
Layered� Server�based Support

for Object�Oriented Application Development

Guruduth Banavar Douglas Orr Gary Lindstrom

Department of Computer Science

University of Utah� Salt Lake City� UT ����� USA

fbanavar�dbo�lindstromg�cs�utah�edu

Abstract

This paper advocates the idea that the physical mod�
ularity ��le structure� of application components sup�
ported by conventional OS environments can be ele�
vated to the level of logical modularity� which in turn
can directly support application development in an
object�oriented manner� We demonstrate this idea
through a system�wide server that manages the ma�
nipulation of such components e�ectively� The server
is designed to be a fundamental operating system ser�
vice responsible for binding and mapping component
instances into client address spaces�

We show how this model solves some longstanding
problems with the management of application com�
ponents in existing application development environ�
ments� We demonstrate that this model�s e�ective�
ness derives from its support for the cornerstones of
OO programming� classes and their instances� encap�
sulation� and several forms of inheritance�

� Introduction
In a traditional application development environ�

ment such as UNIX� application components ulti�
mately take the form of �les of various kinds � source�
object� executable� and library �les� Entire appli�
cations are typically built by putting together these
components using in�exible� and sometimes ad�hoc�
techniques such as preprocessor directives and exter�
nal linkage� all managed via make�le directives�

It is also natural for application developers to gener�
ate components corresponding to incremental changes
to already existing application components� especially
if they subscribe to the software engineering princi�
ple known as �extension by addition�� This principle
holds that it is better to extend software not by direct
modi�cation� but by disciplined addition of incremen�
tal units of software� Advantages of �extension by
addition� include better tracking of changes and more
reliable semantic conformance by software increments�
Most importantly� the increments themselves have the

potential to be reused in similar settings�

This perspective leads one to conclude that tradi�
tional OS environments inadequately support compo�
nent manipulation and binding for modern application
development� Object�oriented �OO	 programming of�
fers a potential solution to this inadequacy� In OO
programming� inheritance is a mechanism that aids
in the e
ective management of software units and
incremental changes to them� Indeed� in advanced
OO languages� increments as well as base components
have independent standing �e�g�� �mixins�	� Other
aspects of OO programming� notably encapsulation�
have demonstrated bene�ts to large�scale software de�
velopment via enhanced abstraction� There is much to
gain from supporting these features within the infras�
tructure of an application development environment�
beyond whatever support is provided by the languages
in which application components are written�

In this paper� we demonstrate a principled� yet
�exible� way in which to e
ectively construct appli�
cations from components� This facility is orthogonal
to make�les� and does not impose new techniques for
building individual application components� Instead�
it relies on the idea that the physical modularity of
traditional application components �i�e� �les	 can be
endowed the power and �exibility of logical modular�
ity� Such logical modules can then be manipulated
using the concepts of compositional modularity� where
�rst�class modules �de�ned in Section ���	 are viewed
as building blocks that can be transformed and com�
posed in various ways to construct entire application
programs� Individual modules� or entire applications�
can then be instantiated into the address spaces of
particular client processes� Compositional modular�
ity has a �rm foundation
��� and has been shown to
be �exible enough to support several important e
ects
and styles of object�oriented programming
���

This approach has other advantages besides making
system building more principled and �exible� First� it

enables a form of OO programming with components
written in non OO languages such as C and Fortran�
Second� it enables adaptive composition� whereby the
system that manages the logical layer can perform var�
ious composition�time� �exec��time� and possibly run�
time optimizing transformations to components� For
example� system services �such as libraries	 can be ab�
stracted over their actual implementations� adding a
level of indirection between a service and its actual
implementation� This permits optimizations of the
service implementation based on clients� disclosed be�
havioral characteristics� Such system�level support is
explored elsewhere
��� ��� ���� this paper focuses on
application level support�

It is important to make clear that compositional
modularity supported by a logical layer is not in con�
�ict with object�orientation supported by component�
level languages� For example� C�� programmers deal
with two distinct notions of modularity� classes� fun�
damental to logical modularity� and source �les� which
deal with physical modularity� These two modularity
dimensions share many characteristics� but have very
di
erent senses of composability� i�e� inheritance for
classes� and linkage for �les� Indeed� they are rather
orthogonal in the minds of C�� programmers� be�
cause class de�nitions and source �les do not always
bear ��� relationships� and linkage is performed in
a �class�less� universal namespace �attened by name
mangling� In essence� they manage programs at two
levels� classes with their semantic relationships� and
�les with their linkage relationships� With our ap�
proach� we accord physical artifacts �i�e� �les	 a de�
gree of manageability comparable to that enjoyed by
logical artifacts �i�e� classes	�

In the following section� we present an application
scenario that motivates the architecture presented in
this paper� In Section �� we present the layered archi�
tecture of our system� as well as the steps in construct�
ing applications� Section � describes the functionality
of the heart of the system� Section � presents spe�
ci�c solutions to the problems in Section �� We then
compare our work with related research� present our
current status and envisioned future work� and con�
clude�

� A Motivating Scenario
Consider a scenario in which a team of developers is

building an image processing application using a ven�
dor supplied �shrink�wrapped	 library� Say the team
completes building an initial version of the application
�which is large�scale� say� greater than ���K lines of
code	� which is now ready for system testing� We can
imagine several problems deriving from this scenario�

�i� Call wrapping� Suppose that the team �nds
that the application malfunctions because it calls a
library function edge detect�� on an image data struc�
ture� consistently with an incorrect storage format� say
with pixels represented as type FLOAT when BYTE
was expected� Using traditional tools� this problem
is recti�ed by inserting another library function call
to the routine �oattobyte�� before each site in the ap�
plication where edge detect�� was being called� This
approach not only requires extensive modi�cation of
the application source code� but also expensive recom�
pilation� Moreover� if two separate shrink�wrapped li�
braries are to be put together in this manner� sources
might not even be available� Instead� it is more desir�
able to �wrap�� at binding time� calls to edge detect��
with an adaptor that calls �oattobyte��� all without
recompiling the large application� However� such a
facility is not usually supported in conventional OS
environments�

�ii� Library extension management� Suppose fur�
ther that the team decides that the application could
work much better with an image format slightly di
er�
ent from the format expected by the library� but one
which is easy to convert to and from the old format� If
the new format is to be supported for future projects�
it is best to change all library functions to accept and
return the new format� However� sources for the li�
brary are not available� hence it cannot be directly
modi�ed� Thus� this would require developing and
integrating a separate extension to the library� Fur�
thermore� there could be several other independent ex�
tensions to the library that need to be integrated and
supported for future applications� Developing such in�
cremental extensions is much like subclassing in OO
programming� but there is usually no support for ef�
fectively managing such incremental software units�

�iii� Static constructors and destructors� Imagine
that the team wants to make sure that all statically
de�ned images are properly allocated and initialized
from disk before the program starts� and �ushed back
to disk before the program terminates� Currently
available techniques for doing this are di�cult and
cumbersome�

�iv� Flat namespace� Say the image processing li�
brary uses the Motif library� which is in turn imple�
mented in terms of the lower�level X library� Thus�
in the traditional scenario� all the symbols imported
from the Motif and X libraries become part of the in�
terface exported by the image library� There is no way
to prevent clients of the image library from obtaining
access to the lower level library interface� or possibly
su
er name collisions with that interface�

The system architecture we present in the following
sections o
ers an e
ective solution to the above prob�
lems� Speci�c solutions to these problems are given in
Section ��

� Architecture

��� Conceptual Layering

The �rst step in presenting an architecture for man�
aging object modules is to clarify the conceptual lay�
ering of application components�

Conceptually� artifacts of physical modularity� i�e�
�les of various kinds� form a physical layer� These
modules may be written as components in conven�
tional languages that have no notion of objects� For
example� in the case of C� there is no support for ma�
nipulating physical modules� much less for generating
and accessing instances of them at run time � �les
are simply a design�time structuring mechanism�

The physical layer is managed with the help of
traditional programming language environments� For
example� the C language preprocessor� compiler� the
make utility� the debugger� and library construction
utilities help the programmer to develop application
components of various kinds�

In the architecture presented here� each physical
module can be manipulated as a �rst�class composi�
tional module in what we shall conceptualize as the
logical layer� In this layer� construction of entire ap�
plications is directed by scripts written by applica�
tion programmers describing the composition of logi�
cal modules� Scripts are written in a module manipu�
lation language that supports not only a simple merge
of modules in the manner of conventional linking� but
also many others including attribute encapsulation�
overriding� and renaming� Most importantly� since
modules are �rst�class entities in this language� indi�
vidual operations can be composed in an expression�
oriented fashion to produce composite e
ects such as
inheritance in OO programming�

The logical layer is managed by a special tool� in
the design of which the following requirements were
laid out� First� the tool must provide a language pro�
cessing system for the module manipulation language�
Second� it must perform essential operating system
services� that of linking modules and loading them
into client address spaces� Third� since these services
are in the critical path of all applications� it must be
able to perform optimizations such as caching� Finally�
it must be continually available� For these reasons� the
logical module layer in the prototype described here
is managed by a server process � a second generation
implementation of a server named OMOS
����

The OMOS server is described in more detail in
Section ���� The module manipulation language sup�
ported by OMOS is derived from the programming
language Scheme
��� and is based on the module ma�
nipulation language Jigsaw
��� The model supported
by this language� called compositionalmodularity� and
its impact on developing applications in an OO man�
ner� are explored in Section ��

��� Application Construction

In this section� we describe the steps in constructing
an application� based on the architecture depicted in
Figure ��

The �rst step is to build individual application com�
ponents �physical modules	 using a conventional pro�
gramming language environment� �In this discussion�
we shall consider only C language components� al�
though the same ideas can be applied to another lan�
guage such as Fortran�	 Individual components� such
as c��c� c��c� and c��c in Figure � can be designed
as traditional program �les with no knowledge of the
logical layer� Alternatively a component can be de�
signed to be reused via suitable programming in the
logical layer� such as a �wrapper� module described in
Section ��

Application components may be owned and man�
aged by the user or by OMOS� In Figure �� c��c� c��c�
and c��c are user provided application components�
System provided components� such as libraries� are
owned and managed by the OMOS server and accessed
via service requests to OMOS�

The second step is to create a module spec� a �le
that describes the creation and composition of log�
ical modules from application components� This is
written in a module language described in Section ��
In Figure �� app�ms is a user module spec that de�
scribes how to put the components of the application
together� Module specs can themselves be modular�
they can refer to other module specs� For example�
app�ms may refer to libc� a system provided module
spec that describes how to put together the compo�
nents of a standard system library with a client mod�
ule�

The �nal step is to request the module server to
execute the module spec and instantiate �i�e� load	 the
result into a client address space� Module specs may
be executed by calling a stand�alone version of OMOS
fromwithin a make�le� and the loading step performed
interactively�

��� The OMOS Server

As mentioned earlier� OMOS is a continuously run�
ning process �a server	 that is designed to provide a
linking and loading facility for client programs via the

/

printf.o read.o libccrt0

OMOS file system

client
client

client

app.msc3.cc2.cc1.c

~banavar/app1

User file system

OMOS

cacheapp

c1

c2

c3

USER

Figure �� Overall architecture� c��c� c��c� etc� are user application components to be composed as described in the user
module spec app�ms� Printf�o� etc�� are system components to be composed according to module specs libc� etc� These
components are composed by OMOS� possibly cached� and instantiated into client address spaces� The user can directly
interact with OMOS via a command line interface to e�ect module composition and instantiation�

use of module combination and instantiation� OMOS
supports three main functions� execution of module
specs to compose applications� caching of intermedi�
ate results� and program loading� Module specs and
their execution is described in the rest of the paper�
The other two functions are described brie�y below�
the details� given in
��� ���� are beyond the scope of
this paper� Additionally� use of meta�protocols with
OMOS is explored in
����

Evaluation of a module expression will often pro�
duce the same results each time� As a result� OMOS
caches module results in order to avoid re�doing un�
necessary work�

Since OMOS loads programs into client address
spaces� it can be used as the basis for system program
execution �the �exec server�	 and shared libraries
����
as well as dynamic loading of modules� Combining
a caching linker with the system object loader gives
OMOS the �exibility to change implementations as it
deems necessary� e�g� to re�ect an updated implemen�
tation of a shared module across all its clients�

This concludes a general description of the architec�
ture of our system� In the following section� the func�
tionality provided by the system as exported through
the module language is described�

� Module Management
As argued in Sections � and �� an infrastructure

that aims to support e
ective application development
must support the �exible management of application

components� We further argued that the management
of components� their extensions� and their bindings is
essentially similar to the management of classes and
subclasses via inheritance in OO programming� This
argument behooves us to demonstrate that our archi�
tecture does indeed support the essential concepts of
OO programming� viz� classes and inheritance� which
we show below in Sections ��� and ��� respectively�

Given the facilities described in this section� it is in
fact possible to consider doing OO programming with
a non OO language �such as C	� However� it is not
possible to do full��edged OO programming in such
a manner� since the base language does not support
�rst�class objects �see Section �����	� Neither is it de�
sirable� since OO language support �such as C��	
might be directly available� Thus� the facility we de�
scribe here is intended mainly for enhancing applica�
tion component management rather than for actual
application programming�

��� Classes

In the model of compositional modularity� a module
corresponds to a distillation of the conventional no�
tion of classes
��� A module is a self�referential scope�
consisting of a set of de�ned and declared attributes
with no order signi�cance� De�nitions bind identi�ers
to values� and declarations simply associate identi�ers
with types �de�ning a label subsumes declaring it	�
Every module has an associated interface comprising
the labels and types of all its visible attributes� An im�
portant characteristic of modules is the self�reference

of attribute de�nitions to sibling attributes �see
�� for
details	� Modules can be adapted and composed using
operators that manipulate the interface and the cor�
responding self�references� Furthermore� modules can
be instantiated� at which time self�reference is �xed�
and storage allocated for variables�

����� Modules

An object �le ���o�� or dot�o �le	� generated by com�
piling a C source �le� corresponds directly to a module
as described above� A dot�o consists of a set of attrib�
utes with no order signi�cance� An attribute is either
a �le�level de�nition �a name with a data� storage or
function binding	� or a �le�level declaration �a name
with an associated type� e�g� extern int i�	�� Such a
�le can be treated just like a class if we consider its
�le�level functions as the methods of the class� its �le�
level data and storage de�nitions as member data of
the class� its declarations as unde�ned �abstract	 at�
tributes� and its static ��le internal linkage	 data and
functions as encapsulated attributes� Furthermore� a
dot�o typically contains unresolved self�references to
attributes� represented in the form of relocation en�
tries�

Symbols� both de�ned and merely declared� of
physical modules make up the interface of logical mod�
ules� �For simplicity of presentation� we consider in�
terfaces to comprise only the symbol names� without
their programming language types� see
�� for a study
of typed interfaces�	 Compiled code and data in the
actual object �le represents the module implementa�
tion�

A physical dot�o is brought into the purview of the
logical layer by using the primitive open�module in our
module language� The syntax of this primitive is given
in Figure �� Once it is thus transformed into a logical
module� it can be manipulated in several ways using
the other primitives given in the �gure� which are de�
scribed in the following sections�

����� Encapsulation

Module attributes can be encapsulated using the op�
erator hide �see Figure �	� However� in the case of C
language components� encapsulation partly comes for
free� since C supports the internal linkage directive�
static� However� attributes can be hidden after the
fact� i�e� non�static C attributes can be made static
retroactively� with hide� This is a very useful opera�
tion as demonstrated in Section ��

�Type de�nitions �e�g� struct de�nitions� and typedef�s in C�
are not considered attributes�

�open�module hpath�string�expri�
��x hmodule�expri hsection�locn�listi�
�hide hmodule�expri hsym�name�list�expri�
�merge hmodule�expr� i hmodule�expr� i ����
�override hmodule�expr� i hmodule�expr� i ����
�copy�as hmodule�expri hfrom�name�list�expri

hto�name�list�expri�
�rename hmodule�expri hfrom�name�list�expri

hto�name�list�expri�

Figure �� Syntax of module primitives

Many OO systems support the notion of a class
consisting of public and private �encapsulated	 attrib�
utes� In our system� a similar concept of classes is
supported by a Scheme macro de	ne�class� with the
following sytax�

�de�ne�class hnamei
hdot�o��lei hsuperclass�exprsi hencap�attrsi�

For example� given a dot�o vehicle�o that contains�
among other attributes� a global integer named fuel
and a global method display that displays the value of
the fuel attribute� one can write the following expres�
sion �within a module spec	 to create a class named
vehicle by encapsulating the attribute named fuel�

�de�ne�class vehicle �vehicle�o� �� ��fuel���

This macro expands into the following simple mod�
ule expression�

�de�ne vehicle
�hide �open�module �vehicle�o�� ���fuel����

����� Instances

As mentioned earlier� instantiating a module amounts
to �xing self�references within the module and allocat�
ing storage for variables� In the case of instantiation of
dot�o modules� �xing self�references involves �xing re�
locations in the dot�o� and storage allocation amounts
to binding addresses� These two steps are usually per�
formed simultaneously� Thus� a dot�o can be instan�
tiated into an executable that is bound ���xed�	 to
particular addresses and is ready to be mapped into
the address space of a process� Dot�o�s can actually
be instantiated multiple times� bound to di
erent ad�
dresses� Consequently� �xed executables are modeled
as instances �objects	 of dot�o modules �classes	�

A module is instantiated using the primitive 	x
shown in Figure �� The argument hsection�locn�listi
speci�es constraints for �xing the module to desired
sections of the client address space�

A concept closely associated with �rst�class ob�
jects in conventional OO languages is message send�
ing� �For example� in the classical Smalltalk sense� ob�
jects communicate by sending messages to each other�	
However� as mentioned earlier� there is no notion of
�rst�class objects at the physical layer� which is where
physical modules are implemented using component�
level languages� Thus� message sending is not directly
supportable in our framework� However� we envision
extending our approach to support a form of message
sending via inter�process communication� as described
in Section ��

��� Inheritance

We now arrive at the central aspects of our model�
In this section� we introduce the inheritance related
primitives supported by the module language� and de�
scribe the manner in which they can be composed�
We start by introducing the following four primitives
whose syntax is given in Figure ��

The primitive merge combines modules which do
not have con�icting de�ned attributes� i�e� attributes
with the same name� This semantics is analogous to
traditional linking of object �les� However� the idea
here is to go beyond traditional linking and support
other operations basic to inheritance in OO program�
ming� such as the following�

The primitive override produces a new module by
combining its arguments� If there are con�icting
attributes� it chooses hmodule�expr	 i�s binding over
hmodule�expr
 i�s in the resulting module�

The primitive copy�as copies the de�nitions of at�
tributes in hfrom�name�list�expri to attributes with
corresponding names in hto�name�list�expri� The from
argument attributes must be de�ned�

The primitive rename changes the names of the
de�nitions of� and self�references to� attributes in
hfrom�name�list�expri to the corresponding ones in
hto�name�list�expri�

To illustrate the use of the above primitives� the
following section describes how to achieve several vari�
ations of a facility generally referred to as �wrapping��

����� Wrapping

Figure � shows a service providing module LIB with a
function f��� and its client module CLIENT that calls
f��� Three varieties of wrapping can be illustrated with
the modules shown in the �gure�

��	 A version of LIB that is wrapped with the mod�
ule LWRAP so that all accesses to f�� are indirected
through LWRAP�s f�� can be produced with the ex�
pression�

LWRAP
(Wrapper)

void f() {

 f_old();

 /* ... */

}

extern void f_old();

CLIENT
(Client Program)

void g() {

 f();

 /* */

}

extern void f();

CWRAP
(Wrapper)

void stub() {

 f();

 /* ... */

}

extern void f();

LIB
(Service Provider)

void f() {

}

 /* */

 /* */

 f();

Figure �� Examples of wrapping�

�hide �override �copy�as LIB f f old� LWRAP� f old�

By using copy�as instead of rename� this expression
ensures that self�references to f�� within LIB continue
to refer to �the overridden	 f�� in the resultant� and
are not renamed to f old�

��	 Alternatively� a wrapped version of LIB in which
the de�nition of and self�references to f�� are renamed
can be produced using the expression�

�hide �merge �rename LIB f f old� LWRAP� f old�

This might be useful� for example� if we want to
wrap LIB with a wrapper which counts only the num�
ber of external calls to LIB�s f��� but does not count
internal calls�

��	 If we want to wrap only a particular client mod�
ule without wrapping the service provider� we can use
the following expression�

�hide �merge �rename CLIENT f stub� CWRAP� stub�

In this case� renaming the client module�s calls to
f�� produces the desired e
ect� since the declaration of
f�� as well as all self�references to it must be renamed�

Generalizing the above cases� the three varieties of
wrapping possible in our model are shown pictorially
in Figure �� The leftmost column of the �gure shows
the given modules M� and M� and their wrappers W�
andW�� The top row shows a technique referred to as
method wrapping� and the bottom row call wrapping�
Box �a	 corresponds to example ��	 above� box �b	 to
��	� and box �d	 to ��	 above�

A technique known as before�after methods is used
in the CLOS language to interpose calls to code be�

Cannot

calls

COPY

old-meth

meth

meth

M1

W1

meth

meth

wrapW2

M2

COPY-OVERRIDE-HIDE RENAME-MERGE-HIDE

M5

(a) (b)

(c) (d)

old-meth

meth meth

old-meth

wrap

meth

GIVEN MODULES

M
E

T
H

O
D

 W
R

A
P

P
IN

G
C

A
L

L
 W

R
A

P
P

IN
G

Figure �� Wrapping scenarios� The leftmost column shows the given modules� M� to be wrapped by W�� and M� to
be wrapped by W�� The top row shows the operations and e�ects of performing method wrapping� and the bottom row
shows call wrapping�

fore or after a particular method proper� The above
notions of method wrapping and call wrapping can be
extended to support calling of precompiled routines
by generating and wrapping the appropriate adaptors�
For example� to call a method bef in module B before
a method meth in moduleM� we can generate a wrap�
per moduleW with a function meth that �rst calls bef�
and then calls the old de�nition of meth as old�meth�
The modules M�W� and B can be combined in a man�
ner similar to method wrapping to get the e
ect of a
before�method�

�hide �override �copy�as M meth old�meth�
�merge W B��

old�meth�

����� Single and Multiple Inheritance

The idioms shown in Figure � are in fact the basis of
inheritance in current day OO languages
��� In this
section� we give a brief idea of how these idioms can
be used to achieve notions of inheritance�

Recall from Section ����� that a class can be de�
�ned using the macro de	ne�class� which expands to a
module expression that uses open�module and hide� A
vehicle class was de�ned there� Using the same macro�
a class can also inherit from another existing class�

For example� suppose a dot�o land chars�o is cre�
ated� which contains a global constant integer called
wheels� and a function called display�� that �rst calls a
declared method called super�display��� then prints the
value of wheels� Given such a module� a land�vehicle

class can be created as a subclass of the previously
de�ned vehicle module by writing�

�de�ne�class land�vehicle �land chars�o� �vehicle� ���

This macro expands to the module expression�

�de�ne land�vehicle
�hide �override �copy�as vehicle ���display��

���super display���

�open�module �land chars�o���
���super�display����

In this expression� a module with attributes wheels
and display is created� and is used to override the su�
perclass vehicle in which the display attribute is copied
as super display� The new display method can access
the shadowed method as super display� In general� all
such con�icting attributes are determined by a meta�
level primitive called con�icts�between� and copied to
a name with a super pre�x� The copied super display
attribute is then hidden away to get a module with ex�
actly one display method in the public interface� as de�
sired� An important point here is that calls to display
within the old vehicle module and the new land�vehicle
module are both rebound to call the display method of
the land�vehicle module�

The above idea of single inheritance can be general�
ized to multiple inheritance as found in languages such
as CLOS
���� In these languages� the graph of super�
classes of a class is linearized into a single inheritance
hierarchy by a language provided mechanism� A simi�
lar e
ect can be achieved with the de	ne�class macro�
except that the programmer must explicitly specify

the order of the superclasses� as shown below��

�de�ne�class land�chars �land chars�o� �� ���

�de�ne�class sea�chars �sea chars�o� �� ���

�de�ne�class amphibian

�amphibian�o� �land�chars sea�chars vehicle� ���

With the module operations supported by our mod�
ule language� several other single and multiple inheri�
tance styles can be expressed as well � these are de�
scribed in
���

� Solving Old Problems

Using the operations de�ned on modules it is pos�
sible to conveniently solve long�standing problems in
software engineering� encountered when using C� or
C��� Several of these problems had solutions previ�
ously� but they were ad�hoc and�or required changes
to source code� Module operations permit general so�
lutions that impose no source code changes�

In this section� we delineate clean solutions to each
of the problems enumerated in Section �� in the same
order�

�i� Wrapping calls� To solve the �rst problem of
Section �� the module spec for the image processing
application can be written as given in Section ������
under call wrapping� Calls to edge detect�� can be
wrapped with a wrapper method that �rst calls the
function �oattobyte�� and then calls the edge detect��
library function�

�ii� Library extension management� The image li�
brary can be thought of as an OO class� and incre�
mental changes to it can be thought of as subclasses
that modify the behavior of their superclasses� The
subclasses can be integrated with the superclass by
means of a module spec that uses the notions of in�
heritance illustrated in Section ����

�iii� Static constructors and destructors� In C���
there is a need to generate calls to a set of static
constructors and destructors before a program starts�
Special code is added to the C�� front end to gener�
ate calls to the appropriate constructor and destruc�
tor routines� However� the order in which such static
objects are constructed is poorly controlled in C��
and leads to vexing environment creation problems for
large systems�

Under some variants of Unix� the C language has
handled the need for destructors in an ad�hoc fash�
ion� by allowing programs to dynamically specify the
names of destructor routines by passing them to the
atexit�� routine� In other variants� the destructors for

�Explicit speci�cation of linearization is more useful than an
implicit� language provided mechanism� see ��� for details�

the standard I�O library are hard�coded into the stan�
dard exit routine� In neither case is there any provi�
sion for calling initialization routines �e�g�� construc�
tors	 before program startup�

In both the cases of C and C��� module opera�
tions allow addressing the problem by using a general
facility� rather than special�purpose mechanisms� As
shown in Section ����� as before�after methods� mod�
ule expressions can easily be programmed to generate
a wrapper main�� routine that calls all of the initial�
ization routines in the desired order� then call the real
main�� routine� Similarly� the exit�� routine can be
wrapped with an exit routine that calls all the de�
structors found in the module before calling the real
exit���

�iv� Flat namespace� A longstanding naming prob�
lem with the C �and� to some extent C��	 language
has traditionally been the lack of depth in the pro�
gram namespace� C has a two�level namespace� where
names can be either private to a module� or known
across all modules in an application�

With module operations� these problems can be
avoided� Once a module that implements low�level
functionality has been combined with a module that
implements higher�level functionality� the functions in
the former�s interface can be subjected to the hide
operation to avoid con�icts or accidental matches at
higher levels�

� Comparison to Related Research
This work is in essence a general and concrete real�

ization of a vision due to Donn Seeley
���� Although
programmable linkers exist� they do not o
er the gen�
erality and �exibility of our system�

A user�space loader such as OMOS is no longer un�
usual
��� ��� Many operating systems� even those with
monolithic kernels� now use an external process to do
program loading involving shared libraries� and there�
fore linking� However� the loader�dynamic linker is
typically instantiated anew for each program� making
it too costly for it to support more general function�
ality such as in OMOS�

Utilities exist� such as dld
���� to aid programmers
in the dynamic loading of code and data� These pack�
ages tend to have a procedural point of view� provide
lower�level functionality than OMOS � and do not of�
fer the control over module manipulation that OMOS
provides� The dld utility does o
er dynamic unlinking
of a module� which OMOS currently does not support�
However� since OMOS retains access to the symbol
table and relocation information for loaded modules�
unlinking support could be added�

The Apollo DSEE
�� system was a server�based

system which managed sources and objects� taking ad�
vantage of caching to avoid recompilation� DSEE was
primarily a CASE tool and did not take part in the
execution phase of program development�

Several architecture description languages have
been proposed� such as Rapide
���� the POLYLITH
Module Interconnection Language �MIL	
�� ����
and OMG�s Interface De�nition Language �IDL	
���
These languages all share the characteristic that they
support the �exible speci�cation of high�level compo�
nents and interconnections� Our approach o
ers the
important advantage that OO like program adapta�
tion and reuse techniques �inheritance� in all its mean�
ings	 can be applied to legacy components written in
non�OO languages�

An environment for �exible application develop�
ment has been pursued in the line of research leading
to the so�called subject�oriented programming �SOP	

���� In this research� a �subject� is in essence an OO
component� i�e� a component built around an OO class
hierarchy� Subjects can be separately compiled� and
composed using tools know as �compositors� �similar
to OMOS	� Compositors use various operators similar
to the ones presented here� The primary di
erence
between SOP and our research is that SOP is broadly
conceived around the OO nature of individual compo�
nents� and aims to build a toolset and object �le for�
mats speci�cally tailored for SOP� On the other hand�
our research has focussed on layered evolutionary sup�
port�

� Current Status and Future Work
OMOS is currently about ������ lines of C�C��

code� OMOS also uses the STk version of Scheme
������� lines	 and the Gnu BFD object �le library�
OMOS runs on i��� and HP�PA�RISC platforms un�
der the Mach operating system�

A foreseeable point of future work is to be able
to support message sending� as described in Section
������ We have a design for converting static calls to
IPCs� The basic idea is that a module instance corre�
sponds to a thread in an address space� �Thus one can
have many module instances within the same address
space�	 With this� message sending between instances
is modeled as IPC� by converting static calls to IPC
calls� For example� the expression

�msg�send m� foo m� bar�

wraps the static call to foo�� within m� with an IPC
stub that calls the bar�� routine within an instance of
m�� which is itself wrapped with a receiving IPC stub�
The crucial question here is that of determining the
identity of the receiving instance of m�� One answer

to this question is to have the msg�send routine also
generate a constructor function that establishes the
IPC environment between m� and m�� For example�
the constructor routine for m� registers instances of
m� with a name service� and invocations of m��s foo��
look up the identity of an m� instance and establishes
an IPC handle using that name� The particular in�
stance of m� that the name service returns can either
be constant for the duration of the program� or be pro�
grammatically controlled from within base language
modules�

Currently� OMOS is treated as a shared resource
and module specs must be installed in an OMOS�
accessible place by a trusted party� In order to provide
the full functionality of the OMOS environment to
users without opening security holes� we envision ex�
tending OMOS to work in a multi�level mode� OMOS
will maintain system module scripts and cached exe�
cutables� An individual user will run a limited version
of OMOS that can generate cacheable instances from
their own modules scripts or access global instances
cached by the system� In general� this will distribute
the computational load� the �system OMOS� will act
primarily as a cache manager which seldom regener�
ates cached entities� Users engaged in application de�
velopment will produce more caching activity� but it
will be restricted to their own caches� User �le and
process activity will be limited to those resources to
which the user naturally has access to� This will allow
opening the full set of I�O primitives to user access
without fear of abuse� and users will be unable to ad�
versely a
ect one another via denial of service�

� Conclusions
We have argued that application environments sup�

ported by conventional operating systems lack support
for the e
ective management of application compo�
nents� We illustrate that the problems faced by ap�
plication builders are similar to those that are solved
by the concepts of OO programming� We thus con�
clude that it is bene�cial to support OO functionality
within the component manipulation and binding en�
vironment�

We show that support for OO development can
be achieved by elevating the physical modularity �i�e�
separately compiled �les	 of application components
to the level of logical modularity� managed by a
system�wide server process� The server supports a
module language based on Scheme� using which �rst�
class modules can be manipulated via a powerful suite
of operators� Expressions over modules are used to
achieve various OO e
ects� such as encapsulation and
inheritance� thus directly supporting application de�

velopment in an OO manner� Furthermore� the server
is designed to be a fundamental operating system ser�
vice responsible for mapping module instances into
client address spaces� In this manner� we enable a
superior application development environment within
a conventional operating system infrastructure�

Acknowledgments�

We gratefully acknowledge much implementation work
on OMOS by Je� Law� We thank Jay Lepreau and
Nevenka Dimitrova for support and several helpful com�
ments on this paper� This research was sponsored by the
Defense Advanced Research Projects Agency �DOD�� mon�
itored by the Department of the Army under Grant num�
ber DABT���	
�C����
� and by the Department of the
Navy under Grant number N����
�	��J�
�
��

References
��� Apollo Computer� Inc� Chelmsford� MA� DOMAIN

Software Engineering Environment �DSEE� Call Ref�
erence� �	
��

��� Guruduth Banavar and Gary Lindstrom� Object�
oriented programming in Scheme with �rst�class mod�
ules and operator�based inheritance� Technical Re�
port UUCS�	������ University of Utah� February
�		��

��� Guruduth Banavar� Gary Lindstrom� and Douglas
Orr� Type�safe composition of object modules� In
Computer Systems and Education� pages �

�����
Tata McGraw Hill Publishing Company� Limited�
New Delhi� India� June ������ �		
� ISBN �����

���

�
� Also available as Technical Report UUCS�
	
�����

�
� Gilad Bracha and Gary Lindstrom� Modularity meets
inheritance� In Proc� International Conference on
Computer Languages� pages �
���	�� San Francisco�
CA� April ������ �		�� IEEE Computer Society� Also
available as Technical Report UUCS�	������

��� John R� Callahan and James M� Purtilo� A pack�
aging system for heterogeneous execution environ�
ments� IEEE Transactions on Software Engineering�
�������������� June �		��

��� William Clinger and Jonathan Rees� Revised� re�
port on the algorithmic language scheme� ACM Lisp
Pointers�
���� �		��

��� William Cook and Jen Palsberg� A denotational se�
mantics of inheritance and its correctness� In Proc�
ACM Conf� on Object�Oriented Programming� Sys�
tems� Languages and Applications� pages
���

�
�	
	�

�
� Robert A� Gingell� Shared libraries� Unix Review�
��
�������� August �	
	�

�	� Object Management Group� The common object re�
quest broker� Architecture and speci�cation� Draft
�� Rev ��� Doc � 	������� OMG� December �		��

���� William Harrison and Harold Ossher� Subject�
oriented programming �a critique of pure objects�� In
Proceedings of OOPSLA Conference� pages
�� �
�
�
ACM Press� September �		��

���� Wilson Ho and Ronald Olsson� An approach to gen�
uine dynamic linking� Software	 Practice and Expe�
rience� ���
�������	�� April �		��

���� Dinesh Katiyar� David Luckham� and John Mitchell�
A type system for prototyping languages� In Proc� of
the ACM Symp� on Principles of Programming Lan�
guages� pages ��
����� Portland� OR� January �		
�
ACM�

���� Gregor Kiczales� Jim des Rivi�eres� and Daniel G� Bo�
brow� The Art of the Metaobject Protocol� The MIT
Press� Cambridge� MA� �		��

��
� Douglas Orr� John Bonn� Jay Lepreau� and Robert
Mecklenburg� Fast and �exible shared libraries� In
Proc� USENIX Summer Conference� pages ��������
Cincinnati� June �		��

���� Douglas B� Orr� Application of meta�protocols to im�
prove OS services� In HOTOS�V� Fifth Workshop on
Hot Topics in Operating Systems� May �		��

���� Douglas B� Orr and Robert W� Mecklenburg� OMOS
� An object server for program execution� In Proc�
InternationalWorkshop on Object Oriented Operating
Systems� pages ������	� Paris� September �		�� IEEE
Computer Society� Also available as technical report
UUCS�	������

���� Douglas B� Orr� Robert W� Mecklenburg� Peter J�
Hoogenboom� and Jay Lepreau� Dynamic program
monitoring and transformation using the OMOS ob�
ject server� In The Interaction of Compilation Tech�
nology and Computer Architecture� Kluwer Academic
Publishers� February �		
�

��
� James M� Purtilo� The POLYLITH software bus�
ACM Transactions on Programming Languages and
Systems� ������������
� January �		
�

��	� Marc Sabatella� Issues in shared libraries design� In
Proc� of the Summer �

� USENIX Conference� pages
����
� Anaheim� CA� June �		��

���� Donn Seeley� Shared libraries as objects� In Proc�
USENIX Summer Conference� Anaheim� CA� June
�		��

