Layered, Server-based Support
for Object-Oriented Application Development

Guruduth Banavar

Douglas Orr

Gary Lindstrom

Department of Computer Science

University of Utah, Salt Lake City, UT 84112 USA
{banavar,dbo,lindstrom } @cs.utah.edu

Abstract

This paper advocates the idea that the physical mod-
ularity (file structure) of application components sup-
ported by conventional OS environments can be ele-
vated to the level of logical modularity, which in turn
can directly support application development in an
object-oriented manner. We demonstrate this idea
through a system-wide server that manages the ma-
nipulation of such components effectively. The server
1s designed to be a fundamental operating system ser-
vice responsible for binding and mapping component
wmnstances into client address spaces.

We show how this model solves some longstanding
problems with the management of application com-
ponents in existing application development environ-
ments. We demonstrate that this model’s effective-
ness derives from its support for the cornerstones of
00 programmung: classes and their instances, encap-
sulation, and several forms of inheritance.

1 Introduction

In a traditional application development environ-
ment such as UNIX, application components ulti-
mately take the form of files of various kinds — source,
object, executable, and library files. Entire appli-
cations are typically built by putting together these
components using inflexible, and sometimes ad-hoc,
techniques such as preprocessor directives and exter-
nal linkage, all managed via makefile directives.

It is also natural for application developers to gener-
ate components corresponding to incremental changes
to already existing application components, especially
if they subscribe to the software engineering princi-
ple known as “extension by addition.” This principle
holds that it is better to extend software not by direct
modification, but by disciplined addition of incremen-
tal units of software. Advantages of “extension by
addition” include better tracking of changes and more
reliable semantic conformance by software increments.
Most importantly, the increments themselves have the

potential to be reused in similar settings.

This perspective leads one to conclude that tradi-
tional OS environments inadequately support compo-
nent manipulation and binding for modern application
development. Object-oriented (OO) programming of-
fers a potential solution to this inadequacy. In OO
programming, inheritance is a mechanism that aids
in the effective management of software units and
incremental changes to them. Indeed, in advanced
OO0 languages, increments as well as base components
have independent standing (e.g., “mixins”). Other
aspects of OO programming, notably encapsulation,
have demonstrated benefits to large-scale software de-
velopment via enhanced abstraction. There is much to
gain from supporting these features within the infras-
tructure of an application development environment,
beyond whatever support 1s provided by the languages
in which application components are written.

In this paper, we demonstrate a principled, yet
flexible, way in which to effectively construct appli-
cations from components. This facility is orthogonal
to makefiles, and does not impose new techniques for
building individual application components. Instead,
it relies on the idea that the physical modularity of
traditional application components (i.e. files) can be
endowed the power and flexibility of logical modular-
ity. Such logical modules can then be manipulated
using the concepts of compositional modularity, where
first-class modules (defined in Section 3.1) are viewed
as building blocks that can be transformed and com-
posed in various ways to construct entire application
programs. Individual modules, or entire applications,
can then be instantiated into the address spaces of
particular client processes. Compositional modular-
ity has a firm foundation [4], and has been shown to
be flexible enough to support several important effects
and styles of object-oriented programming [2].

This approach has other advantages besides making
system building more principled and flexible. First, it



enables a form of OO programming with components
written in non OO languages such as C and Fortran.
Second, it enables adaptive composition, whereby the
system that manages the logical layer can perform var-
ious composition-time, “exec”-time, and possibly run-
time optimizing transformations to components. For
example, system services (such as libraries) can be ab-
stracted over their actual implementations, adding a
level of indirection between a service and its actual
implementation. This permits optimizations of the
service implementation based on clients’ disclosed be-
havioral characteristics. Such system-level support is
explored elsewhere [14, 17, 15]; this paper focuses on
application level support.

It is important to make clear that compositional
modularity supported by a logical layer is not in con-
flict with object-orientation supported by component-
level languages. For example, C4++ programmers deal
with two distinct notions of modularity: classes, fun-
damental to logical modularity, and source files, which
deal with physical modularity. These two modularity
dimensions share many characteristics, but have very
different senses of composability, i.e. inheritance for
classes, and linkage for files. Indeed, they are rather
orthogonal in the minds of C++ programmers, be-
cause class definitions and source files do not always
bear 1-1 relationships, and linkage is performed in
a “class-less” universal namespace flattened by name
mangling. In essence, they manage programs at two
levels: classes with their semantic relationships, and
files with their linkage relationships. With our ap-
proach, we accord physical artifacts (i.e. files) a de-
gree of manageability comparable to that enjoyed by
logical artifacts (i.e. classes).

In the following section, we present an application
scenario that motivates the architecture presented in
this paper. In Section 3, we present the layered archi-
tecture of our system, as well as the steps in construct-
ing applications. Section 4 describes the functionality
of the heart of the system. Section 5 presents spe-
cific solutions to the problems in Section 2. We then
compare our work with related research, present our
current status and envisioned future work, and con-
clude.

2 A Motivating Scenario

Consider a scenario in which a team of developers is
building an image processing application using a ven-
dor supplied (shrink-wrapped) library. Say the team
completes building an initial version of the application
(which is large-scale, say, greater than 100K lines of
code), which is now ready for system testing. We can
imagine several problems deriving from this scenario:

(i) Call wrapping. Suppose that the team finds
that the application malfunctions because it calls a
library function edge_detect() on an image data struc-
ture, consistently with an incorrect storage format, say
with pixels represented as type FLOAT when BYTE
was expected. Using traditional tools, this problem
is rectified by inserting another library function call
to the routine floattobyte() before each site in the ap-
plication where edge_detect() was being called. This
approach not only requires extensive modification of
the application source code, but also expensive recom-
pilation. Moreover, if two separate shrink-wrapped li-
braries are to be put together in this manner, sources
might not even be available. Instead, 1t is more desir-
able to “wrap,” at binding time, calls to edge_detect()
with an adaptor that calls floattobyte(), all without
recompiling the large application. However, such a
facility is not usually supported in conventional OS
environments.

(ii) Library extension management. Suppose fur-
ther that the team decides that the application could
work much better with an image format slightly differ-
ent from the format expected by the library, but one
which is easy to convert to and from the old format. If
the new format is to be supported for future projects,
it is best to change all library functions to accept and
return the new format. However, sources for the li-
brary are not available, hence it cannot be directly
modified. Thus, this would require developing and
integrating a separate extension to the library. Fur-
thermore, there could be several other independent ex-
tensions to the library that need to be integrated and
supported for future applications. Developing such in-
cremental extensions is much like subclassing in OO
programming, but there is usually no support for ef-
fectively managing such incremental software units.

(iii) Static constructors and destructors. Imagine
that the team wants to make sure that all statically
defined images are properly allocated and initialized
from disk before the program starts, and flushed back
to disk before the program terminates. Currently
available techniques for doing this are difficult and
cumbersome.

(iv) Flat namespace. Say the image processing li-
brary uses the Motif library, which is in turn imple-
mented in terms of the lower-level X library. Thus,
in the traditional scenario, all the symbols imported
from the Motif and X libraries become part of the in-
terface exported by the image library. There is no way
to prevent clients of the image library from obtaining
access to the lower level library interface, or possibly
suffer name collisions with that interface.



The system architecture we present in the following
sections offers an effective solution to the above prob-
lems. Specific solutions to these problems are given in
Section 5.

3 Architecture
3.1 Conceptual Layering

The first step in presenting an architecture for man-
aging object modules is to clarify the conceptual lay-
ering of application components.

Conceptually, artifacts of physical modularity, i.e.
files of various kinds, form a physical layer. These
modules may be written as components in conven-
tional languages that have no notion of objects. For
example, in the case of C, there is no support for ma-
nipulating physical modules, much less for generating
and accessing instances of them at run time — files
are simply a design-time structuring mechanism.

The physical layer is managed with the help of
traditional programming language environments. For
example, the C language preprocessor, compiler, the
make utility, the debugger, and library construction
utilities help the programmer to develop application
components of various kinds.

In the architecture presented here, each physical
module can be manipulated as a first-class composi-
tional module in what we shall conceptualize as the
logical layer. In this layer, construction of entire ap-
plications is directed by scripts written by applica-
tion programmers describing the composition of logi-
cal modules. Scripts are written in a module manipu-
lation language that supports not only a simple merge
of modules in the manner of conventional linking, but
also many others including attribute encapsulation,
overriding, and renaming. Most importantly, since
modules are first-class entities in this language, indi-
vidual operations can be composed in an expression-
oriented fashion to produce composite effects such as
inheritance in OO programming.

The logical layer is managed by a special tool, in
the design of which the following requirements were
laid out. First, the tool must provide a language pro-
cessing system for the module manipulation language.
Second, it must perform essential operating system
services: that of linking modules and loading them
into client address spaces. Third, since these services
are in the critical path of all applications, it must be
able to perform optimizations such as caching. Finally,
it must be continually available. For these reasons, the
logical module layer in the prototype described here
i1s managed by a server process — a second generation
implementation of a server named OMOS [16].

The OMOS server is described in more detail in
Section 3.3. The module manipulation language sup-
ported by OMOS is derived from the programming
language Scheme[6], and is based on the module ma-
nipulation language Jigsaw[4]. The model supported
by this language, called compositional modularity, and
its impact on developing applications in an OO man-
ner, are explored in Section 4.

3.2 Application Construction

In this section, we describe the steps in constructing
an application, based on the architecture depicted in
Figure 1.

The first step 1s to build individual application com-
ponents (physical modules) using a conventional pro-
gramming language environment. (In this discussion,
we shall consider only C language components, al-
though the same ideas can be applied to another lan-
guage such as Fortran.) Individual components, such
as cl.c, c2.c, and c3.c in Figure 1 can be designed
as traditional program files with no knowledge of the
logical layer. Alternatively a component can be de-
signed to be reused via suitable programming in the
logical layer, such as a “wrapper” module described in
Section 4.

Application components may be owned and man-
aged by the user or by OMOS. In Figure 1, cl.c, c2.c,
and c3.c are user provided application components.
System provided components, such as libraries, are
owned and managed by the OMOS server and accessed
via service requests to OMOS.

The second step is to create a module spec, a file
that describes the creation and composition of log-
ical modules from application components. This is
written in a module language described in Section 4.
In Figure 1, app.ms is a user module spec that de-
scribes how to put the components of the application
together. Module specs can themselves be modular;
they can refer to other module specs. For example,
app.ms may refer to libc, a system provided module
spec that describes how to put together the compo-
nents of a standard system library with a client mod-
ule.

The final step is to request the module server to
execute the module spec and instantiate (i.e. load) the
result into a client address space. Module specs may
be executed by calling a stand-alone version of OMOS
from within a makefile, and the loading step performed
interactively.

3.3 The OMOS Server
As mentioned earlier, OMOS is a continuously run-

ning process (a server) that is designed to provide a
linking and loading facility for client programs via the
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Figure 1: Overall architecture. cl.c, c2.c, etc. are user application components to be composed as described in the user
module spec app.ms. Printf.o, etc., are system components to be composed according to module specs libc, etc. These
components are composed by OMOS, possibly cached, and instantiated into client address spaces. The user can directly
interact with OMOS via a command line interface to effect module composition and instantiation.

use of module combination and instantiation. OMOS
supports three main functions: execution of module
specs to compose applications, caching of intermedi-
ate results, and program loading. Module specs and
their execution 1s described in the rest of the paper.
The other two functions are described briefly below;
the details, given in [16, 14], are beyond the scope of
this paper. Additionally, use of meta-protocols with
OMOS is explored in [15].

Evaluation of a module expression will often pro-
duce the same results each time. As a result, OMOS
caches module results in order to avoid re-doing un-
necessary work.

Since OMOS loads programs into client address
spaces, 1t can be used as the basis for system program
execution (the “exec server”) and shared libraries [14],
as well as dynamic loading of modules. Combining
a caching linker with the system object loader gives
OMOS the flexibility to change implementations as it
deems necessary, e.g. to reflect an updated implemen-
tation of a shared module across all its clients.

This concludes a general description of the architec-
ture of our system. In the following section, the func-
tionality provided by the system as exported through
the module language 1s described.

4 Module Management

As argued in Sections 1 and 2, an infrastructure
that aims to support effective application development
must support the flexible management of application

components. We further argued that the management
of components, their extensions, and their bindings is
essentially similar to the management of classes and
subclasses via inheritance in OO programming. This
argument behooves us to demonstrate that our archi-
tecture does indeed support the essential concepts of
OO programming, viz. classes and inheritance, which
we show below in Sections 4.1 and 4.2 respectively.

Given the facilities described in this section, it is in
fact possible to consider doing OO programming with
a non OO language (such as C). However, it is not
possible to do full-fledged OO programming in such
a manner, since the base language does not support
first-class objects (see Section 4.1.3). Neither is it de-
sirable, since OO language support (such as C++)
might be directly available. Thus, the facility we de-
scribe here is intended mainly for enhancing applica-
tion component management rather than for actual
application programming.
4.1 Classes

In the model of compositional modularity, a module
corresponds to a distillation of the conventional no-
tion of classes [4]. A module is a self-referential scope,
consisting of a set of defined and declared attributes
with no order significance. Definitions bind identifiers
to values, and declarations simply associate identifiers
with types (defining a label subsumes declaring it).
Every module has an associated interface comprising
the labels and types of all its visible attributes. An im-
portant characteristic of modules is the self-reference



of attribute definitions to sibling attributes (see [7] for
details). Modules can be adapted and composed using
operators that manipulate the interface and the cor-
responding self-references. Furthermore, modules can
be instantiated, at which time self-reference is fixed,
and storage allocated for variables.

4.1.1 Modules

An object file (“.0”, or dot-o file), generated by com-
piling a C source file, corresponds directly to a module
as described above. A dot-o consists of a set of attrib-
utes with no order significance. An attribute is either
a file-level definition (a name with a data, storage or
function binding), or a file-level declaration (a name
with an associated type, e.g. extern int i;)!. Such a
file can be treated just like a class if we consider its
file-level functions as the methods of the class, its file-
level data and storage definitions as member data of
the class, its declarations as undefined (abstract) at-
tributes, and its static (file internal linkage) data and
functions as encapsulated attributes. Furthermore, a
dot-o typically contains unresolved self-references to
attributes, represented in the form of relocation en-
tries.

Symbols, both defined and merely declared, of
physical modules make up the interface of logical mod-
ules. (For simplicity of presentation, we consider in-
terfaces to comprise only the symbol names, without
their programming language types; see [3] for a study
of typed interfaces.) Compiled code and data in the
actual object file represents the module implementa-
tion.

A physical dot-o is brought into the purview of the
logical layer by using the primitive open-module in our
module language. The syntax of this primitive is given
in Figure 2. Once it is thus transformed into a logical
module, it can be manipulated in several ways using
the other primitives given in the figure, which are de-
scribed in the following sections.

4.1.2 Encapsulation

Module attributes can be encapsulated using the op-
erator hide (see Figure 2). However, in the case of C
language components, encapsulation partly comes for
free, since C supports the internal linkage directive,
static. However, attributes can be hidden after the
fact, i.e. non-static C attributes can be made static
retroactively, with hide. This is a very useful opera-
tion as demonstrated in Section 5.

! Type definitions (e.g. struct definitions, and typedef’s in C)
are not considered attributes.

open-module {path-string-ezpr))

fix {(module-expr) {section-locn-list))

hide (module-expr) {sym-name-list-expr))
merge {module-expr1) {module-expr2) ...)
override {module-exprl) (module-expr2) ...)
copy-as {module-expr) {from-name-list-expr)
to-name-list-expr))
from-name-list-expr)
(to-name-list-expr))

(
(
(
(
(
(

LN

(rename (module-expr)

Figure 2: Syntax of module primitives

Many OO systems support the notion of a class
consisting of public and private (encapsulated) attrib-
utes. In our system, a similar concept of classes is
supported by a Scheme macro define-class, with the
following sytax:

(define-class (name)
(dot-o-file) {superclass-exprs) (encap-atirs))

For example, given a dot-o vehicle.o that contains,
among other attributes, a global integer named fuel
and a global method display that displays the value of
the fuel attribute, one can write the following expres-
sion (within a module spec) to create a class named
vehicle by encapsulating the attribute named fuel:

(define-class vehicle " vehicle.o” () (" fuel”))

This macro expands into the following simple mod-
ule expression:

(define vehicle
(hide (open-module "vehicle.o”) *("fuel")))

4.1.3 Instances

As mentioned earlier, instantiating a module amounts
to fixing self-references within the module and allocat-
ing storage for variables. In the case of instantiation of
dot-o modules, fixing self-references involves fixing re-
locations in the dot-o, and storage allocation amounts
to binding addresses. These two steps are usually per-
formed simultaneously. Thus, a dot-o can be instan-
tiated into an executable that is bound (“fixed”) to
particular addresses and is ready to be mapped into
the address space of a process. Dot-o’s can actually
be instantiated multiple times, bound to different ad-
dresses. Consequently, fixed executables are modeled
as instances (objects) of dot-o modules (classes).

A module is instantiated using the primitive fix
shown in Figure 2. The argument (section-locn-list)
specifies constraints for fixing the module to desired
sections of the client address space.



A concept closely associated with first-class ob-
Jects in conventional OO languages is message send-
ing. (For example, in the classical Smalltalk sense, ob-
jects communicate by sending messages to each other.)
However, as mentioned earlier, there is no notion of
first-class objects at the physical layer, which is where
physical modules are implemented using component-
level languages. Thus, message sending is not directly
supportable in our framework. However, we envision
extending our approach to support a form of message
sending via inter-process communication, as described
in Section 7.

4.2 Inheritance

We now arrive at the central aspects of our model.
In this section, we introduce the inheritance related
primitives supported by the module language, and de-
scribe the manner in which they can be composed.
We start by introducing the following four primitives
whose syntax is given in Figure 2.

The primitive merge combines modules which do
not have conflicting defined attributes, i.e. attributes
with the same name. This semantics 1s analogous to
traditional linking of object files. However, the idea
here is to go beyond traditional linking and support
other operations basic to inheritance in OO program-
ming, such as the following.

The primitive override produces a new module by
combining its arguments. If there are conflicting
attributes, it chooses (module-expr2)’s binding over
(module-exprl)’s in the resulting module.

The primitive copy-as copies the definitions of at-
tributes in {from-name-list-expr) to attributes with
corresponding names in {to-name-list-expr). The from
argument attributes must be defined.

The primitive rename changes the names of the
definitions of, and self-references to, attributes in
(from-name-list-expr) to the corresponding ones in
(to-name-list-expr).

To 1illustrate the use of the above primitives, the
following section describes how to achieve several vari-
ations of a facility generally referred to as “wrapping.”

4.2.1 Wrapping

Figure 3 shows a service providing module LIB with a
function f(), and its client module CLIENT that calls
f(). Three varieties of wrapping can be illustrated with
the modules shown in the figure.

(1) A version of LIB that is wrapped with the mod-
ule LWRAP so that all accesses to f() are indirected
through LWRAP’s f() can be produced with the ex-

pression:

LIB LWRAP
(Service Provider) (Wrapper)
extern void f_old();
void f() { )
p void f() {
f0: f_old();
/*““*/ /*...*/

} }

CLIENT CWRAP
(Client Program) (Wrapper)
extern void f(); extern void f();
void g() { void stub() {

f0; f0;

[0 I*..0%

} }

Figure 3: Examples of wrapping.

(hide (override (copy-as LIB f f_old) LWRAP) f_old)

By using copy-as instead of rename, this expression
ensures that self-references to f() within LIB continue
to refer to (the overridden) f() in the resultant, and
are not renamed to f_old.

(2) Alternatively, a wrapped version of LIB in which
the definition of and self-references to () are renamed
can be produced using the expression:

(hide (merge (rename LIB f f_old) LWRAP) f_old)

This might be useful, for example, if we want to
wrap LIB with a wrapper which counts only the num-
ber of external calls to LIB’s (), but does not count
internal calls.

(3) If we want to wrap only a particular client mod-
ule without wrapping the service provider, we can use
the following expression:

(hide (merge (rename CLIENT f stub) CWRAP) stub)

In this case, renaming the client module’s calls to
f() produces the desired effect, since the declaration of
f() as well as all self-references to it must be renamed.

Generalizing the above cases, the three varieties of
wrapping possible in our model are shown pictorially
in Figure 4. The leftmost column of the figure shows
the given modules M1 and M2 and their wrappers W1
and W2. The top row shows a technique referred to as
method wrapping, and the bottom row call wrapping.
Box (a) corresponds to example (1) above, box (b) to
(2), and box (d) to (3) above.

A technique known as before-after methods is used
in the CLOS language to interpose calls to code be-
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Figure 4: Wrapping scenarios. The leftmost column shows the given modules: M1 to be wrapped by W1, and M2 to
be wrapped by W2. The top row shows the operations and effects of performing method wrapping, and the bottom row

shows call wrapping.

fore or after a particular method proper. The above
notions of method wrapping and call wrapping can be
extended to support calling of precompiled routines
by generating and wrapping the appropriate adaptors.
For example, to call a method bef in module B before
a method meth in module M, we can generate a wrap-
per module W with a function meth that first calls bef,
and then calls the old definition of meth as old-meth.
The modules M, W, and B can be combined in a man-
ner similar to method wrapping to get the effect of a
before-method:

(hide (override (copy-as M meth old-meth)
(merge W B))
old-meth)

4.2.2 Single and Multiple Inheritance

The idioms shown in Figure 4 are in fact the basis of
inheritance in current day OO languages [2]. In this
section, we give a brief idea of how these idioms can
be used to achieve notions of inheritance.

Recall from Section 4.1.2 that a class can be de-
fined using the macro define-class, which expands to a
module expression that uses open-module and hide. A
vehicle class was defined there. Using the same macro,
a class can also inherit from another existing class.

For example, suppose a dot-o land_chars.o is cre-
ated, which contains a global constant integer called
wheels, and a function called display() that first calls a
declared method called super-display(), then prints the
value of wheels. Given such a module, a land-vehicle

class can be created as a subclass of the previously
defined vehicle module by writing:

(define-class land-vehicle "land_chars.o” (vehicle) ()

This macro expands to the module expression:

(define land-vehicle
(hide (override (copy-as vehicle '(" display”)
"("super_display”))
(open-module "land_chars.o"))
"("super-display”)))

In this expression, a module with attributes wheels
and display is created, and is used to override the su-
perclass vehicle in which the display attribute is copied
as super_display. The new display method can access
the shadowed method as super_display. In general, all
such conflicting attributes are determined by a meta-
level primitive called conflicts-between, and copied to
a name with a super_ prefix. The copied super_display
attribute 1s then hidden away to get a module with ex-
actly one display method in the public interface, as de-
sired. An important point here is that calls to display
within the old vehicle module and the new land-vehicle
module are both rebound to call the display method of
the land-vehicle module.

The above idea of single inheritance can be general-
ized to multiple inheritance as found in languages such
as CLOS [13]. In these languages, the graph of super-
classes of a class 1s linearized into a single inheritance
hierarchy by a language provided mechanism. A simi-
lar effect can be achieved with the define-class macro,
except that the programmer must explicitly specify



the order of the superclasses, as shown below:?

(define-class land-chars "land_chars.o” () ())
(define-class sea-chars "sea_chars.o” () ())
(define-class amphibian

"amphibian.o” (land-chars sea-chars vehicle) ())

With the module operations supported by our mod-
ule language, several other single and multiple inheri-
tance styles can be expressed as well — these are de-

scribed in [2].

5 Solving Old Problems

Using the operations defined on modules it is pos-
sible to conveniently solve long-standing problems in
software engineering, encountered when using C, or
C++. Several of these problems had solutions previ-
ously, but they were ad-hoc and/or required changes
to source code. Module operations permit general so-
lutions that impose no source code changes.

In this section, we delineate clean solutions to each
of the problems enumerated in Section 2, in the same
order.

(i) Wrapping calls. To solve the first problem of
Section 2, the module spec for the image processing
application can be written as given in Section 4.2.1,
under call wrapping. Calls to edge_detect() can be
wrapped with a wrapper method that first calls the
function floattobyte() and then calls the edge_detect()
library function.

(ii) Library extension management. The image li-
brary can be thought of as an OO class, and incre-
mental changes to it can be thought of as subclasses
that modify the behavior of their superclasses. The
subclasses can be integrated with the superclass by
means of a module spec that uses the notions of in-
heritance illustrated in Section 4.2.

(iii) Static constructors and destructors. In C++,
there is a need to generate calls to a set of static
constructors and destructors before a program starts.
Special code is added to the C4++ front end to gener-
ate calls to the appropriate constructor and destruc-
tor routines. However, the order in which such static
objects are constructed is poorly controlled in C++
and leads to vexing environment creation problems for
large systems.

Under some variants of Unix, the C language has
handled the need for destructors in an ad-hoc fash-
ion, by allowing programs to dynamically specify the
names of destructor routines by passing them to the
atexit() routine. In other variants, the destructors for

2Explicit specification of linearization is more useful than an
implicit, language provided mechanism, see [2] for details.

the standard 1/0 library are hard-coded into the stan-
dard exit routine. In neither case i1s there any provi-
sion for calling initialization routines (e.g., construc-
tors) before program startup.

In both the cases of C and C+4++, module opera-
tions allow addressing the problem by using a general
facility, rather than special-purpose mechanisms. As
shown in Section 4.2.1 as before-after methods, mod-
ule expressions can easily be programmed to generate
a wrapper main() routine that calls all of the initial-
ization routines in the desired order, then call the real
main() routine. Similarly, the exit() routine can be
wrapped with an exit routine that calls all the de-
structors found in the module before calling the real
exit().

(iv) Flat namespace. A longstanding naming prob-
lem with the C (and, to some extent C++) language
has traditionally been the lack of depth in the pro-
gram namespace. C has a two-level namespace, where
names can be either private to a module, or known
across all modules in an application.

With module operations, these problems can be
avoided. Once a module that implements low-level
functionality has been combined with a module that
implements higher-level functionality, the functions in
the former’s interface can be subjected to the hide
operation to avoid conflicts or accidental matches at
higher levels.

6 Comparison to Related Research

This work is in essence a general and concrete real-
ization of a vision due to Donn Seeley [20]. Although
programmable linkers exist, they do not offer the gen-
erality and flexibility of our system.

A user-space loader such as OMOS is no longer un-
usual [19, 8]. Many operating systems, even those with
monolithic kernels, now use an external process to do
program loading involving shared libraries, and there-
fore linking. However, the loader/dynamic linker is
typically instantiated anew for each program, making
it too costly for it to support more general function-
ality such as in OMOS.

Utilities exist, such as dld [11], to aid programmers
in the dynamic loading of code and data. These pack-
ages tend to have a procedural point of view, provide
lower-level functionality than OMOS | and do not of-
fer the control over module manipulation that OMOS
provides. The dld utility does offer dynamic unlinking
of a module, which OMOS currently does not support.
However, since OMOS retains access to the symbol
table and relocation information for loaded modules,
unlinking support could be added.

The Apollo DSEE [1] system was a server-based



system which managed sources and objects, taking ad-
vantage of caching to avoid recompilation. DSEE was
primarily a CASE tool and did not take part in the
execution phase of program development.

