
Explicit�enumeration based Veri�cation made Memory�e�cient

Ratan Nalumasu�
Ganesh Gopalakrishnan ��

Department of Computer Science�

University of Utah� Salt Lake City� UT �����

fratan�ganeshg�cs�utah�edu

February ��� ����

Abstract

We investigate techniques for reducing the memory requirements of a model checking tool
employing explicit enumeration� Two techniques are studied in depth� ��� exploiting symmetries
in the model� and ��� exploiting sequential regions in the model� The �rst technique resulted
in a signi�cant reduction in memory requirements at the expense of an increase in run time�
It is capable of �nding progress violations at much lower stack depths� In addition� it is more
general than two previously published methods to exploit symmetries� namely scalar sets and
network invariants� The second technique comes with no time overheads and can e�ect signif	
icant memory usage reductions directly related to the amount of sequentiality in the model�
Both techniques have been implemented as part of the SPIN veri�er�

Keywords� Formal Methods� Veri�cation� Model Checking

� Introduction

With the growing complexity of hardware and software� the need to formally verify them is
being increasingly felt� Among the options available today� two of the prominent ones are
based on deduction and model�checking
��� Although both methods have their proponents�
model	checking

� is preferred when a relatively high degree of automation is desired� and when
one	of	a	kind reactive behaviors are involved� Model	checking can be carried out either via
implicit enumeration where the state graph is implicitly traversed using �for example� BDD	
methods or via explicit enumeration where the state graph is explicitly traversed and processed
using graph algorithms� Both these approaches have their own strengths� Also� both methods
su�er from state explosion
���� combating which forms a central research problem� This paper
is about combating state explosion in explicit	enumeration	based veri�cation�

Space�Time Tradeo�s During Explicit Enumeration

Explicit enumeration forms the basis for a number of tools that have been used with great success
in validating several real	life protocols
��� ��� ���� One problem with explicit enumeration is
that the available amount of memory often decides the size of the problem that can be handled�
most explicit	enumeration	based tools give ���� �coverage� till this limit is reached� and give
�� coverage once this limit is exceeded� Designers combat this abrupt loss of coverage in several
ways� almost always� they use techniques such as throwing away irrelevant states� reducing the
dimensions of the arrays involved� etc�
���� Although this is essential in any veri�cation

�Supported in part by NSF award MIP ������� and APRA Contract N���������C����

�

approach� there are cases where even after problem	size reductions the number of states exceed
the available amount of memory�

Most tools in this area �prefer time over space��i�e�� given a choice between running out
of memory and giving slower responses� they prefer the latter� A justi�cation for this attitude
is that veri�cation �jobs� can �and are� often run as background jobs� and designers are often
willing to patiently wait for these jobs to come back with their answers� provided �according to
their experience�� their patience will �almost always� be rewarded� These ideas are key to our
approach�

Promela�SPIN� Supertrace� and Two State�space Search

A simple and yet powerful method for e�ecting this �space�time tradeo�� is used in an explicit	
enumeration	based tool called SPIN
���� Strictly speaking� SPIN employs two techniques for
e�ecting the space�time tradeo�� ��� supertrace� in which a �randomized� pruning of the state
graph is e�ected� ��� two state�space method� in which only the amount of stack growth gen	
erated during a normal recursive depth	�rst search needs to be saved�� The experience of the
SPIN user	community �including us� tells that these methods work well in practice� and can
scale up to large problem sizes� In addition� descriptions of the system to be veri�ed using SPIN
can be provided in a high	level programming language called Promela� Promela is based on
an asynchronous computational model which embodies powerful sequential and concurrent pro	
gramming constructs that help the designer translate his�her thoughts about the protocols being
veri�ed into Promela with minimal semantic distance� For these reasons� the work reported in
this paper is about enhancing the performance of the Promela�SPIN system�

Even with the use of supertrace and the two state	space method� SPIN su�ers from state
explosion� mainly due to the sheer complexity that real	life systems have� There are two main
reasons for state explosion� interleaved concurrent execution� and the size of the data	state
space� In this paper� we are mainly concerned with the latter� Our research in this direction
was motivated by the fact that we are currently faced with the problem of verifying a large
distributed memory multiprocessor in which multiple identical components exist at all levels�
It is essential that we capitalize on the existence of these symmetries and avoid enumerating
identical states repetitiously� The importance of exploiting symmetries is a widely studied
problem� and is described in the next section�

Comparing Methods for Exploiting Symmetries

There are many techniques available for exploiting symmetries� Three prominent categories of
methods are ��� scalar sets
�
�� ��� homomorphic reductions
���� and �
� network invariants

����

In the scalar	set method� a non	traditional data type �actually a non	traditional family of
data types� called the scalar set is employed� A scalar set is a set with a �nite and �xed number
of elements� The elements of a scalar set� essentially� support only four operations� ��� equality
testing� ��� inequality testing� �
� for	all� and ��� there	exists� As an example of usage of a
scalar	set� consider an array A whose elements are treated identically by the protocol being
veri�ed� One would then index A using an index variable of type scalar	set� One would then
only be able to test whether two index variables are the same or not� and either step through
all the array locations using for�all or choose an arbitrary array index using there�exists� This
information can be used by the veri�cation tool to cut down the state space explored� In
�
��
it has been shown that scalar	sets are very useful in practice�

Another method for exploiting symmetries employed in tools such as COSPAN
��� is that of
homomorphic reductions� In one instance of this approach� the system being veri�ed is simpli�ed
by examining its sub	component�s�� identifying those that are subject to state explosion� and
replacing them by simpli�ed sub	components that are equivalent with respect to the properties
being veri�ed�

�Plus a small overhead	 actually

�

The network invariant method is a family of methods concerned with proving properties
about arbitrarily sized networks� In one approach of this type
���� a network P����� of processes
is represented by a more general description of the form P �� Q where Q represents a network of
an arbitrary number of P�s� If a process such as Q �called the �network invariant�� can be found�
the task of veri�cation is greatly simpli�ed� In another approach� a network of the form P�����

is replaced by an equivalent network of the form PN � The existence of a network invariant has
been widely studied
�� ���� In yet another approach
��� given a �nite	state model� a quotient
model that takes the symmetries in the problem into account is found� and used as the basis for
model checking�

A drawback of scalar	sets that we have identi�ed is that there are some situations which call
for more than the four operations supported by scalar	set data objects� In the second example
used in this paper� that of the Rollback Chip described in Section �� the so called written bits

�WB� array is indexed by two counters �called CMF and OMF� that are incremented in a
modulo fashion� It is the joint behavior of WB� CMF� and OMF that reveals symmetries� As
an example� the state �CMF���OMF���WB��ones�only�at�position���� happens to be the same
as the state �CMF���OMF���WB��ones�only�at�position���� because both these situations are
observationally equivalent as far as the RBC operations are concerned� If CMF and OMF were
implemented as variables of type scalar	set� they cannot be used to index WB and at the same
time be subject to modulo	increment operations which are carried out on them in the RBC
design� Such symmetries are closer in spirit to the notion of representation invariants captured
in works such as
��� In this paper� we present our technique called state normalization for
exploiting symmetries at this level�

The homomorphic reduction approach is more general than the method we propose� but not
as direct and simple to apply� Although network invariants methods are elegant and some of
the results in this area are quite powerful
��� these methods have� hitherto� been demonstrated
only for simple classes of behaviors� For systems of the size and complexity we are interested
in tackling� it is not clear how di�cult it will be to �nd suitable network invariants or quotient
models�

Our Contribution� State Normalization

In this paper� our contribution is a simple method called state normalization� In this method�
the designer identi�es the symmetries in the system manually� and expresses them as rewrite

rules on system states� Then� when the SPIN veri�er runs� these rewrite rules are repeatedly
invoked on each new state generated until a normal form system	state is obtained� The search
continues with respect to normal form states� and all un	normalized states are discarded� Our
results show that the method introduces only a low overall time overhead and e�ects a dramatic
reduction in the number of states generated�

We have implemented state normalization as an extension to the SPIN veri�er� We report
experimental results obtained in the context of two non	trivial examples� The �rst example is
concerned with distributed locking and was manually derived from an actual C�C�� implemen	
tation being developed by the systems group in our Department� Section
 introduces state
normalization with the help of this example�

The second example is concerned with verifying the Rollback Chip which was developed by
our group several years ago
�� and is an IFIP WG ���� benchmark contributed by the second
author� A functional�equationalmanual proof of correctness has been completed for the RBC
���
Our present exercise of re	describing RBC in a reactive system description language is consistent
with the manner in which system design re�nement happens in formal design approaches� an
initial functional description is gradually transformed into a more reactive version that embodies
scheduling	 and resource	related details� �See
�� for a case study of functional derivation followed
by reactive process derivation�� The RBC example is detailed in Section ��

�This rewriting process always terminates
 depending on e�ciency considerations	 the designer may not always
want to attain unique normal forms�

�

Because of the emphasis on implementation e�ciency� the SPIN veri�er compiles each
Promela speci�cation annotated with veri�cation assertions into C	code and runs this C	code�
rather than interpret Promela directly� In our current prototype� the state normalization proce	
dures are coded in C and included with the above C	code� Writing normalization procedures in
the C language is an error	prone activity� hence� we have come up with a scheme to automate
this process� which is described in Section ��

The rest of the paper is organized as follows� An overview of SPIN� the two state	space
method� and supertrace is provided in Section �� This is followed by a detailed look at state
normalization via two examples �Sections
 and ��� The normalizer is detailed in Section ��
Concluding remarks are provided in Section ��

� An Overview of SPIN

SUPERTRACE

0

2 ^ 24 -1

...

0

1

0

0

Deadlock!

P

P

Livelock (non-progress cycle)

A

Assertion

Assertion

A : Accept labels

P : Progress labels

Hashing can alias states
thereby rendering DFS partial

A stack is
kept for
effecting DFS

Accept
loop
(bad
loop)

A

B

C

DE

F

P

EXAMPLE ILLUSTRATING
TWO STATE-SPACE METHOD

Figure �� Overview of SPIN and Supertrace

Figure � provides an overview of supertrace� An automaton representing the joint execution of all
the components of the concurrent system being veri�ed is generated through the asynchronous
product operator� An example of a product automaton is given in Figure �� The graph of this
automaton is elaborated depth	�rst� The size of the automaton graph is cut down via pruning
which is achieved as follows� Each new state generated is hashed into the index	space of a one
dimensional bit	array called the �bit	bucket� hash	table� H� Suppose the current state is S� and
has successors Si � � �� Supertrace computes the index k at which Si falls� and if H
k� is already
set� it is assumed that Si has already been visited� the search then continues with Si��� On the
other hand� if H
k� is not set� the depth	�rst elaboration is continued at Si� A �randomized�
pruning of the state	space naturally occurs through hash collisions� For small problem sizes� a
regular hash table with linked	list buckets can be employed� which will then give full coverage�
SPIN supports this option also� one could view full	search as an extreme case of supertrace
�amount of pruning equals zero��

SPIN supports four basic kinds of checks� local �state� assertions� deadlocks� progress loops�

�

and accept cycles� State assertions establish safety properties� Any number of assertions can be
placed in the user�s Promela code� and these will be checked when control reaches that state�
Deadlocks are automatically detected and reported by SPIN when a state without a successor
is generated� Progress loops are loops in the state graph indicated by labels that begin with
keyword progress �shown as �P� in the �gure�� For a system to be free from livelocks� its
execution must be con�ned to one of its progress loops� Accept loops are opposite in sense�
executions traversing an accept loop are considered �bad�� They correspond to the acceptance
condition of a B�uchi automaton that captures an undesirable in�nitary execution �for instance�
unfair selection�� Stack	growth during supertrace depends on the length of an execution path
before a state is deemed to have been revisited by supertrace�

Checking for progress loops and accept cycles by building the entire state	graph is highly
memory intensive� SPIN avoids this complexity by using the two state	space method� an example
illustrating which appears to the right of Figure �� Suppose we would like to detect and report
the non	progress loop F� B� C� D� E� F �state �P� indicates the progress loop�� A naive algorithm
to detect non	progress loops during the depth	�rst search phase proves to be very inadequate

���� SPIN uses modi�ed depth	�rst search which works as follows on our example� when state
B is revisited� it builds the subgraph rooted at the state immediately prior to the revisited state
�state F in our example� in its entirety� in �the heap�� In our example� let us say that depth	�rst
search generated A� B� C� D� E� F� and B� At this point� the �rst path to be built in the heap
is F� B� P� This path is abandoned because it includes the progress label �P�� The next path
built in the heap is F� B� C� D� E� F� and this path is reported as being a non	progress loop�

Thus� instead of building the entire state	graph� the two state	space method needs to� at
a time� build only the amount of state contained in the depth	�rst stack plus a piece of the
state graph rooted at the revisit	point� State normalization is aimed at reducing the size of
the depth	�rst search stack and the number of entries �including collisions� made into the hash
table�

� State Normalization Illustrated on a Locking Protocol

The basic idea behind state normalization is extremely simple� ��� manually identify states
that are equivalent� ��� select one of the states as the normal form� and �
� whenever a state
is generated during depth	�rst search� normalize it if it is not already so� Note that if an

I

N1

U1

U2

N2

N3

U3

Figure �� A Caveat During Normalization

unnormalized state is generated as part of the regular depth �rst search� it is not acceptable
to just ignore that state and continue the search� hoping that the normalized form of the same
state will be eventually generated� This is explained with aid of an example in Figure � where
I is the initial state� state N� is the normalized form of the state U�� N� is the normalized form

�

of state U�� and N
 is the normalized form of the state U
� If the the un	normalized states
are just discarded� then U� will be discarded� and hence N� will never be generated� N�� an
equivalent state of U�� will be generated� and explored� However U�� the successor of N�� is also
discarded because U� is not a normal form� Thus the search never visits N
 or its equivalent
form U
� Hence� whenever an un	normalized state is generated� it is necessary to normalize it
and pursue it� rather than discard it rightaway�

Equivalences among states are induced by the symmetries in the system being veri�ed� It is
standard practice to require the designer to identify the symmetries in a system
��� ��� ��� Most
of the symmetries in concurrent systems are self	evident �e�g�� Figure
�� This processor topology

Processor2 Processor3Processor1

Memory1 Memory2 Memory3

...

...

...

Figure �� The Multiprocessor Supporting the Locking Protocol

is typical of many concurrent protocols� The global state of such a system is a tuple of the states
of the individual processing nodes plus the state of the medium �or �bus��� Any speci�c state
that arises can always be normalized by taking processor � �for example� as the reference point�
For example� in a truly symmetric system� the situation of processor � having sent a request to
processor
 and expecting a response from it can be rewritten into an equivalent situation with
processor � playing the role of processor �� and processor � playing the role of processor
� We
now proceed to present the details of the locking protocol and the state normalization function
used�

��� Details of the Locking Protocol
Acquire

NC

NC NC

C

W

Handle

po==me
locked <- 1

po <> me
 send req(po,me)

queue == empty
locked <- 0 queue == h::t

 send granted(t) to h
 locked <- 0
 po <- h

recv req(me,x)
po <> me

send req(po,x)

po == me /\ locked == 0
po <- x
recv req(me,x)
send granted({}) to x

po == me /\ locked == 1
recv req(me,x)
append x to queue

 recv granted(Q)
 queue <- Q
locked <- 1

Figure �� State Machine Describing the Locking Protocol

A system of N processors communicate by sending message through a medium� The processors
coordinate among themselves to gain access to a shared resource protected by means of a lock�

�

Every processor maintains �probable owner�� a variable pointing to the processor �possibly
itself� which in its view is owning the lock �variable po of Figure ��� The lock is said to be
owned by a processor if and only if the probable owner is itself� The lock itself can be in one
of the two possible states at the owner� available or held� In Figure �� states labeled C are
part of the critical section implemented by the locking protocol while those labeled NC and
W are outside this critical section� When processor p wants access to this critical section� it
will execute the Acquire process which �rst checks whether the lock is currently owned by p

�the check �po �� me��� If it is� then the lock is set to �held� �locked � ��� and the critical
section is accessed� If p is not the current owner� a request for the lock is sent to the probable
owner� and p then waits in state W for a granted message� When a request message is received
by processor q� its Handle process is executed� This process checks to see if processor q is the
owner of the lock� If it is not� then the message is forwarded to whom processor q thinks to be
the probable owner� Otherwise� if the lock is currently in the held state �locked �� ��� then the
request is enqueued into the queue maintained by processor q� On the other hand� if the lock is
in the available state �locked �� ��� a granted message is sent to the requester �p� along with
the current queue which is empty ���� it is an error to �nd locked �� � and the current queue
non	empty��

When the lock is released by the Acquire process� the queue is inspected to see if there are
any enqueued requests for the lock� If there are none� the lock is set to the available state� If
there are pending requests� a granted message is sent to the processor whose identity is at the
head of the queue �h�� This message also carries the rest of the queue �t�� The probable owner
is set to h and the locked status is cleared�

Each process in the state machine of Figure � is coded as one proctype in Promela� The
communication medium is modeled as a collection of ports� one port per process� The ports are
order	preserving� and their sizes are picked so as to make all send operations non	blocking� The
queues �called �queue� in Figure �� are modeled as chan data type� Since a transition of an
acquire process can�t be taken simultaneously with a transition of a handle process on the same
node� the two processes co	ordinate by using a semaphore called �mutex�� �Semaphore �mutex�
is di�erent from the variable �locked�� since mutex is a regular semaphore on a uniprocessor�
while variable �locked� is distributed on multiple nodes� Also� to achieve the atomicity needed
to implement the test	and	set of �mutex�� the atomic construct of Promela is used��

��� Properties Checked and Results

The following properties were established�

�� At most one process is in the critical section implemented by the protocol �i�e�� in state
C� at any given time�

�� The protocol is deadlock	free�

We also tried to establish global progress� de�ned as the ability of at least one of the processors
to be eventually in state C starting from any point in time� SPIN reported that global progress
was not being met� and gave the error trace shown in Figure ��

The following table summarizes the performance of state normalization �N� relative to un	
normalized executions �U�� �Depth reached� was the stack depth	bound set for each SPIN run�
�nStates� was the total number of states visited� and �Time� was the elapsed time reported by
the Unix command time� in seconds�

Properties Depth reached nStates Time
U�N Safety �������
���������� �������
U�N Safety
���
�� ��
���������� �����
���
U�N Progress ������� ������� ���������
U�N Progress
���
�� ������� ���������

�

Processor P� is the current owner of the lock	 and Processor P� and Processor P� point to P� through their
probable�owner variable� At this time	 the medium	 and all the queues are empty�

�� P� sends a request to P� for the lock�

�� Upon receipt of this request	 P� sends a granted message to P�� In addition	 it sets its probable�owner variable
to P��
At this point� there is a temporary cycle in the probable�owner chain between P� and P�� Though

this cycle is meant to vanish� it may not always� as we will see shortly��

�� Concurrently P� also sends a request to P��

�� P� receives this request from P� and forwards it to P�	 given that P��s probable�owner variable is set to P��

�� P��s Handle process acts on the request forwarded by P� before P��s Acquire process can act on the granted
message sent in step �� This causes the Acquire process to block�

�� The handle process of P� continues to run	 and forwards the request message from P� to P�	 since P��s
probable owner is still pointing to P��

�� P� forwards the message again to P�	 which again interferes with the reception of granted message at P�
just
as it did in step ��� This process repeats�
Had the granted message been serviced� the probable�owner cycle

would have vanished��

Figure �� Error Trace

For Progress properties� both methods visited the same number of states before �nding the
error� The un	normalized execution time is always lesser than the normalized execution time
which is to be expected in any method that tries to trade	o� time for space� Also� upon deeper
examination� it was found that the process of normalizing a state �details given in Section ��
itself consumed about ��� of the total execution time� Techniques to reduce the time taken to
normalize states need to be investigated�

It is worth noting that normalization can help detect progress violations at much lower search
depths� This is due to the fact that with normalization� the depth	�rst search procedure used
by SPIN does not stack equivalent states�

� State Saving by Exploiting Sequentiality

We now illustrate our second state	saving technique on a di�erent category which applies to
systems that are fairly deterministic in nature� and are typically derived from a procedu	
ral�functional description� Examples of this category are data	intensive modules such as mem	
ory management units� various tabular data structures� and the like� In particular� we pick
an example called the Rollback Chip for which we have� in our prior work� come up with a
functional�equational speci�cation and veri�ed correctness using veri�cation conditions gener	
ated from a computational induction scheme
��� Our asynchronous synthesis group is currently
actively engaged in trying to reimplement the RBC by detailing its operations to include more
scheduling and resource sharing information� In a formal sense� this is a process of conducting
design re�nements
��� in a functional framework� and leading through a process�reactive frame	
work� �An example of our past work in this area in deriving a pipelined multiplier is reported
in
����

��� Overview of the RBC Speci�cation

RBC
�� is a simple memory management unit designed to speed up the process of state saving
and rollback in distributed discrete event based simulation using Time Warp� For the purpose
of this paper� its functionality can be understood as follows� The RBC behaves like an abstract
data type object with interface operations reset to initialize the RBC� mark and rollback to
change the address mapping function� and read to map a given logical address to a physical

�

address� All these operations have a purely functional description given in
��� where a proof
of correctness �using equational reasoning� of the re�nement of the RBC architecture has been
reported� The Promela version of the RBC system was arrived at by modeling each RBC
operation through a proctype� Invoking an operation is achieved by a message to the process
associated with the operation� and waiting for a reply from the process�

Symmetries in this example cannot be exploited using scalarsets for reasons explained on
Page
� However� our normalization technique does work� as it is based on explicitly normalizing
states� We do not elaborate upon state normalization in the context of the RBC example� as it
has already been illustrated on the locking protocol� Instead� in this section� we look at another
method to cut down memory requirements which is based on exploiting purely sequential regions
of the RBC operations�

��� Results

Despite scaling the problem size down� the RBC model couldn�t be completely veri�ed due
to the high number of reachable states� One problem identi�ed was that the SPIN run time
system was saving state after executing each statement of a process� However� this state saving
is necessary only if there are multiple enabled threads in an execution� In case of the RBC�
however� only one thread is enabled at any given time� �This was because the Promela version
was a direct translation of the functional description given in
��� Successive re�nements of this
Promela version will have much more concurrency� however� in these versions also there would
be occasional sequential regions�� This fact can be exploited by not saving states in	between
the individual steps contained in a sequential region� This resulted in a sixfold reduction in
memory requirements� More speci�cally� the unoptimized version needed a depth of
�� just to
visit every single statement of the protocol while the optimized version could achieve the same
e�ect with a depth of only ��� A total of ����� states were stored in the optimized version�
while a total of ����� states were stored in case of the unoptimized version� With a hash table
of size ���� the former produced only ��� collisions� while the later produced �����
 collisions�

� Implementation of the Normalizer

We now describe details of the normalizer with respect to the locking protocol� This protocol is
symmetric with respect to the processor IDs� However� because of interdependencies between
the processors through their �probable owner� variables� the normalizer is somewhat involved�
These dependencies also extend through the message queues and other data structures�

A simpli�ed version of the normalizer is shown in Figure �� In this �gure� LESS	THAN
corresponds to an arbitrary partial order chosen by the user with respect to which the normal	
izations are performed� Function normalize �sorts� the positions of the processors in the state
vector according to the partial order LESS	THAN� Whenever the partial order is violated� the
normalizer exchanges the processors involved� It �rst exchanges the local variables� and then
proceeds to examine the dependencies introduced by the probable owner variable and adjusts
them accordingly� Then dependencies through the messages in the medium are traced� and
normalized suitably�

In our current SPIN prototype implementing normalizations� the code in Figure � was man	
ually written� As this process is error	prone� we are in the process of developing a compiler that
can take a high level description of the symmetries and automatically generate the normalizer
code� For instance� the locking protocol would be described as shown in Figure ��

In Figure �� queues are represented as a list of processor	ids and the medium by �from��ID��
to��ID�� message�BODY��� Notation
P�fe� �� e��� e� ��e��� ���g� means every occurrence of e�
is replaced by e�� and every occurrence of e� is replaced by e�� in P �all replacements are done
concurrently�� If e� � e�� then e�� and e�� must end up being equal�

Given such a rewrite rule� the system creates a partial order function compare�i�j� which
returns ���� ���� or ���� If multiple rewrite rules are present� one compare function is generated

	

function normalize �state�

� for i �� � to number�of�processes do

for j �� i�� to number�of�processes do

if LESS�THAN�processor	i
� processor	j
� then

�� Exchange value �i� with �j�

�� First exchange the local variables

temp �� local�variables�processor	i
��

local�variables�processor	i
� �� local�variables�processor	j
��

local�variables�processor	j
� �� temp�

�� Now adjust any dependencies throuh probable�owner

�� or the queue

for k �� � to number�of�processors do

if �processor	k

probable�owner��i� then

processor	k

probable�owner �� j�

elsif �processor	k

probable�owner��j� then

processor	k

probable�owner �� i�

end if�

foreach element �e in processor	k

Queue� do

if �e � i� then

replace e with j

elsif �e � j� then

replace e with i

endif�

end do e�

end for k�

�� Now check the medium state

foreach message �m in medium� do

if �DesinationOf�m��� i� then

DesinationOf�m� �� j�

elsif �DesinationOf�m� �� j� then

DesinationOf�m� �� i�

endif�

end do m�

foreach message �m in medium� do

if �SourceOf�m��� i� then

SourceOf�m� �� j�

elsif �SourceOf�m� �� j� then

SourceOf�m� �� i�

endif�

end do m�

end if� �� if LESS�THAN

end for j�

end for i�

�

Figure �� The Normalizer

�

� �forall X

�Processor	X

po � P�� �processor	X

Queue � Q��

�medium � M�

�

EQUALS �� Exchange processor i with processor j

�� for some arbitrary i� and j

�

�Processor	X

po � 	P��i��j� j��i�
��

�Processor	X

Queue�	Q��i��j�j��i�
��

�medium � M�� from�i��from�j� from�j��from�i�

to�i�� to�j� to�j�� to�i��

�

Figure �� High�Level Description of Symmetries

per rule� Compare�i�j� applies the rewrite rule� and then checks to see if the new vector is less
than� equal� or greater than the original vector� If Compare�i�j� returns ��� then the original
vector is considered to be in normal form� If Compare�i�j� returns ���� the rewrite rule has no
e�ect on the current state� If Compare�i�j� returns ��� then the rewrite rule is applied� and the
new vector is considered to be in normal form�

This normalization is not con�uent when more than one rewrite rule is present� in that two
state vectors which are equivalent under the rewrite rules might not be reduced to the same
normal form� However� when only one rewrite rule is present� the process is con�uent� In
general� �nding the normal form for a state is known to be an NP	complete problem
���

� Conclusions and Future Work

The results of Section
 demonstrate that exploiting the symmetries can result in a signi�cant
improvement in the usage of available memory� It is therefore very important to exploit such
symmetries to be able to verify large concurrent systems� This technique is more general than
scalar sets
�
� or network invariants
���� While not as general as homomorphic reductions
����
it is simpler� and straightforward to apply� Also� Section � demonstrates that identifying the
sequential regions of a protocol can result in signi�cant savings in memory�

In Section � we presented a technique to translate high	level rewrite rules into a low	level
normalization routine� This technique needs to be further investigated and implemented� It
would also be useful to provide an automatic procedure to ��� identify the symmetries in a
system and ��� check that the rewrite rules are consistent�

References

�� Felice Balarin and Alberto L� Sangiovanni	Vincentelli� On the automatic computation of
network invariants� In Computer�Aided Veri�cation� pages �
� ���� Stanford� CA� June
�����

�� E� Clarke� T� Filkorn� and S� Jha� Exploiting symmetry in temporal logic model checking�
In Computer Aided Verifcation� pages ��� ��
� Elounda� Greece� June ���
�

� Edmund Clarke� Allen Emerson� and Arvind Sistla� Automatic veri�cation of �nite	state
concurent systems using temporal logic� ACM Transactions on Programming Languages

and Systems� �������� ��
� �����

�� E� Allen Emerson and Kedar S� Namjoshi� Reasoning about rings� In Proc� of the ��st

Annual Symposium on the Principles of Prog� Langs� ACM� �����

��

�� Richard M� Fujimoto� J� 	J� Tsai� and Ganesh Gopalakrishnan� Design and evaluation of the
rollback chip� Special purpose hardware for time warp� IEEE Transactions on Computers�
�������� ��� January �����

�� Ganesh Gopalakrishnan and Venkatesh Akella� A transormational approach to asyn	
chronous high	level synthesis� In VLSI���� number �� September ���
� Grenoble� France�

�� Ganesh C� Gopalakrishnan and Richard Fujimoto� Design and veri�cation of the rollback
chip using HOP� A case study of formal methods applied to hardware design� ACM Trans�

action on Computer Systems� ��������� ���� May ���
�

�� Aarti Gupta� Formal methods� A survey� Formal Methods� �����

�� John V� Guttag� Ellis Horowitz� and David R� Musser� Abstract data types and software
validation� Communications of the ACM� ����������� ����� December �����

��� Z� Har�El and R�P� Kurshan� Software for analysis of coordination� In Proc� Int�l Conference

on System Science� �����

��� Gerard Holzmann� Design and Validation of Computer Protocols� Prentice Hall� �����

��� Alan Hu� David Dill� Andreas Drexler� and Han Yang� Higher	level speci�cation and
veri�cation with BDDs� In Computer Aided Veri�cation� pages �� ��� Montreal� Canada�
June �����

�
� C� Norris Ip and David L� Dill� Better veri�cation through symmetry� In Int�l Conference

on Computer Hardware Description Language� ���
�

��� Steven D� Johnson� Synthesis of Digital Designs from Recursion Equations� The MIT
Press� ����� An ACM Distinguished Dissertation	���
�

��� Robert P� Kurshan� Formal veri�cation of coordinating processes� Mathematics Research
Center� AT!T Bell Labs Murray Hill� NJ� �����

��� Kenneth L� McMillan� Symbolic Model Checking� Kluwer Academic Press� ���
�

��

