicle 	�display� 	�super�display��

�hide �override �copy�as sea�veh�chars 	�display� 	�super�display��
land�veh�chars�

	�super�display���
	�super�display���

Figure �� Linearized Multiple Inheritance

languages do a depth��rst� left�to�right traversal of ancestor classes up to join classes� i�e� classes

that are encountered more than once� which get traversed on their �rst visit in Flavors and last

visit in Loops�

It has been argued that currently used linearizations do not ensure that �the inheritance mech�

anism behaves �naturally� relative to the incremental design of the inheritance hierarchy� ���	�

Perhaps it is better to let the programmer select the precedence order of superclasses as dictated

by individual applications� In the case of CLOS� a programmer with considerable expertise can

use the meta�object protocol of the language and adapt the default rule� In contrast� programming

with operator�based inheritance gives the programmer direct control over combination� as shown

in Figure ��

Say we want to create modules for land vehicles and sea vehicles as subclasses of vehicle� We

can de�ne modules with the characteristics of land vehicles �number of wheels� and sea vehicles

�surface vessel or submarine� as shown in box �a�� In these modules� one can think of the expression

�self�ref super�display� as being the equivalent of call�next�method in CLOS� Abstract modules such

as these are sometimes called �mixins� � reusable abstractions that require other abstractions in

order to be usefully applied� Such abstractions have been characterized as functions from classes

to classes ��	� However� the approach of operator�based inheritance given here uniformly treats all

aspects of inheritance as operations over modules� as was �rst developed in ��	�

With the de�nitions in box �a�� we can create land�vehicle and sea�vehicle �subclasses� of vehicle

��



�a�

�de�ne color
�mk�module

��color 	white��
��set�color �lambda �new�color� �self�set� color new�color���
�display �lambda �� �format 
t �color � � a� �self�ref color�������

�b�

�de�ne car�class
�hide �merge �merge �rename color 	�display� 	�color�display��

�rename land�vehicle 	�display� 	�vehicle�display���
�mk�module ��

��display �lambda �� �self�ref vehicle�display�
�self�ref color�display������

	�color�display vehicle�display��

Figure ��� Multiple Inheritance with no common ancestors

as shown in box �b�� This is achieved using the copy�override�hide idiom �Figure ��� but with

the macro de�ne�subclass which accepts a slightly di�erent syntax� Similarly� we can �chain� the

creation of subclasses so that the call to super�display in each class calls the display method of the

next lower precedence superclass� Thus� we can create an amphibian class that inherits both the

characteristics of land and sea vehicles� The de�ne�subclass macro for amphibian expands to the

module expression shown in box �c� �note the cascaded use of the copy�override�hide idiom�� and

extends to an arbitrary number of superclasses� as desired�

��� Multiple Inheritance with No Common Ancestors

Let us now consider the case of multiple superclasses that are not linearized� and have no common

ancestor� Say we have a module color de�ned as in box �a� of Figure ��� We can combine color

with the module land�vehicle shown earlier into car�class� as shown in box �b�� This expression uses

the rename�merge�hide idiom introduced in Section ��
� The method display that con�icts in the

�superclasses� vehicle and color is renamed in each and the superclasses are merged together� A

new module that de�nes a display method that calls the renamed display methods is then merged

in to create the desired car�class� This example can be extended to more than two superclasses�

and can be automated via a macro that uses the introspective primitive con�icts�between to rename

attributes�

The rename�merge�hide idiom works �ne for this example� since there are no self�references to

the renamed attribute in the superclasses� However� the right e�ect of inheritance can only be

obtained with copy�as� so that self�references in the superclasses are not changed� followed by a

merge� so that accidental con�icts between superclasses do not get quietly re�bound� The problem

with copying con�icting attributes and merging is that the con�icts will still persist� This can be

�




�override �override �rename land�vehicle 	�fuel� 	�land�fuel��
�rename sea�vehicle 	�fuel� 	�sea�fuel���

�mk�module ��
�display �lambda ��

�format � � � �self�ref land�fuel� �self�ref sea�fuel� � � � ������

Figure ��� Multiple Inheritance with common ancestors

remedied by restrict�ing �Section ���� after copying� and then merging and hiding� There is some

similarity between such a copy�restrict�merge�hide operation and the copy�override�hide idiom�

��� Multiple Inheritance with Common Ancestors

In the case of superclasses with a common ancestor� such as in the �diamond� problem of multiple

inheritance� the situation gets more complex� In this case� the attributes of the common ancestor

are clearly con�icting in the superclasses� Furthermore� there is the choice of inheriting either a

single copy or multiple copies of mutable attributes from the common ancestor��

To illustrate� consider the two previously given modules land�vehicle and sea�vehicle which have

each inherited from the vehicle module� Say we want to create an amphibian module that inherits

from these two modules� but needs two copies of the fuel attribute to model two di�erent kinds

of fuels for amphibians� This can be achieved with the expression in Figure ��� In this example�

the fuel attribute is renamed for each type of module� The two modules are then overridden since

the con�icting attributes capacity and �ll are known to be identical� and the method display will

be overridden in the �nal module� A new display method that displays all the attributes in an

appropriate way is included in the �nal composition to get the desired module�

The distinction between programming with �rst�class modules and the operational style more

often found in O�O languages is illustrated by this example� Firstly� problems of con�icts and

sharing clearly manifest themselves� and compell the programmer to resolve them as the particular

situation demands using introspection and inheritance operators� For example� con�icts between

superclasses can be inspected with con�icts�between� and superclasses can be overridden in some

appropriate order to resolve attribute con�icts� If multiple copies of mutable attributes from the

common ancestor are desired� they can be renamed within each superclass� as shown in the example

above� However� the burden of resolving con�icts in each individual case can be removed by writing

macros that perform a user�chosen method of composition� Secondly� the inheritance history of

superclasses is not important
 only the attributes of superclasses must be known in order to derive

a subclass�

�This� of course� is the rationale for virtual and non�virtual base classes in C���

��



� Nested Modules

Since modules are �rst�class values� attributes of modules can themselves be modules� Modules

that are bound to immutable attributes of other modules are referred to as nested modules� We

will give brief examples in this section to give some insight into the semantics and applications of

nested modules � a full treatment is beyond the scope of this paper�

��� Semantics

The methods of modules can explicitly refer to bindings in their surrounding scopes using the

following primitives� which refer to the given name in a lexically surrounding scope that has a

binding for the name�

�env�ref hattribute�namei harg�expr� i�
�env�refc hattribute�namei�
�env�set� hattribute�namei hexpri�

These three primitives serve functions analogous to the three self�reference primitives� It is a

checked run�time error to refer to a name that does not have a binding in some surrounding scope�

Modules follow static scoping rules just like the rest of Scheme� The environment of a module

is determined by the lexical placement of the mk�module expression that creates it� In Figure ��

box �a�� type� and type
 are nested modules whose �ll methods refer to the capacity attribute of

the outer module� Individual vehicles are represented by instances of the nested modules�

The mk�module expressions for these nested modules are evaluated at the time the outer module

vehicle�category is instantiated� Thus� nested modules have an instance of their surrounding module

as their environment�� and are bound to their environment at the time of instantiation of the outer

module� Thus� v� in box �a� is a vehicle that shares the capacity attribute of vehicle�category with

other instances of type� and type
� Thus� the attribute capacity serves the purpose of a �class

variable� � a variable that is shared among the instances of a class�

With static scoping� a module and its nested modules interact in non�obvious ways� For example�

env�ref�s in nested modules are equivalent to self�ref�s in the outer module� Thus� changes to a

module�s attributes� e�g� via rename� freeze �static binding�� and hide� result in modi�cations to the

environment of nested modules� and hence modify the environment references in nested modules�

However� once the outer module is instantiated� environment references in nested modules are

permanently bound� regardless of whether the nested module is moved to and combined in another

environment with other nested modules created in yet other environments� This is analogous to

the creation and manipulation of �rst�class closures� i�e� procedures with environment references�

in Scheme�
�Non�nested modules have as their environment the Scheme environment in e�ect when they are created�

��



�a�

�de�ne vehicle�category
�mk�module ��

��capacity 
��
�type
 �mk�module �� � � � ���ll �lambda � � � �env�ref capacity� � � � �����
�type� �mk�module �� � � � ���ll �lambda � � � �env�ref capacity� � � � �����
�car �lambda �� �override �self�ref type
�

�mk�module ��color 	white�� ���������
�de�ne mycategory �mk�instance vehicle�category��
�de�ne v
 �mk�instance �attr�ref mycategory type
���

�b�

�de�ne cap �mk�module ��
��type
 �mk�module �� ��capacity 
��������

�de�ne veh�cap
�merge �merge �restrict �copy�as vehicle�category 	�type
� 	�veh�type
���

�restrict �copy�as cap 	�type
� 	�cap�type
����
�mk�module ��

�vehicle �lambda ��
�override �self�ref veh�type
� �self�ref cap�type
�������

�c�

�de�ne manager �mk�module ��
��new �lambda �� �mk�instance �self�ref class����
�ref �lambda �inst attr args�

�eval �append ��attr�ref �inst �attr� args�������

Figure ��� Nested Modules

��� Applications

Shared repository� A module provides a local namespace for nested modules� It can serve as

a shared data repository for nested modules� in addition to serving as a �factory� that produces

initialized instances of nested modules� An interesting consequence of this is that names that are

not bound within the �top�level� environment can be considered persistent names � this is left as

future work�

Hierarchy combination� An inheritance �hierarchy� in O�O programming is usually thought

of as a graph of inheriting classes� In Modular Scheme� an inheritance hierarchy is represented

simply by a collection of module expressions� some of which are mk�module expressions and others

which combine and adapt these modules� Such a hierarchy of modules can be nested within another

module� That is� the base class of the hierarchy can be a nested module� and other modules that

inherit from it can be computed via module expressions within methods of the outer module �since

modules are �rst�class�� For example� a hierarchy consisting of a type� module and its �subclass�

car are shown in box �a� of Figure ���

��



Entire hierarchies such as the above can be �combined� with other hierarchies by manipulating

the outer modules� Consider a hierarchy cap with a nested module type� with a single attribute

capacity as given in box �b� of Figure ��� Suppose we wish to extend the hierarchy vehicle�category

with the hierarchy cap� so that an attribute capacity is added to the type� module �i�e� the su�

perclass�� which will be automatically inherited by car �i�e� the subclass�� This can be achieved

with the expression shown in box �b� of Figure ��� Several applications of this style of hierarchy

combination are given in ��
	�

Manager modules� Re�ection is a means by which programs can access and manipulate them�

selves� Modular Scheme supports a form of re�ective programming on modules with the intro�

spective primitives given in Section ��� in conjunction with what are called manager modules� A

manager module consists of a nested module along with methods that manipulate some extensible

functionality to be supported on the nested module� In a sense� a manager module can be used to

simulate a meta�class in more conventional designs � this has already been shown by using block

structure in the programming language Beta ����	� page �����

For example� a generic manager module can be speci�ed as in box �c� of Figure ��� This module

speci�es a method new that returns an instance of an unde�ned attribute called class� and a method

ref that accesses the attribute attr of inst� Basically� the new and ref methods act as surrogates for

mk�instance and attr�ref for modules bound to the attribute class�� The idea is that any module

can be bound to the attribute class� and the new and ref methods can be specialized appropriately

for that module via manipulation of the manager module�

� Implementation

Most of the notions of module manipulation� nesting� and introspection described above are inde�

pendent of the language into which they are embedded� In fact� an object�oriented framework ���	

called Etyma incorporating these generic notions has been designed and implemented in C���

The language described here has been realized as one completion of Etyma� Among the other

completions of Etyma are a linker and a compiler for an interface de�nition language� described

in ��	� This section describes the O�O design and implementation of the modular extension to a

basic Scheme interpreter�

The overall architecture of the implementation is shown in Figure ��� The interpreter for

Modular Scheme is implemented as an extension of the Scheme interpreter provided in the STk

���	 package� The basic Scheme interpreter is implemented in C� The code for the extension is

designed as a set of C�� classes that inherit from classes in Etyma� The Scheme library shown

�The new and ref methods could actually be named mk�module and attr�ref�

��



library

Scm

C

C++

C++

basic interpreter glue
completion

ETYMA

Figure ��� Architecture of extended Scheme interpreter

on the left includes the macros for O�O programming presented in this paper� as well as other

functions�

A complete description of the design of the C�� framework Etyma is beyond the scope of

this paper� Brie�y� Etyma models generic linguistic notions that are found in modular languages

such as Modular Scheme� thus constituting a meta�architecture for modular systems� For example�

Etyma speci�es abstract classes Module and Instance that model the corresponding notions� with

the operators for manipulation as their methods� Etyma also speci�es classes Interface� PrimValue�

Method� Location� and Label that model the corresponding notions� Standard concrete implementa�

tions of C�� classes for modules� instances� and interfaces are available as StdModule� StdInstance�

and StdInterface� All these classes collaborate with one another to model the linguistic concepts of

object�oriented languages�

StdModule StdInstance StdInterfaceStdModule StdInstance StdInterface

SchModule SchInstance SchInterface

Location

SchLocation

PrimValueLabel MethodPrimValueLabel Method

SchLabel SchValue SchMethod

ETYMA classes

Completion subclasses

Figure ��� Design of classes in the framework completion

Reuse parameter New Reused � reuse

Classes � 	
 ��

Etyma Methods �� 	�
 �
��

Lines of Code �


 



 ����

Etyma � STk Lines of Code ��

 	



 ����

Figure �
� Reuse of framework design and code

In order to construct an interpreter for Modular Scheme� we modeled Scheme concepts as sub�

classes of generic concepts in Etyma� The only subclasses created to implement Modular Scheme

��



are shown in Figure ��� The reusability of the framework design� in conjunction with the extensi�

bility of the basic Scheme interpreter� made the degree of reuse so high in this case that most of

Modular Scheme was designed and implemented in about a week� Figure �
 shows several mea�

sures of reuse for this completion� The percentages for class and method reuse give an indication

of design reuse� whereas those for lines of code give a measure of code reuse�

� Related Work

The design of Modular Scheme is based upon a semantic notion of modules that goes back to

record calculi ���� �	� Classes were modeled as record generators by Cook ���	� who also �rst

introduced some of the operators used here� Based on this� Bracha and Lindstrom in �
	 developed

a comprehensive suite of operators to support sharing� encapsulation� and static binding� Here�

we have augmented the above model with the detailed semantics of nested modules� designed and

implemented a generic framework based on these notions� completed it to realize a realistic language

design� and illustrated typical programming styles and idioms in the language�

Modular programming has traditionally dealt with issues of structuring� encapsulation� and

independent development of software� Known by various names such as packages� structures� etc��

modules have long played the role of static design artifacts ���� �	� However� it has not yet been

widely recognized that O�O programming is but a sophisticated form of modular programming� The

power of �rst�class modules as given here is even less recognized� In the context of Scheme� several

module systems have been developed ���� ��	� These systems essentially provide the functionality

described in Section �� although ���	 supports explicit interfaces� Lisp packages ���	 and Scheme

�rst�class environments are much restricted forms of modularity compared to the system presented

here�

Beta provides a uniform model of programming via patterns� However� it does not support �rst�

class modules or operator�based inheritance� Beta�s style of pre�xing is described and simulated in

Section ���� Beta supports arbitrary nesting of modules with which meta�classes can be simulated�

as with manager modules �Section 
���� There is also some similarity between manager modules and

the concept of �object managers� given in the language Paragon ���	� a language for programming

with abstract data types�

A popular language family for O�O programming with Lisp is the CLOS family of languages

���� ��	� CLOS supports a quite di�erent model of O�O programming than the one described

here� with multiple�dispatch� generic functions� and weak encapsulation� Modular Scheme� on the

other hand� supports only single dispatch� CLOS also supports a protocol to interact with its

meta�architecture� Dexterity of multiple inheritance as given in Section ��� was a primary practical

motivation for the CLOS MOP�

��



Systems such as the CLOS meta�object protocol �MOP� ���	 and Open C�� ��	 expose the

implementation objects of the language processor to the programmer via a controlled protocol�

Many aspects of the language�s implementation� such as object data layout� are controllable via

such a meta�protocol� The approach to O�O programming described here is to provide the �exibility

of meta�programming without exposing the meta�architecture to direct user programming� Our

approach does not give the user the full power of altering a language�s behavior as a MOP can�

However� we favor a small set of well�designed primitives that can as e�ectively provide a uniform

and �exible model of O�O programming�

Other speci�c related languages and semantics are cited throughout the paper�

� Conclusions

Module systems and O�O programming have long strived to achieve the requirements of large�scale

programming such as encapsulation� component�wise development� and reuse� In this paper� we

showed that these requirements can be met in a uniform and �exible manner by programming

with �rst�class modules and operator�based inheritance� Modules are manipulated with a suite

of operators that individually achieve e�ects such as encapsulation� combination� sharing� and

introspection� This model of modularity has been smoothly integrated into the programming

language Scheme while keeping with its original design philosophy that ���� a very small number

of rules for forming expressions� with no restrictions on how they are composed� su�ce to form a

practical and e�cient programming language that is �exible enough to support most of the major

programming paradigms in use today�� ���	

The above language is expressive and �exible enough to model most previously existing tech�

niques of O�O programming� without recourse to meta�programming� We have shown by examples

that the language can emulate an unprecedentedly broad array of idioms such as single� pre�x�based�

mixin�based� and multiple inheritance� abstract classes� wrapping of method de�nitions and calls�

class variables� inheritance hierarchy combination� and a form of re�ection� Thus� the language

provides mechanisms to support all of the above� but does not enforce any one inheritance policy�

In e�ect� this language represents a uni�cation of the design space of dynamic� single�dispatch� O�O

programming languages�

Finally� we show that the underlying concepts of this programming model are language inde�

pendent� We have designed and implemented a generic reusable O�O framework in C�� that

incorporates the basic abstractions of modularity� and completed it to realize an interpreter for

our language� Language independence is conclusively proved by showing that the design and code

reuse levels for our completion are very high�

Some important areas of future work remain� Static typing is desirable and possible within

��



our model� although it would introduce several restrictions to the programming style presented

here� Compilation is a much more challenging issue� especially to devise composable techniques

paralleling the semantic one� and to express in a language independent manner in our generic

framework�

Acknowledgements�

We gratefully acknowledge support and several useful comments on this work from Jay Lepreau� Bjorn
Freeman�Benson� Bryan Ford� Doug Orr� Robert Mecklenburg� and Nevenka Dimitrova�

References

��� Reference manual for the Ada programming language� ANSI�MIL�STD����
 A� �����

�	� Guruduth Banavar� Gary Lindstrom� and Douglas Orr� Etyma� A framework for modular systems� CS
Dept� TR UUCS����
�
� University of Utah� December ����� Short version persented at the workshop
on O�O Compilation at OOPSLA ���� Portland� OR�

��� Gilad Bracha� The Programming Language Jigsaw � Mixins� Modularity and Multiple Inheritance� PhD
thesis� University of Utah� March ���	� Technical report UUCS��	�

�� ��� pp�

��� Gilad Bracha and William Cook� Mixin�based inheritance� In Proc� OOPSLA Conference� Ottawa�
October ���
� ACM�

�
� Gilad Bracha and Gary Lindstrom� Modularity meets inheritance� In Proc� International Conference on

Computer Languages� pages 	�	�	�
� San Francisco� CA� April 	
�	�� ���	� IEEE Computer Society�
Also available as Technical Report UUCS����
���

��� P� Canning� W� Cook� W� Hill� and W� Oltho�� Interfaces for strongly�typed object�oriented pro�
gramming� In Norman Meyrowitz� editor� Proceedings of the ACM Conference on Object�Oriented

Programming� Systems� Languages� and Applications� pages �
������ �����

��� Luca Cardelli� James Donahue� Lucille Glassman� Mick Jordan� Bill Kalsow� and Greg Nelson� Modula��
report� Technical Report ��� Digital Equipment Corporation Systems Research Center� August �����

��� Luca Cardelli and John C� Mitchell� Operations on records� Technical Report ��� Digital Equipment
Corporation Systems Research Center� August �����

��� Shigeru Chiba and Takashi Masuda� Designing an extensible distributed language with a meta�level
architecture� In Proceedings of the �th European Conference on Object�Oriented Programming� Springer
Verlag� ����� LNCS �
��

��
� William Clinger and Jonathan Rees� Revised� report on the algorithmic language scheme� ACM Lisp

Pointers� ����� �����

���� William Cook and Jen Palsberg� A denotational semantics of inheritance and its correctness� In Proc�

ACM Conf� on Object�Oriented Programming� Systems� Languages and Applications� pages ��������
�����

��	� Pavel Curtis and James Rauen� A module system for scheme� In Conference Record of the ACM Lisp

and Functional Programming� ACM� ���
�

���� R� Ducournau� M� Habib� M� Huchard� and M� L� Mugnier� Proposal for a monotonic multiple inheri�
tance linearization� In Proceedings of OOPSLA� pages pages ��� � ��
� October �����

���� Erick Gallesio� STk reference manual� Version 	��� ��������

��



��
� Adele Goldberg and David Robson� Smalltalk��	� The Language and its Implementation� Addison�
Wesley� �����

���� Robert Harper and Benjamin Pierce� A record calculus based on symmetric concatenation� In Proc� of

the ACM Symp� on Principles of Programming Languages� pages ������	� January �����

���� Ralph E� Johnson and Vincent F� Russo� Reusing object�oriented designs� Technical Report UIUCDCS
�������� University of Illinois at Urbana�Champagne� May �����

���� Sonya E� Keene� Object�Oriented Programming in Common Lisp� Addison�Wesley� Reading� MA� �����

���� Gregor Kiczales� Jim des Rivi�eres� and Daniel G� Bobrow� The Art of the Metaobject Protocol� The
MIT Press� Cambridge� MA� �����

�	
� Gregor Kiczales and Luis Rodriguez� E�cient method dispatch in PCL� In Proceedings of the �

	

ACM Conference on Lisp and Functional Programming� pages ����

� ACM� ���
�

�	�� Bent Bruun Kristensen� Ole Lehrmann Madsen� Birger Moller�Pedersen� and Kristen Nygaard� The
BETA programming language� In Research Directions in Object�Oriented Programming� pages pages �
� ��� MIT Press� �����

�		� David MacQueen� Modules for Standard ML� LFCS report� Dept� of Computer Science� Univ� of
Edinburgh� Scotland� ����� Part III of Standard ML� by Robert Harper� David MacQueen and Robin
Milner�

�	�� Ole Lehrmann Madsen� Block structure and object�oriented languages� In Research Directions in

Object�Oriented Programming� pages pages ��� � �	�� MIT Press� �����

�	�� Bertrand Meyer� Object�Oriented Software Construction� Prentice Hall� �����

�	
� Harold Ossher and WilliamHarrison� Combination of inheritance hierarchies� In OOPSLA Proceedings�
pages 	
��
� October ���	�

�	�� Mark Steven Sherman� Paragon� A Language Using Type Hierarchies for the Speci�cation� Implemen�

tation and Selection of Abstract Data Types� Springer�Verlag� New York� NY� ���
�

�	�� Guy L� Steele Jr� Common Lisp� The Language� Digital Press� Bedford� MA� �����

�	�� Sho�Huan Simon Tung� Interactive modular programming in scheme� In Proceedings of the ACM Lisp

and Functional Programming Conference� pages pages �� � �
� ACM� ���	�

Last modi�ed� February 	�� ���


��


