Object-Oriented Programming in Scheme
with First-Class Modules and Operator-Based Inheritance

Guruduth Banavar®
Gary Lindstrom
Department of Computer Science

University of Utah, Salt Lake City, UT 84112

Abstract

We characterize object-oriented programming as structuring and manipulating a uniform
space of first-class values representing modules, a distillation of the notion of classes. Operators
over modules individually achieve effects such as encapsulation, sharing, and static binding. A
variety of idioms of O-O programming find convenient expression within this model, including
several forms of single and multiple inheritance, abstract classes, class variables, inheritance
hierarchy combination, and reflection. We show that this programming style simplifies O-O
programming via enhanced uniformity, and supports a flexible model of object-orientation that
provides an attractive alternative to meta-programming. Finally, we show that these notions of
0-0 programming are language independent, by implementing a Modular Scheme prototype as
a completion of a generic O-O framework for modularity.

Paper Category: Research. Topic Area: Language design and implementation.

1 Introduction

Class-based object-oriented programming is usually thought of as creating a graph structured inher-
itance hierarchy of classes, instantiating some of these classes, and computing with these instances.
Instances are typically “first-class” values in the language, i.e. they can be created, stored, accessed,
and passed into and out of functions. Classes, on the other hand, are usually not first-class values,
and inheritance is often considered an operational and static structuring activity.

Some dynamic languages like CLOS [18] and Smalltalk [15] permit access to classes at run-time,
usually as objects of other (meta-)classes. However, even in dynamic O-O languages, there is often
a disparity between the manner in which classes and other values are manipulated. Classes are
often not on an equal footing with other values; for example, classes are not passed into and out
of functions or stored and retrieved as attributes of other classes. When a more equitable status
for classes is desired, meta-programming is resorted to. A meta-level architecture assumes the role

of capturing and exposing the properties of classes, objects, and their interactions via a collection

*Primary contact author. E-mail: banavar@cs.utah.edu, Phone: +1-801-581-8378, fax: +1-801-581-5843.

of collaborating meta-classes. Programmability of these meta-classes is a powerful means by which
languages achieve flexibility.

In this paper, we present an alternative model of O-O programming that we assert to be
powerful, flexible, and uniform, all without recourse to meta-programming. In this model, classes
are regarded as values just like everything else in the language. Classes can be created, stored in
variables, passed into and out of functions, nested arbitrarily, and inherited by other classes through
expressions over classes. Classes are instantiated and computation performed with these instances
by accessing their data attributes and calling their function attributes. Encapsulation, sharing,
and static binding are achieved via individual operators over classes. This point of view gives rise
to an expressive programming style that models most existing idioms of O-O programming while
providing the flexibility to express many others.

We illustrate this programming style with the programming language Scheme [10], extended
with an abstraction mechanism called modules. Hence, we call our language Modular Scheme. We
believe that the present day notion of object-orientation is really the most advanced stage of an
evolution towards modularity in programming languages. Modularity aims to achieve important
requirements of large-scale software development such as encapsulation, separate development and
ease of maintenance. Module systems for many languages have traditionally supported these re-
quirements with notions of isolated name spaces, visibility control via export operations and sharing
and reuse via import operations. O-O languages support these same requirements, indeed more
effectively, via analogous notions of objects, public/private attributes, and reuse via inheritance.
In recognition of their role as the fundamental unit of modern-day software construction, we have
chosen to refer to a distilled notion of classes as “modules” in this work.

The Scheme module system presented in this paper has the following important features:

1. It supports the requirements of large-scale software development such as encapsulation, sep-

arate development, and inter-module conformability.

2. In the spirit of Scheme, it supports modules as first-class entities, and it is dynamic and in-
teractive. Also, the notion of modules and their instances have a clear denotational semantics

based upon record-generators.

3. It supports several idioms of object-oriented programming such as single, prefix-based, mixin-
based, and multiple inheritance, method definition and call wrapping, abstract classes, class

variables, inheritance hierarchy combination, and reflection.
4. It is language independent. In fact, it has been implemented by reusing the design and code

of a generic O-O framework for modules.

We introduce our model in Section 2, comparing and contrasting it to conventional module

systems. In Section 3, we illustrate how our model supports common notions of single inheri-

tance. Section 4 illustrates support for three variants of multiple inheritance. In Section 5, we
briefly cover the semantics and applications of nested modules, a particularly expressive feature of
Modular Scheme. In Section 6, we describe an implementation of our language as a completion of

a generic O-0O framework. We then relate our work with other research, and present conclusions.

2 Modules and Instances

We introduce our model of modules by relating it to module systems for Scheme such as those
given in [12, 28]. In these systems, a module is essentially an environment for binding names to
values. A module is a name scope that explicitly provides (exports) names and requires (imports)
other names. All names in the environment are directly accessible within the environment itself,
whereas public names imported from other environments are dynamically bound.

In contrast, modules in our model conceptually abstract over environments. Module intercon-
nection is established by actually combining modules, with interconnection validation at combi-
nation time. Individual instances of modules represent concrete environments such as those in
traditional systems. Specifically, modules abstract over the notion of what “self” means until they
are instantiated [11]. This enables a remarkable degree of flexibility in their manipulation.

In Modular Scheme, a module consists of a list of attributes with no order significance. At-
tributes are of two kinds. Mutable attributes are similar to Scheme variables, and can store any
Scheme value. Immutable attributes are symbols bound to Scheme values in a read-only manner,
i.e. they can be accessed but not assigned to.

A module is a Scheme value that is created with the mk-module primitive. Modules can be
manipulated, but their attributes cannot be accessed or evaluated until they are instantiated via
the mk-instance primitive. The syntax of these two primitives is:

(mk-module {(mutable-attribute-list) (immutable-attribute-list))
(mk-instance (module-expr))

The attributes of an instance can be accessed via the attr-ref primitive and assigned to via
the attr-set! primitive. Procedures within a module can access sibling attributes via the self-ref
primitive, and assign to them with the self-set! primitive. (These primitives are explained in more
detail in Section 2.3.)

Figure 1 box (a) shows a module bound to a Scheme variable vehicle-fuel. The module has one
mutable attribute fuel, and two immutable attributes: empty?, bound to a procedure which checks
to see if the fuel tank is empty, and fill, bound to a procedure that fills the fuel tank of the vehicle
to capacity. The fill method refers to an attribute capacity that is not defined within the module,
but is expected to be the fuel capacity of the vehicle in gallons. In the vocabulary of traditional
module systems, the above module exports the three symbols fuel, empty?, and fill and implicitly

imports one symbol capacity.

(define vehicle-fuel (mk-module

((fuel 0))
o) ((empty? (lambda ()
(= (self-ref fuel) 0)))
(fill (lambda ()
(self-set! fuel (self-ref capacity)))))))

(define vehicle2-fuel (hide vehicle-fuel '(fuel)))
(b) (describe vehicle2-fuel)
—
((fuel 0)(empty? (lambda () (= (self-ref <priv-attr> 0))) ...

(define vehicle-capacity (mk-module ()
(c) ((capacity 10)
(more-capacity? (lambda (v)
(> (attr-ref v capacity) (self-ref capacity)))))))

(d) (define vehicle (merge vehicle2-fuel vehicle-capacity))
(define v1 (mk-instance vehicle))

Figure 1: Module definition, combination, and instantiation

2.1 Encapsulation

One of the most important requirements of module systems is encapsulation. This is supported by

the primitive hide, which returns a new module that encapsulates the given attributes.
(hide (module-expr) {attr-name-list-expr))

In box (b) of Figure 1, the hide expression creates a new module with an encapsulated fuel
attribute with an internal, inaccessible name. This is shown by the describe primitive as <priv-
attr>. Hiding results in what is known as object-level encapsulation, i.e. the hidden attributes
of a particular instance of a module are accessible only by self-reference primitives (e.g. self-ref)
within that individual instance. They are not accessible externally (e.g. via attr-ref), not even by
the incoming parameter of a binary method such as the v parameter of the more-capacity? method

of module vehicle-capacity shown in box (c) of Figure 1.1

2.2 Interconnection

The module vehicle-capacity given in Figure 1 box (c) exports two symbols: capacity, that represents
the fuel capacity of a vehicle in gallons, and more-capacity?, bound to a procedure that determines

if the incoming vehicle argument has more fuel capacity than the current vehicle.

!This style of encapsulation is similar to Smalltalk, and in contrast to the “class-level” encapsulation of C+4+.

The module vehicle-fuel can be combined with vehicle-capacity to satisfy its import requirements.
This can be accomplished as shown in box (d) via the primitive merge, which has the following
syntax:

(merge (module-exprl) (module-expr2))

The primitive merge does not permit combining modules with conflicting defined attributes, i.e.
attributes that are defined to have the same name.

The new merged module vehicle in box (d) exports five symbols and imports none.? An instance
of this module, such as vl in box (d), represents exactly the kind of module interconnectivity that

can be specified by the use of import/export operations in traditional module systems.

2.3 Attribute Access

In this section, we describe attributes and their access in more detail. Mutable attributes are
bound to fresh locations upon module instantiation, and initialized with the value associated with
each attribute. The initialization value of a mutable attribute can be changed via the primitive
override, described in Section 3. Immutable attributes are bound prior to instantiation, but can
be re-bound via override. We will refer to immutable attributes that are bound to procedures as
methods, borrowing from O-O programming. Immutable attributes can also be bound to other
modules, called nested modules, dealt with in Section 5.
The attributes of an instance are accessed with the following primitives:

(attr-ref (instance-expr) {attribute-name) {arg-expr*))
(attr-refc (instance-expr) (attribute-name))
(attr-set! (instance-expr) {attribute-name) {expr))

The values of both mutable and immutable attributes are accessed with the primitive attr-ref.
If the referenced attribute is a method, it is applied with the given argument(s) and its value
returned. Syntactically, accessing the value of a non-method attribute via attr-ref is exactly the
same as applying a method with no arguments. A method can also be accessed as a first-class
closure, without applying it, via the primitive attr-refc. For non-method attributes, attr-refc is
semantically equivalent to attr-ref. Mutable attributes are assigned with the primitive attr-set!.

A method can access the instance within which it is executing via the expression (self). Thus,
a method can access a sibling attribute within the same instance as (attr-ref (self) (attr-name)).
However, encapsulated attributes cannot be accessed in this manner. For this, a method uses the
analogous primitives self-ref and self-refc to access the values of attributes, and self-set! to assign
to mutable attributes, of the instance within which it is executing.

(self-ref (attribute-name) {arg-expr*})

20mne can check if the import requirements of individual modules are satisfied by using the introspection primitives

described in Section 3.2.

(define new-capacity
(a) (mk-module () ((capacity 25))))

(define new-vehicle (override vehicle new-capacity))

(define vehicleb (copy-as vehicle '(capacity) '(default-capacity)))
(b) (describe vehicleb)
—
((capacity 10)(default-capacity 10)(fill (lambda () (self-set! fuel (self-ref ...

Figure 2: Rebinding and copying

(self-refc (attribute-name))
(self-set! (attribute-name) {expr))

Accesses via these primitivies are called self-references, whereas accesses via attr-ref and attr-set!

are called external references. Figure 1 shows examples of the use of some of these primitives.

2.4 Abstract Modules

An attribute is called undefined if it is self-referenced, or referenced from a nested module, but is
not specified in the module. A module is abstract if any attribute is left undefined. In keeping
with dynamic typing in Scheme, an abstract module can be instantiated, since it is possible that
some methods can run to completion if they do not refer to undefined attributes. It is a checked

run-time error to refer to an undefined attribute.

3 Single Inheritance

We now go beyond traditional module systems and show how our model supports idioms of O-O
programming. We start with single inheritance, but we need to first introduce two primitives:
(override {module-expri) {module-expr2))
(copy-as (module-expr) {(from-name-list-expr) (to-name-list-expr))

The operator override produces a new module by combining its arguments. If there are conflict-
ing attributes, it chooses (module-expr2)’s binding over (module-expri)’s in the resulting module.
For example, the abstract module new-capacity in box (a) of Figure 2 cannot be merged with vehi-
cle since the two modules have a conflicting attribute capacity. However, new-capacity can override
vehicle, as shown. This way, immutable attributes can be re-bound, and mutable attributes can be
associated with new initial values.

The primitive copy-as copies the definitions of attributes in (from-name-list-expr) to attributes

with corresponding names in (to-name-list-expr). The from argument attributes must be defined.

(define-class vehicle #f

((fuel 0))
(a) ((c.apacity 10)
(fill (lambda () (self-set! fuel (self-ref capacity))))
(display (lambda () (format #t "fuel = ” a (capacity ~ a) "

(self-ref fuel) (self-ref capacity))))))

(define-class land-vehicle vehicle

{hests
(b) (display

~—

lambda ()
self-ref super-display)
format #t "wheels = ~ a " (self-ref wheels))))))

——

(define land-vehicle
(hide (override (copy-as vehicle '(display) '(super-display))
(mk-module ()
(c) ((wheels 4)
(display (lambda ()
(self-ref super-display)
(format #t "wheels = 7 a " (self-ref wheels)))))))

"(super-display)))

Figure 3: Single inheritance
An example is shown in box (b) of Figure 2.

3.1 Super

With the operators discussed thus far, we can describe support for single inheritance. Many single
inheritance systems such as Smalltalk-80 and Modula-3 (object types, modulo static typing) [7]
share the notion of a class consisting of methods and encapsulated instance variables. In these
systems, it is possible to specify a class declaration similar to that shown in box (a) of Figure 3.
The define-class construct will be explained below. In this example, the attribute fuel is intended
to be encapsulated as an instance variable, and the Scheme constant #f (false) indicates that the
class has no superclasses. Such a class declaration is equivalent to writing a mk-module expression,
and hiding the fuel attribute of the resultant module.

Subsequently, a subclass land-vehicle of vehicle can typically be specified in such systems in a
manner similar to box (b). In this definition, a new attribute wheels is added, and the display
binding is overridden with a method that accesses the shadowed method as (self-ref super-display).
Such a subclass definition is exactly equivalent to specifying the module expression shown in box

(c). In this expression, a module with attributes wheels and display is created, and is used to

(a) (let ((conflicts (conflicts-between mod1 (attrs-of mod2))))
(copy-as mod1 conflicts (prepend "super-" conflicts)))

(b) (hide vehicle (mutable-attrs-of vehicle))

(c) (defined? vehicle (self-refs-in vehicle more-capacity?))

Figure 4: Introspection

override the superclass vehicle in which the display attribute is copied as super-display. We then
hide away the copied super-display attribute to get a module with exactly one display method in the
public interface, as desired.

One can write a macro in Modular Scheme to translate define-class expressions such as those
for vehicle and land-vehicle into module expressions. In fact, a library of several such useful macros
accompanies Modular Scheme. One macro for single inheritance accepts the following syntax:

(define-class (name) (super) (inst-var-list) (method-list))

The general form of the module expression shown in box (c) of Figure 3 turns out to be a
useful idiom in Modular Scheme. It can be used for expressing other effects such as prefix-based
inheritance, wrapping, and mixin combination, described later. We shall refer to this form as the

copy-override-hide idiom.

3.2 Introspection

The macro define-class given above automatically finds conflicting attributes between two modules
by using an introspective primitive called conflicts-between. It then uses the copy-override-hide
idiom as shown in Figure 3 to achieve single inheritance.

There are several primitives available for determining various kinds of information about mod-
ules and instances. Some of them are:

(conflicts-between (module-expr) {attr-name-list-expr))
(module-of (instance-expr))

(attrs-of {(module-expr))

(mutable-attrs-of (module-expr))

(defined? (module-expr) (attr-name-list-expr))
(self-refs-in (module-expr) {attr-name-list-expr))

As mentioned, the primitive conflicts-between returns a list of attribute names that are defined
in the given module and also exist in the given list. For example, all the attributes of a module
that conflict with another module can be copied by using the expression in box (a) of Figure 4.

The module from which an instance was created can be obtained with the primitive module-of.

Thus, (module-of (self)) is similar to self class in Smalltalk, like current in Eiffel [24], and myclass

in [6]. The names of the publicly accessible attributes of a module are accessible via the attrs-
of primitives. For example, the mutable attributes of a module can be encapsulated with the
expression in box (b) of Figure 4. The primitive defined? is used to determine if an attribute is
defined in a module. It returns #f if any one of the given attributes names is undefined in the given
module. If all of them are defined, it returns the incoming list of attribute names.

It is sometimes useful to know the names of public attributes that are self-referenced within
a method. The primitive self-refs-in returns a flat list comprising the set of all the self-referenced
public attributes within the bindings of the given attribute names. Argument attribute names
that are non-existent or bound to non-method values are ignored. For example, to determine if a
method will execute without run-time errors relating to locally undefined public attributes (private
attributes are always defined), one can evaluate the expression in box (c).

It is worth mentioning that the introspective operations given above do not violate encapsulation

since we do not permit any access to the private attributes of modules.

3.3 Adaptation

Apart from hide and copy-as, there are three other primitives which can be used to create new

modules by adapting some aspect of the attributes of existing modules.

(freeze (module-expr) (attr-name-list-expr))
(rename (module-expr) (from-name-list-expr) (to-name-list-expr))
(restrict (module-expr) (attr-name-list-expr))

The primitive freeze statically binds self-references to the given attributes, provided they are
defined in the module. Freezing the attribute capacity in the module vehicle causes self-references to
capacity to be statically bound, but the attribute capacity itself is available in the public interface for
further manipulation, e.g. rebinding by combination.> As shown in box (a) of Figure 5, frozen self-
references to capacity are transformed to refer to a private version of the attribute. Operationally,
the binding of the private version is shared with the public version, as long as the public version is
not re-bound to a new value via overriding. This implies that frozen references to mutable attributes
are always shared, since mutable attributes can never be re-bound; they can just be initialized to
new values.

The primitive rename changes the names of the definitions of, and self-references to, attributes
in (from-name-list-expr) to the corresponding ones in (to-name-list-expr). An example is shown in
box (b). Undefined attributes, i.e. attributes that are not defined but are self-referenced, can also

be renamed.

3This effect is similar to converting accesses to a virtual C4++ method into accesses to a non-virtual method. The
difference is that C++ allows non-virtual methods to be in the public interface of a class — the general philosophy

here is that all public attributes are rebindable, or virtual, like in Smalltalk.

(define vehicle3 (freeze vehicle '(capacity)))
(a) (describe vehicle3)
—
((capacity 10)(fill (lambda () (self-set! fuel (self-ref <priv-attr>)) ...

(define vehicle4 (rename vehicle '(capacity) '(fuel-capacity)))
(b) (describe vehicle4)
—
((fuel-capacity 10)(fill (lambda () (self-set! fuel (self-ref fuel-capacity)))...

(define vehicleb (restrict vehicle '(capacity)))
(c) (describe vehicle6)
—
((fill (lambda () (self-set! fuel (self-ref capacity))...

Figure 5: Adaptation

The primitive restrict simply removes the definitions of the given (defined) attribute names from
the module, i.e. makes them undefined. An example is shown in box (c) of Figure 5.

These module manipulation primitives are applicative, in the sense that they return new mod-
ules without destructively modifying their arguments. However, destructive versions of the opera-
tors are also available, so that composite module operations can be expressed without compromising
efficiency by making unnecessary copies. The name of the destructive version of a primitive is writ-
ten as the corresponding name of the non-destructive primitive suffixed with a “1”, e.g. hide! is the
destructive version of hide. Destructive module primitives are to be used with caution, and used

only for optimizing stable programs.

3.4 Prefixing

The programming language Beta [21] supports a form of single inheritance called prefizing which is
quite different from the single inheritance presented in Section 3. In prefixing, a superclass method
that expects to be re-bound by a subclass definition uses a construct called inner somewhere in its
body. In instances of the superclass, calls to inner amount to null statements, or no-ops. Subclasses
can redefine the method, and in turn call inner. In subclass instances, the superclass method is
executed first, and the subclass’ redefinition is executed upon encountering the inner statement.
The above effect can be achieved in Modular Scheme with the macro define-prefix, illustrated
with the vehicle example in Figure 6. Box (a) focuses on the display method of the vehicle class. The
expression (self-ref inner-display) corresponds to the inner construct. This class definition expands
to the module expression shown in box (b), where a dummy inner-display attribute is merged in.

In fact, the define-prefix macro adds such a dummy attribute (prepended with inner-) for every

10

(define-prefix vehicle #f
(a) (...)
(...(display (lambda () ... (self-ref inner-display) ...))))

(define vehicle (mk-module (...)

(b) Gli.splay (lambda () ... (self-ref inner-display) ...))
(inner-display #t))))

(define-prefix land-vehicle vehicle
(...(display (lambda () ... (self-ref inner-display) ...))))

(define land-vehicle

(d) (hide (override (copy-as (merge-inner sub) '(display) '(sub-display))
(rename vehicle '(inner-display) '(sub-display)))

"(sub-display))))

Figure 6: Prefixing

immutable attribute in the definition. A subclass land-vehicle of vehicle is defined in box (c),
which expands to the expression in box (d). In this expression, the subclass is first merged in
with a dummy inner-display with the function (merge-inner sub). The subclass’ display method is
then copied as sub-display and overridden with the superclass in which inner-display is renamed to
sub-display. Lastly, sub-display is hidden away so that there is only one display method.

This example also uses the copy-override-hide idiom introduced in Section 3.1. The difference
here is that the superclass overrides the subclass as opposed to the reverse in Section 3.1. Indeed,

this is the difference between prefix-based and super-based forms of single inheritance.

3.5 Wrapping

Wrapping, similar to the CLOS notion of :around methods, is useful in many contexts. In fact,
wrapping method definitions can be used to simulate :before and :after methods of CLOS as well,
since new code can be interposed before or after the call to the old code. It is easy to wrap method
definitions using the copy-override-hide idiom shown earlier. Modular Scheme provides a macro
called wrap-method to achieve this effect, but we shall omit its description here to conserve space.

A more interesting and less often explored effect is to wrap self-referenced calls to particular
methods. Say we have a module veh-sim shown in box (a) of Figure 7, which is intended to be
combined with the vehicle module. Its method sim-fill calls the undefined method fill upon some
condition fill-condition. Say we want to count the number of calls to fill that sim-fill makes. We do

not want to wrap the method fill in vehicle, since we want to count only calls from sim-fill. Also,

11

(define veh-sim (mk-module (.. .)
(a) ((sim-fill (Iambd:.ﬂ (v)
(if (fill-condition v)
(self-ref filN))))))

(define counted-veh-sim
(let ((count-sim (merge veh-sim (mk-module ((count 0)) ()))))
(b) (wrap-call count-sim fill
(lambda ()
(self-set! count (4 (self-ref count) 1))

(self-ref fil)))))

(hide (merge (rename count-sim '(fill) '(wrap-fill))
(mk-module ()
(c) ((wrap-fill (lambda ()
(self-set! count (4 (self-ref count) 1))

(self-ref fill))))))

(wrap-fill))

Figure 7: Wrapping calls to methods

we cannot wrap the sim-fill method to do this, since every call to it does not necessarily result in a
call to fill, due to the fill-condition test.

Thus, we need to wrap calls to fill from the veh-sim module using the wrap-call macro shown
in box (b). We add a mutable attribute count to veh-sim, and wrap its calls to fill to increment
the counter. The module expression that the wrap-call expands into is given in box (c). In this
expression, we first rename the undefined attribute fill to wrap-fill, thus changing the self-references
correspondingly. We then merge in a wrap-fill method that increments count and calls the old fill
method in the resulting module.

The general form of the expression in box (c) is another useful idiom in the language, and will
be referred to as the rename-merge-hide idiom. The distinction between the copy-override-hide
idiom and the rename-merge-hide idiom is worth exploring. Figure 8 pictorially shows the use of
these idioms for method definitions in the first row and method calls in the second. In the figure,
shaded boxes represent hidden methods.

For method definitions, both the idioms are used when a method METH of M1 is being redefined
by M2, and the old definition of the method is referred to in the redefinition as METH’. The
difference is that copy-override-hide is used when M1’s references to METH are to refer to the new
METH in the combined module. Rename-merge-hide is used when M1’s references are to refer to
the old definition renamed as METH’, while M2’s references are to refer to the redefinition. As

an example scenario, rename-merge-hide is not appropriate to achieve the right effect of single

12

IDIOM COPY-OVERRIDE-HIDE RENAME-MERGE-HIDE

METH’ C METH’

|-

METHOD DEFINITION

METH
MI/EI\TH'
M2 B~
C METH C METH C METH

METH METH

I} A
Il
o M3| | WRAP WRAP
8 Cannot
5 COoPY
z METH calls M5
w
=

M4 ‘

Figure 8: Idioms in Modular Scheme

inheritance. For example, in box (c) of Figure 3, renaming vehicle’s display method instead of
copying it would not work, since in that case self-references to display in vehicle would also be
renamed — we want self-references in the superclass to refer to the new, rebound display method.

For method calls, only the rename-merge-hide idiom applies, since undefined attributes cannot
be copied. In Figure 8, module M4 has a call to METH which is wrapped to produce M5 as shown.

An example was given in the first half of this section.

4 Multiple Inheritance

We have seen in the previous section how to express the creation of a subclass from a single
superclass. With multiple inheritance, there is the additional problem of how to compose the
superclasses by resolving conflicts and sharing attributes between them. Typically, a language
supporting multiple inheritance makes available to the programmer a small number of choices
for attribute sharing and conflict resolution. The advantage of O-O programming with operator-
based inheritance is that the programmer has numerous options for, and fine-grained control over,
decisions taken while combining multiple modules. Also, inheritance history does not intrude into

operator semantics, making the approach more compositional.

4.1 Mixins and Linearized Multiple Inheritance

Consider the case of linearized multiple inheritance as in Flavors and Loops, where the graph of
ancestor classes of a class are linearized into a single inheritance hierarchy. Each of these languages

specifies a different default rule for the linearization of ancestor classes. For example, both these

13

(define land-veh-chars (mk-module ()
((wheels 4)
(display (lambda () (self-ref super-display)
(a) (format #t "wheels = 7 a " (self-ref wheels)))))))
(define sea-veh-chars (mk-module ()
((surface #t)
(display (lambda () (self-ref super-display)
(format #t "surface = ~ a " (self-ref surface)))))))

define-subclass land-vehicle (land-veh-chars vehicle))
define-subclass sea-vehicle (sea-veh-chars vehicle))
define-subclass amphibian (land-veh-chars sea-veh-chars vehicle))

~— ~ N N

define amphibian
(hide (override (copy-as vehicle '(display) '(super-display))
(c) (hide (override (copy-as sea-veh-chars '(display) '(super-display))
land-veh-chars)
"(super-display)))
"(super-display)))

Figure 9: Linearized Multiple Inheritance

languages do a depth-first, left-to-right traversal of ancestor classes up to join classes, i.e. classes
that are encountered more than once, which get traversed on their first visit in Flavors and last
visit in Loops.

It has been argued that currently used linearizations do not ensure that “the inheritance mech-
anism behaves “naturally” relative to the incremental design of the inheritance hierarchy” [13].
Perhaps it is better to let the programmer select the precedence order of superclasses as dictated
by individual applications. In the case of CLOS, a programmer with considerable expertise can
use the meta-object protocol of the language and adapt the default rule. In contrast, programming
with operator-based inheritance gives the programmer direct control over combination, as shown
in Figure 9.

Say we want to create modules for land vehicles and sea vehicles as subclasses of vehicle. We
can define modules with the characteristics of land vehicles (number of wheels) and sea vehicles
(surface vessel or submarine) as shown in box (a). In these modules, one can think of the expression
(self-ref super-display) as being the equivalent of call-next-method in CLOS. Abstract modules such
as these are sometimes called “mixins” — reusable abstractions that require other abstractions in
order to be usefully applied. Such abstractions have been characterized as functions from classes
to classes [4]. However, the approach of operator-based inheritance given here uniformly treats all
aspects of inheritance as operations over modules, as was first developed in [3].

With the definitions in box (a), we can create land-vehicle and sea-vehicle “subclasses” of vehicle

14

(define color
(mk-module
(a) ((color 'white))
((set-color (lambda (new-color) (self-set! color new-color)))

(display (lambda () (format #t "color = ~ a" (self-ref color)))))))

(define car-class
(hide (merge (merge (rename color '(display) '(color-display))
(rename land-vehicle '(display) '(vehicle-display)))
(b) (mk-module ()
((display (lambda () (self-ref vehicle-display)
(self-ref color-display))))))

'(color-display vehicle-display))

Figure 10: Multiple Inheritance with no common ancestors

as shown in box (b). This is achieved using the copy-override-hide idiom (Figure 8), but with
the macro define-subclass which accepts a slightly different syntax. Similarly, we can “chain” the
creation of subclasses so that the call to super-display in each class calls the display method of the
next lower precedence superclass. Thus, we can create an amphibian class that inherits both the
characteristics of land and sea vehicles. The define-subclass macro for amphibian expands to the
module expression shown in box (c¢) (note the cascaded use of the copy-override-hide idiom), and

extends to an arbitrary number of superclasses, as desired.

4.2 Multiple Inheritance with No Common Ancestors

Let us now consider the case of multiple superclasses that are not linearized, and have no common
ancestor. Say we have a module color defined as in box (a) of Figure 10. We can combine color
with the module land-vehicle shown earlier into car-class, as shown in box (b). This expression uses
the rename-merge-hide idiom introduced in Section 3.5. The method display that conflicts in the
“superclasses” vehicle and color is renamed in each and the superclasses are merged together. A
new module that defines a display method that calls the renamed display methods is then merged
in to create the desired car-class. This example can be extended to more than two superclasses,
and can be automated via a macro that uses the introspective primitive conflicts-between to rename
attributes.

The rename-merge-hide idiom works fine for this example, since there are no self-references to
the renamed attribute in the superclasses. However, the right effect of inheritance can only be
obtained with copy-as, so that self-references in the superclasses are not changed, followed by a
merge, so that accidental conflicts between superclasses do not get quietly re-bound. The problem

with copying conflicting attributes and merging is that the conflicts will still persist. This can be

15

(override (override (rename land-vehicle '(fuel) '(land-fuel))
(rename sea-vehicle '(fuel) '(sea-fuel)))
(mk-module ()
(display (lambda ()
(format ... (self-ref land-fuel) (self-ref sea-fuel) ...))))))

Figure 11: Multiple Inheritance with common ancestors

remedied by restrict’ing (Section 3.3) after copying, and then merging and hiding. There is some

similarity between such a copy-restrict-merge-hide operation and the copy-override-hide idiom.

4.3 Multiple Inheritance with Common Ancestors

In the case of superclasses with a common ancestor, such as in the “diamond” problem of multiple
inheritance, the situation gets more complex. In this case, the attributes of the common ancestor
are clearly conflicting in the superclasses. Furthermore, there is the choice of inheriting either a
single copy or multiple copies of mutable attributes from the common ancestor.?

To illustrate, consider the two previously given modules land-vehicle and sea-vehicle which have
each inherited from the vehicle module. Say we want to create an amphibian module that inherits
from these two modules, but needs two copies of the fuel attribute to model two different kinds
of fuels for amphibians. This can be achieved with the expression in Figure 11. In this example,
the fuel attribute is renamed for each type of module. The two modules are then overridden since
the conflicting attributes capacity and fill are known to be identical, and the method display will
be overridden in the final module. A new display method that displays all the attributes in an
appropriate way is included in the final composition to get the desired module.

The distinction between programming with first-class modules and the operational style more
often found in O-O languages is illustrated by this example. Firstly, problems of conflicts and
sharing clearly manifest themselves, and compell the programmer to resolve them as the particular
situation demands using introspection and inheritance operators. For example, conflicts between
superclasses can be inspected with conflicts-between, and superclasses can be overridden in some
appropriate order to resolve attribute conflicts. If multiple copies of mutable attributes from the
common ancestor are desired, they can be renamed within each superclass, as shown in the example
above. However, the burden of resolving conflicts in each individual case can be removed by writing
macros that perform a user-chosen method of composition. Secondly, the inheritance history of
superclasses is not important; only the attributes of superclasses must be known in order to derive

a subclass.

4This7 of course, is the rationale for virtual and non-virtual base classes in C++.

16

5 Nested Modules

Since modules are first-class values, attributes of modules can themselves be modules. Modules
that are bound to immutable attributes of other modules are referred to as nested modules. We
will give brief examples in this section to give some insight into the semantics and applications of

nested modules — a full treatment is beyond the scope of this paper.

5.1 Semantics

The methods of modules can explicitly refer to bindings in their surrounding scopes using the
following primitives, which refer to the given name in a lexically surrounding scope that has a
binding for the name.

(env-ref {attribute-name) (arg-expr*))
(env-refe (attribute-name))
(env-set! (attribute-name) (expr))

These three primitives serve functions analogous to the three self-reference primitives. It is a
checked run-time error to refer to a name that does not have a binding in some surrounding scope.

Modules follow static scoping rules just like the rest of Scheme. The environment of a module
is determined by the lexical placement of the mk-module expression that creates it. In Figure 12
box (a), typel and type2 are nested modules whose fill methods refer to the capacity attribute of
the outer module. Individual vehicles are represented by instances of the nested modules.

The mk-module expressions for these nested modules are evaluated at the time the outer module
vehicle-category is instantiated. Thus, nested modules have an instance of their surrounding module
as their environment®, and are bound to their environment at the time of instantiation of the outer
module. Thus, vl in box (a) is a vehicle that shares the capacity attribute of vehicle-category with
other instances of typel and type2. Thus, the attribute capacity serves the purpose of a “class
variable” — a variable that is shared among the instances of a class.

With static scoping, a module and its nested modules interact in non-obvious ways. For example,
env-ref’s in nested modules are equivalent to self-ref’s in the outer module. Thus, changes to a
module’s attributes, e.g. via rename, freeze (static binding), and hide, result in modifications to the
environment of nested modules, and hence modify the environment references in nested modules.
However, once the outer module is instantiated, environment references in nested modules are
permanently bound, regardless of whether the nested module is moved to and combined in another
environment with other nested modules created in yet other environments. This is analogous to
the creation and manipulation of first-class closures, i.e. procedures with environment references,

in Scheme.

®Non-nested modules have as their environment the Scheme environment in effect when they are created.

17

define vehicle-categor
(gory
(mk-module ()
((capacity 10)
(typel (mk-module (...) ((fill (lambda ... (env-ref capacity) ...)))))
a type2 (mk-module (...) ((fill (lambda ... (env-ref capacity) ...
(a) (type2 (() (Cfil((pacity) ...)))))
(car (lambda () (override (self-ref typel)
(mk-module ((color 'white)) ())))))))
(define mycategory (mk-instance vehicle-category))
(define v1 (mk-instance (attr-ref mycategory typel)))

(define cap (mk-module ()
(((typel (mk-module () ((capacity 10)))))))
define veh-cap
(b) (merge (merge (restrict (copy-as vehicle-category '(typel) '(veh-typel)))
((restr(i;:t (copy-as cap '(typel) '(cap-typel))))
mk-module
(vehicle (lambda ()
(override (self-ref veh-typel) (self-ref cap-typel)))))))

(define manager (mk-module ()
(©) ((new (lambda () (mk-instance (self-ref class))))
(ref (lambda (inst attr args)

~

(eval (append (attr-ref ,inst ,attr) args)))))))

Figure 12: Nested Modules

5.2 Applications

Shared repository. A module provides a local namespace for nested modules. It can serve as
a shared data repository for nested modules, in addition to serving as a “factory” that produces
initialized instances of nested modules. An interesting consequence of this is that names that are
not bound within the “top-level” environment can be considered persistent names — this is left as

future work.

Hierarchy combination. An inheritance “hierarchy” in O-O programming is usually thought
of as a graph of inheriting classes. In Modular Scheme, an inheritance hierarchy is represented
simply by a collection of module expressions, some of which are mk-module expressions and others
which combine and adapt these modules. Such a hierarchy of modules can be nested within another
module. That is, the base class of the hierarchy can be a nested module, and other modules that
inherit from it can be computed via module expressions within methods of the outer module (since
modules are first-class). For example, a hierarchy consisting of a typel module and its “subclass”

car are shown in box (a) of Figure 12.

18

Entire hierarchies such as the above can be “combined” with other hierarchies by manipulating
the outer modules. Consider a hierarchy cap with a nested module typel with a single attribute
capacity as given in box (b) of Figure 12. Suppose we wish to extend the hierarchy vehicle-category
with the hierarchy cap, so that an attribute capacity is added to the typel module (i.e. the su-
perclass), which will be automatically inherited by car (i.e. the subclass). This can be achieved
with the expression shown in box (b) of Figure 12. Several applications of this style of hierarchy

combination are given in [25].

Manager modules. Reflection is a means by which programs can access and manipulate them-
selves. Modular Scheme supports a form of reflective programming on modules with the intro-
spective primitives given in Section 3.2 in conjunction with what are called manager modules. A
manager module consists of a nested module along with methods that manipulate some extensible
functionality to be supported on the nested module. In a sense, a manager module can be used to
simulate a meta-class in more conventional designs — this has already been shown by using block
structure in the programming language Beta ([23], page 124).

For example, a generic manager module can be specified as in box (¢) of Figure 12. This module
specifies a method new that returns an instance of an undefined attribute called class, and a method
ref that accesses the attribute attr of inst. Basically, the new and ref methods act as surrogates for
mk-instance and attr-ref for modules bound to the attribute class.® The idea is that any module
can be bound to the attribute class, and the new and ref methods can be specialized appropriately

for that module via manipulation of the manager module.

6 Implementation

Most of the notions of module manipulation, nesting, and introspection described above are inde-
pendent of the language into which they are embedded. In fact, an object-oriented framework [17]
called ETYMA incorporating these generic notions has been designed and implemented in C++.
The language described here has been realized as one completion of ETYMA. Among the other
completions of ETYMA are a linker and a compiler for an interface definition language, described
in [2]. This section describes the O-O design and implementation of the modular extension to a
basic Scheme interpreter.

The overall architecture of the implementation is shown in Figure 13. The interpreter for
Modular Scheme is implemented as an extension of the Scheme interpreter provided in the STk
[14] package. The basic Scheme interpreter is implemented in C. The code for the extension is

designed as a set of C4++ classes that inherit from classes in ETYMA. The Scheme library shown

5The new and ref methods could actually be named mk-module and attr-ref.

19

%\O/OC{;
|/
library O Cé O

basic interpreter | glue .
Scm completion

C C++

Figure 13: Architecture of extended Scheme interpreter

on the left includes the macros for O-O programming presented in this paper, as well as other
functions.

A complete description of the design of the C+4 framework ETYMA is beyond the scope of
this paper. Briefly, ETYMA models generic linguistic notions that are found in modular languages
such as Modular Scheme, thus constituting a meta-architecture for modular systems. For example,
ETyMmA specifies abstract classes Module and Instance that model the corresponding notions, with
the operators for manipulation as their methods. ETYMA also specifies classes Interface, PrimValue,
Method, Location, and Label that model the corresponding notions. Standard concrete implementa-
tions of C++ classes for modules, instances, and interfaces are available as StdModule, StdInstance,
and StdInterface. All these classes collaborate with one another to model the linguistic concepts of

object-oriented languages.

ETYMA classes
LaTbel PrimValue Me?thod Location StdModule Stdinstance Stdl n/Ferface
SchLabel Schvalue SchMethod SchLocation SchModule Schinstance Schinterface
Completion subclasses

Figure 14: Design of classes in the framework completion

Reuse parameter New | Reused | % reuse
Classes 7 25 78
ETyMma Methods 67 275 80.4

Lines of Code | 1550 5000 76.3
ETyMA + STk | Lines of Code | 1800 | 20000 91.7

Figure 15: Reuse of framework design and code

In order to construct an interpreter for Modular Scheme, we modeled Scheme concepts as sub-

classes of generic concepts in ETYMA. The only subclasses created to implement Modular Scheme

20

are shown in Figure 14. The reusability of the framework design, in conjunction with the extensi-
bility of the basic Scheme interpreter, made the degree of reuse so high in this case that most of
Modular Scheme was designed and implemented in about a week. Figure 15 shows several mea-
sures of reuse for this completion. The percentages for class and method reuse give an indication

of design reuse, whereas those for lines of code give a measure of code reuse.

7 Related Work

The design of Modular Scheme is based upon a semantic notion of modules that goes back to
record calculi [16, 8]. Classes were modeled as record generators by Cook [11], who also first
introduced some of the operators used here. Based on this, Bracha and Lindstrom in [5] developed
a comprehensive suite of operators to support sharing, encapsulation, and static binding. Here,
we have augmented the above model with the detailed semantics of nested modules, designed and
implemented a generic framework based on these notions, completed it to realize a realistic language
design, and illustrated typical programming styles and idioms in the language.

Modular programming has traditionally dealt with issues of structuring, encapsulation, and
independent development of software. Known by various names such as packages, structures, etc.,
modules have long played the role of static design artifacts [22, 1]. However, it has not yet been
widely recognized that O-O programming is but a sophisticated form of modular programming. The
power of first-class modules as given here is even less recognized. In the context of Scheme, several
module systems have been developed [12, 28]. These systems essentially provide the functionality
described in Section 2, although [12] supports explicit interfaces. Lisp packages [27] and Scheme
first-class environments are much restricted forms of modularity compared to the system presented
here.

Beta provides a uniform model of programming via patterns. However, it does not support first-
class modules or operator-based inheritance. Beta’s style of prefixing is described and simulated in
Section 3.4. Beta supports arbitrary nesting of modules with which meta-classes can be simulated,
as with manager modules (Section 5.2). There is also some similarity between manager modules and
the concept of “object managers” given in the language Paragon [26], a language for programming
with abstract data types.

A popular language family for O-O programming with Lisp is the CLOS family of languages
[18, 20]. CLOS supports a quite different model of O-O programming than the one described
here, with multiple-dispatch, generic functions, and weak encapsulation. Modular Scheme, on the
other hand, supports only single dispatch. CLOS also supports a protocol to interact with its
meta-architecture. Dexterity of multiple inheritance as given in Section 4.1 was a primary practical
motivation for the CLOS MOP.

21

Systems such as the CLOS meta-object protocol (MOP) [19] and Open C++ [9] expose the
implementation objects of the language processor to the programmer via a controlled protocol.
Many aspects of the language’s implementation, such as object data layout, are controllable via
such a meta-protocol. The approach to O-O programming described here is to provide the flexibility
of meta-programming without exposing the meta-architecture to direct user programming. Our
approach does not give the user the full power of altering a language’s behavior as a MOP can.
However, we favor a small set of well-designed primitives that can as effectively provide a uniform
and flexible model of O-O programming.

Other specific related languages and semantics are cited throughout the paper.

8 Conclusions

Module systems and O-O programming have long strived to achieve the requirements of large-scale
programming such as encapsulation, component-wise development, and reuse. In this paper, we
showed that these requirements can be met in a uniform and flexible manner by programming
with first-class modules and operator-based inheritance. Modules are manipulated with a suite
of operators that individually achieve effects such as encapsulation, combination, sharing, and
introspection. This model of modularity has been smoothly integrated into the programming
language Scheme while keeping with its original design philosophy that “... a very small number
of rules for forming expressions, with no restrictions on how they are composed, suffice to form a
practical and efficient programming language that is flexible enough to support most of the major
programming paradigms in use today.” [10]

The above language is expressive and flexible enough to model most previously existing tech-
niques of O-O programming, without recourse to meta-programming. We have shown by examples
that the language can emulate an unprecedentedly broad array of idioms such as single, prefix-based,
mixin-based, and multiple inheritance, abstract classes, wrapping of method definitions and calls,
class variables, inheritance hierarchy combination, and a form of reflection. Thus, the language
provides mechanisms to support all of the above, but does not enforce any one inheritance policy.
In effect, this language represents a unification of the design space of dynamic, single-dispatch, O-O
programming languages.

Finally, we show that the underlying concepts of this programming model are language inde-
pendent. We have designed and implemented a generic reusable O-O framework in C4++4 that
incorporates the basic abstractions of modularity, and completed it to realize an interpreter for
our language. Language independence is conclusively proved by showing that the design and code
reuse levels for our completion are very high.

Some important areas of future work remain. Static typing is desirable and possible within

22

our model, although it would introduce several restrictions to the programming style presented

here. Compilation is a much more challenging issue, especially to devise composable techniques

paralleling the semantic one, and to express in a language independent manner in our generic

framework.

Acknowledgements.

We gratefully acknowledge support and several useful comments on this work from Jay Lepreau, Bjorn

Freeman-Benson, Bryan Ford, Doug Orr, Robert Mecklenburg, and Nevenka Dimitrova.

References

(1]
[2]

[12]

[13]

[14]

Reference manual for the Ada programming language. ANST/MIL-STD-1815 A, 1983.

Guruduth Banavar, Gary Lindstrom, and Douglas Orr. ETYMa: A framework for modular systems. CS
Dept. TR UUCS-94-035, University of Utah, December 1994. Short version persented at the workshop
on O-O Compilation at OOPSLA ’94, Portland, OR.

Gilad Bracha. The Programming Language Jigsaw: Mizins, Modularity and Multiple Inheritance. PhD
thesis, University of Utah, March 1992. Technical report UUCS-92-007; 143 pp.

Gilad Bracha and William Cook. Mixin-based inheritance. In Proc. OOPSLA Conference, Ottawa,
October 1990. ACM.

Gilad Bracha and Gary Lindstrom. Modularity meets inheritance. In Proc. International Conference on
Computer Languages, pages 282-290, San Francisco, CA, April 20-23, 1992. IEEE Computer Society.
Also available as Technical Report UUCS-91-017.

P. Canning, W. Cook, W. Hill, and W. Olthoff. Interfaces for strongly-typed object-oriented pro-
gramming. In Norman Meyrowitz, editor, Proceedings of the ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 457-467, 1989.

Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow, and Greg Nelson. Modula-3
report. Technical Report 31, Digital Equipment Corporation Systems Research Center; August 1988.

Luca Cardelli and John C. Mitchell. Operations on records. Technical Report 48, Digital Equipment
Corporation Systems Research Center, August 1989.

Shigeru Chiba and Takashi Masuda. Designing an extensible distributed language with a meta-level
architecture. In Proceedings of the 7th FEuropean Conference on Object-Oriented Programming. Springer

Verlag, 1993. LNCS 707.

William Clinger and Jonathan Rees. Revised? report on the algorithmic language scheme. ACM Lisp
Pointers, 4(3), 1991.

William Cook and Jen Palsberg. A denotational semantics of inheritance and its correctness. In Proc.
ACM Conf. on Object-Oriented Programming: Systems, Languages and Applications, pages 433-444,
1989.

Pavel Curtis and James Rauen. A module system for scheme. In Conference Record of the ACM Lisp
and Functional Programming. ACM, 1990.

R. Ducournau, M. Habib, M. Huchard, and M. L. Mugnier. Proposal for a monotonic multiple inheri-
tance linearization. In Proceedings of OOPSLA, pages pages 164 — 175, October 1994.

Erick Gallesio. STk reference manual. Version 2.1, 1993/94.

23

Adele Goldberg and David Robson. Smalltalk-80: The Language and its Implementation. Addison-
Wesley, 1983.

Robert Harper and Benjamin Pierce. A record calculus based on symmetric concatenation. In Proc. of
the ACM Symp. on Principles of Programming Languages, pages 131-142, January 1991.

Ralph E. Johnson and Vincent F. Russo. Reusing object-oriented designs. Technical Report UTUCDCS
91-1696, University of Illinois at Urbana-Champagne, May 1991.

Sonya E. Keene. Object-Oriented Programming in Common Lisp. Addison-Wesley, Reading, MA | 1989.

Gregor Kiczales, Jim des Riviéres, and Daniel G. Bobrow. The Art of the Metaobject Protocol. The
MIT Press, Cambridge, MA, 1991.

Gregor Kiczales and Luis Rodriguez. Efficient method dispatch in PCL. In Proceedings of the 1990
ACM Conference on Lisp and Functional Programming, pages 99-105. ACM, 1990.

Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger Moller-Pedersen, and Kristen Nygaard. The
BETA programming language. In Research Directions in Object-Oriented Programming, pages pages 7
— 48. MIT Press, 1987.

David MacQueen. Modules for Standard ML. LFCS report, Dept. of Computer Science, Univ. of
Edinburgh, Scotland, 1986. Part 111 of Standard ML, by Robert Harper, David MacQueen and Robin
Milner.

Ole Lehrmann Madsen. Block structure and object-oriented languages. In Research Directions in
Object-Oriented Programming, pages pages 113 — 128. MIT Press, 1987.

Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1987.

Harold Ossher and William Harrison. Combination of inheritance hierarchies. In OOPSLA Proceedings,
pages 25-40, October 1992.

Mark Steven Sherman. Paragon: A Language Using Type Hierarchies for the Specification, Implemen-
tation and Selection of Abstract Data Types. Springer-Verlag, New York, NY, 1985.

Guy L. Steele Jr. Common Lisp: The Language. Digital Press, Bedford, MA, 1984.

Sho-Huan Simon Tung. Interactive modular programming in scheme. In Proceedings of the ACM Lisp
and Functional Programming Conference, pages pages 86 — 95. ACM, 1992.

Last modified: February 28, 1995

24