Several architecture description languages have
been proposed, such as RAPIDE [12], the POLYLITH
Module TInterconnection Language (MIL) [5, 18],
and OMG’s Interface Definition Language (IDL) [9].
These languages all share the characteristic that they
support the flexible specification of high-level compo-
nents and interconnections. Our approach offers the
important advantage that OO like program adapta-
tion and reuse techniques (inheritance, in all its mean-
ings) can be applied to legacy components written in
non-00 languages.

An environment for flexible application develop-
ment has been pursued in the line of research leading
to the so-called subject-oriented programming (SOP)
[10]. In this research, a “subject” is in essence an OO
component, i.e. a component built around an QO class
hierarchy. Subjects can be separately compiled, and
composed using tools know as “compositors” (similar
to OMOS). Compositors use various operators similar
to the ones presented here. The primary difference
between SOP and our research is that SOP 1s broadly
conceived around the OO nature of individual compo-
nents, and aims to build a toolset and object file for-
mats specifically tailored for SOP. On the other hand,
our research has focussed on layered evolutionary sup-
port.

7 Current Status and Future Work

OMOS is currently about 17,000 lines of C/C++
code. OMOS also uses the STk version of Scheme
(11,000 lines) and the Gnu BFD object file library.
OMOS runs on 1386 and HP/PA-RISC platforms un-
der the Mach operating system.

A foreseeable point of future work is to be able
to support message sending, as described in Section
4.1.3. We have a design for converting static calls to
IPCs. The basic idea is that a module instance corre-
sponds to a thread in an address space. (Thus one can
have many module instances within the same address
space.) With this, message sending between instances
is modeled as TPC, by converting static calls to IPC
calls. For example, the expression

(msg-send m1 foo m2 bar)

wraps the static call to foo() within m1 with an TPC
stub that calls the bar() routine within an instance of
m2, which is itself wrapped with a receiving IPC stub.
The crucial question here 1s that of determining the
identity of the receiving instance of m2. One answer

to this question 1s to have the msg-send routine also
generate a constructor function that establishes the
IPC environment between ml and m2. For example,
the constructor routine for m2 registers instances of
m2 with a name service, and invocations of m1’s foo()
look up the identity of an m2 instance and establishes
an IPC handle using that name. The particular in-
stance of m2 that the name service returns can either
be constant for the duration of the program, or be pro-
grammatically controlled from within base language
modules.

Currently, OMOS is treated as a shared resource
and module specs must be installed in an OMOS-
accessible place by a trusted party. In order to provide
the full functionality of the OMOS environment to
users without opening security holes, we envision ex-
tending OMOS to work in a multi-level mode. OMOS
will maintain system module scripts and cached exe-
cutables. An individual user will run a limited version
of OMOS that can generate cacheable instances from
their own modules scripts or access global instances
cached by the system. In general, this will distribute
the computational load; the ”system OMOS” will act
primarily as a cache manager which seldom regener-
ates cached entities. Users engaged in application de-
velopment will produce more caching activity, but it
will be restricted to their own caches. User file and
process activity will be limited to those resources to
which the user naturally has access to. This will allow
opening the full set of I/O primitives to user access
without fear of abuse, and users will be unable to ad-
versely affect one another via denial of service.

8 Conclusions

We have argued that application environments sup-
ported by conventional operating systems lack support
for the effective management of application compo-
nents. We illustrate that the problems faced by ap-
plication builders are similar to those that are solved
by the concepts of OO programming. We thus con-
clude that it is beneficial to support OO functionality
within the component manipulation and binding en-
vironment.

We show that support for OO development can
be achieved by elevating the physical modularity (i.e.
separately compiled files) of application components
to the level of logical modularity, managed by a
system-wide server process. The server supports a
module language based on Scheme, using which first-
class modules can be manipulated via a powerful suite
of operators. Expressions over modules are used to
achieve various QO effects, such as encapsulation and
inheritance, thus directly supporting application de-



velopment in an OO manner. Furthermore, the server
is designed to be a fundamental operating system ser-
vice responsible for mapping module instances into
client address spaces. In this manner, we enable a
superior application development environment within
a conventional operating system infrastructure.
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