
Fred� An Architecture for a
Self�Timed Decoupled Computer

William F� Richardson and Erik Brunvand

UUCS�������

Department of Computer Science

University of Utah

Salt Lake City� UT ����	 USA

May �� ����

Abstract

Decoupled computer architectures provide an e
ective means of exploiting instruction level
parallelism� Self�timed micropipeline systems are inherently decoupled due to the elastic
nature of the basic FIFO structure� and may be ideally suited for constructing decoupled
computer architectures� Fred is a self�timed decoupled� pipelined computer architecture
based on micropipelines� We present the architecture of Fred� with speci�c details on a
micropipelined implementation that includes support for multiple functional units and out�
of�order instruction completion due to the self�timed decoupling�



Asynchronous Systems Research Group

University of Utah� Department of Computer Science

Fred� An Architecture for a Self�Timed Decoupled Computer

WILLIAM F� RICHARDSON �willrich�cs�utah�edu�
ERIK L� BRUNVAND �brunvand�cs�utah�edu�

Computer Science Department

���� Merrill Engineering Building

University of Utah

Salt Lake City� Utah �����

Keywords� processor design� computer architecture� micropipelines� FIFO� asynchronous systems

Abstract� Decoupled computer architectures provide an e�ective means of exploiting instruction level parallelism�
Self�timed micropipeline systems are inherently decoupled due to the elastic nature of the basic FIFO structure� and
may be ideally suited for constructing decoupled computer architectures� Fred is a self�timed decoupled� pipelined
computer architecture based on micropipelines� We present the architecture of Fred� with speci�c details on a
micropipelined implementation that includes support for multiple functional units and out�of�order instruction com�
pletion due to the self�timed decoupling�

� Introduction

As computer systems have grown in size and complexity� the di�culty in synchronizing the system
components has also grown� For example� simply distributing the clock signal throughout a large
synchronous system can be a major source of complication� Clock skew is a serious concern in a
large system� and is becoming signi�cant even within a single chip� At the chip level� more and
more of the power budget is being used to distribute the clock signal� while designing the clock
distribution network can take a signi�cant portion of the design time�

These symptoms have led to an increased interest in asynchronous designs� General asynchronous
circuits do not use a global clock for synchronization� but instead rely on the behavior and arrange�
ment of the circuit elements to keep the signals proceeding in the correct sequence� However� these
circuits can be very di�cult to design and debug without some additional structure to help the
designer deal with the complexity� While there are many di�erent asynchronous methodologies�
one of the simplest to design� test� and debug is the self�timed micropipeline approach described by
Sutherland ���	� which avoids clock�related timing problems by enforcing a simple communication
protocol between circuit elements� This is quite di�erent from traditional synchronous signaling
conventions where signal events occur at speci�c times and must remain asserted for speci�c time
intervals� In self�timed systems it is important only that the correct sequence of signals be main�
tained� The timing of these signals is an issue of performance that can be handled separately�

Experience has shown the di�culty of writing parallel programs� yet most sequential programs
have an 
arguably� signi�cant amount of instruction�level parallelism ���� 
�	�� One way of exploit�
ing this parallelism is by decoupling the memory access portion of an instruction stream from the
execution portion ��� 
�� �	� By performing the two operations independently� peaks and valleys in

�Nicolau claims there is lots of parallelism available� Wall claims there�s some� but not much�



FRED� AN ARCHITECTURE FOR A SELF�TIMED DECOUPLED COMPUTER �

each may be smoothed� resulting in an overall performance gain�

Although decoupled architectures have been proposed and built using a traditional synchronous
design style� a self�timed approach seems to o�er many advantages� Typically the independent
components of the machine are decoupled through a FIFO queue of some sort� As long as the
machine components are all subject to the same system clock� connecting the components through
the FIFOs is subject to only the usual problems of clock skew and distribution� If� however�
the components are running at di�erent rates or on separate clocks the FIFO must serve as a
synchronizing element and thus presents even more serious problems�

The micropipeline approach is based on simple� self�timed� elastic� FIFO queues� which suggests
that decoupled computer architectures may be implemented much more easily in a self�timed mi�
cropipeline form than with a clocked design� Because the FIFOs are self�timed� synchronization
of the decoupled elements is handled naturally as a part of the FIFO communication� The elastic
nature of a micropipeline FIFO allows the decoupled units to run at data�dependent speeds� pro�
ducing or consuming data as fast as possible for the given program and data� Because the data are
passed around in self�timed FIFO queues� and the decoupled processing elements are running at
their own rate� the degree of decoupling is increased in this type of system organization� without the
overhead of a global controller keeping track of the state of the decoupled components� This should
allow increased performance due to the increased decoupling and potentially faster local control
of the components� however it also means that exception handling must be considered carefully�
Because each of the elements is running at its own rate� and data are possibly being transmitted
through FIFO queues when the exception is signaled� care must be taken to make sure that the
machine can process an exception in a functionally precise way without losing state that might be
in the process of being modi�ed by a di�erent component�

Fred is a self�timed decoupled� pipelined processor architecture based on micropipelines� We
present the architecture of Fred� with speci�c details on a micropipelined implementation that
includes support for out�of�order instruction completion due to the decoupling� and a model for
functionally precise exception processing�

� Asynchronous Processors

In spite of the possible advantages� there have been very few asynchronous processors reported
in the literature� Early work in asynchronous computer architecture includes the Macromodule
project during the early ���s at Washington University ��	 and the self�timed data�ow machines
built at the University of Utah in the late ���s ��	�

Although these projects were successful in many ways� asynchronous processor design did not
progress much� perhaps because the circuit concepts were a little too far ahead of the available
technology� With the advent of easily available custom ASIC technology� either as VLSI or FPGAs�
asynchronous processor design is beginning to attract renewed attention� Some recent processor
projects include the following�

The CalTech Asynchronous Microprocessor The �rst asynchronous VLSI processor was built
by Alain Martin�s group at CalTech ���	� It is completely asynchronous� using 
mostly� delay�
insensitive circuits and dual�rail data encoding� The processor as implemented has a small
���bit instruction set� uses a simple two�stage fetch�execute pipeline� is not decoupled� and



FRED� AN ARCHITECTURE FOR A SELF�TIMED DECOUPLED COMPUTER �

does not handle exceptions� It has been fabricated both in CMOS and GaAs�

The NSR The NSR 
Non�Synchronous RISC� processor �
� ��	 is structured as a �ve�stage pipeline
where each pipe stage operates concurrently and communicates over self�timed data channels
in the style of micropipelines� Branches� jumps� and memory accesses are also decoupled
through the use of additional FIFO queues which can hide the execution latency of these
instructions� The NSR was built using FPGAs� It is pipelined and decoupled� but doesn�t
handle exceptions� It is a simple ���bit processor with only sixteen instructions� since it was
built partially as an exercise in using FPGAs for rapid prototyping of self�timed circuits ��	�

The Amulet A group at Manchester has built a self�timed micropipelined VLSI implementation
of the ARM processor ��	 which is an extremely power�e�cient commercial microprocessor�
The Amulet is a real processor in the sense that it mimics the behavior of an existing com�
mercial processor and it handles simple exceptions� It is more deeply pipelined than the
synchronous ARM� but it is not decoupled 
although it does allow instruction prefetching��
and its precise exception model is a simple one� The Amulet has been designed and fabricated�
The performance of the �rst�generation design is within a factor of two of the commercial
version ���	� Future versions of Amulet are expected to close this gap�

The Counter�ow Pipeline Processor The Counter�ow Pipeline Processor 
CFPP� Architec�
ture is an innovative architecture proposed by a group at Sun Microsystems Labs ���	� It
derives its name from its fundamental feature� that instructions and results �ow in opposite
directions in a pipeline and interact as they pass� The nature of the Counter�ow Pipeline is
such that it supports in a very natural way a form of hardware register renaming� extensive
data forwarding� and speculative execution across control �ow changes� It should also be able
to support exception processing�

A self�timed micropipeline�style implementation of the CFPP has been proposed� The CFPP
is deeply pipelined and partially decoupled� with memory accesses launched and completed
at di�erent stages in the pipeline� It can handle exceptions� and a self�timed implementa�
tion which mimics a commercial RISC processor�s instruction set has been simulated� The
potential of this architecture is intriguing� but still unknown�

� Micropipelines

Micropipelines are self�timed� event driven� elastic pipelines that may or may not contain process�
ing between the pipe stages ���	� If no processing is done between the pipe stages� the micropipeline
reduces to a simple �rst�in �rst�out 
FIFO� bu�er� A block diagram of a generic micropipeline is
shown in Figure �� It consists of three parts� a control network consisting of one C�element per
micropipeline stage� a latch in each stage� and possibly some processing logic between the stages�

The Fred processor is implemented in a micropipeline style where concurrent processes cooperate
using a request�acknowledge handshake� and connections between the processes may be pipelined
to any desired degree by adding more micropipeline stages to the path� The pipelines and processes
involved in the Fred processor use two�phase transition signaling and bundled data paths� Two�
phase signaling involves a protocol whereby a process is requested to perform some action by
receiving an event on its Req input� and will signal that it has completed the action by producing



F
R
E
D
�
A
N
A
R
C
H
IT
E
C
T
U
R
E
F
O
R
A
S
E
L
F
�T
IM

E
D
D
E
C
O
U
P
L
E
D
C
O
M
P
U
T
E
R

�

esLatch

es

esLatch

d
e
l
a
y

d
e
l
a
y

C

Logic

C

C

Latch

Logic

R
I
N

A
I
N

A
O
U
T

R
O
U
T

F
igu

re
��

A
G
en
eric

M
icrop

ip
elin

e

a
n
ev
en
t
o
n
its

A
ck

o
u
tp
u
t�
T
h
e
fact

th
at

each
self�tim

ed
p
ro
cess

sign
als

its
com

p
letion

allow
s
for

sim
p
le
seq

u
en
cin

g
o
f
o
p
eratio

n
s
in

a
larger

self�tim
ed

sy
stem

�
�T

ran
sition

sign
alin

g�
m
ean

s
th
at

th
e
even

ts
th
at

a
re
co
m
m
u
n
icated

o
n
th
e
con

trol
lin
es

are
en
co
d
ed

in
sign

al
tran

sition
s
rath

er
th
an

sig
n
al

lev
els�

A
tra

n
sition

o
n
a
con

tro
l
lin
e
from

low
to

h
igh

or
from

h
igh

to
low

is
con

sid
ered

as
a
n
ev
en
t
an
d
n
o
d
istin

ctio
n
is
m
a
d
e
b
etw

een
tw
o
ty
p
e
of

tran
sition

s�

�
B
u
n
d
led

d
ata

p
a
th
�
m
ean

s
th
a
t
d
ata

m
u
st
b
e
stab

le
at

a
latch

b
efore

th
e
latch

in
g
con

trol
sign

al
arrives�

T
h
e
tra

n
sition

con
tro

l
sign

a
l
in
d
icates

th
at

th
e
b
u
n
d
led

d
ata

p
ath

is
valid

�
an
d
th
a
t
th
e

la
tch

m
ay

u
p
d
ate

its
co
n
ten

ts�
T
h
e
d
elay

elem
en
ts

sh
ow

n
in

F
igu

re
�
m
o
d
el

th
e
d
elay

req
u
ired

to
sa
tisfy

th
is
co
n
strain

t
as

th
e
d
a
ta

m
ove

th
rou

gh
th
e
logic

at
each

stage�
T
h
is
con

d
ition

is
a

co
m
p
rom

ise
to

com
p
lete

self�tim
ed
�
b
u
t
in

p
ractice

th
e
b
u
n
d
lin
g
con

strain
t
is
a
lo
cal

con
strain

t
th
at

is
n
ot

h
a
rd

to
m
eet�

a
n
d
it
allow

s
th
e
u
se

of
stan

d
ard

d
atap

ath
circu

its
in

th
e
d
esign

�
T
h
e

lo
gic

cou
ld
o
f
co
u
rse

b
e
self�tim

ed
a
n
d
g
en
erate

a
com

p
letion

sign
al�

w
h
ich

w
ou
ld
elim

in
ate

th
e
n
eed

fo
r
th
e
d
elay

a
t
th
e
ex
p
en
se

o
f
m
o
re

com
p
licated

logic
for

d
etectin

g
com

p
letion

of
th
e
p
ro
cessin

g�
L
a
tch

es
u
sed

in
su
ch

circu
its

a
re

tra
n
sition

latch
es

w
h
ich

latch
n
ew

d
ata

u
p
on

receip
t
of
a
req

u
est

even
t
an
d
p
ro
d
u
ce

an
a
ck
n
ow

led
g
m
en
t
ev
en
t
w
h
en

d
on
e�

T
h
e
C
�elem

en
ts

con
tro

l
th
e
a
ctio

n
o
f
th
e
m
icrop

ip
elin

e
b
y
a
ctin

g
as

p
roto

col
p
reserv

in
g
A
N
D

g
ates

for
th
e
tran

sitio
n
con

tro
l
sig

n
als

o
f
th
e
m
icrop

ip
elin

e�
T
h
ese

gates�
d
raw

n
as

an
A
N
D

gate
w
ith

a
C
in
sid

e�
w
ill

d
riv

e
th
eir

ou
tp
u
t
low

w
h
en

b
oth

in
p
u
ts

a
re

low
�
an
d
h
igh

w
h
en

b
oth

in
p
u
ts

are
h
igh

�
W
h
en

th
e
in
p
u
ts

are
at

d
i�
eren

t
states�

th
e
o
u
tp
u
t
is
h
eld

at
its

p
rev

iou
s
level�

N
ote

th
a
t
o
n
e
in
p
u
t
of

each
C
�elem

en
t
u
sed

in
F
ig
u
re

�
is
in
verted

�
T
h
u
s�
assu

m
in
g
th
at

all
th
e
con

trol
sig

n
als

start
low

�
th
e
leftm

ost
C
�elem

en
t
w
ill

p
ro
d
u
ce

a
tran

sition
to

th
e
leftm

ost
latch

w
h
en

th
e

in
com

in
g
req

u
est


R
IN
�
lin
e
�
rst

m
ak
es

a
tran

sition
from

low
to

h
igh

�
T
h
e
ack

n
ow

led
ge

from
th
e
la
tch

w
ill

p
ro
d
u
ce

a
sim

ila
r
req

u
est

th
rou

gh
th
e
n
ex
t
C
�elem

en
t
to

th
e
righ

t�
M
ean

w
h
ile�

th
e

leftm
ost

C
�elem

en
t
w
ill
n
ot

p
ro
d
u
ce

a
n
oth

er
req

u
est

to
th
e
leftm

ost
latch

u
n
til

th
ere

are
tran

sition
s

b
o
th

on
R
IN


sign
a
lin
g
th
at

th
ere

a
re

m
ore

d
ata

to
b
e
accep

ted
�
an
d
th
e
A
ck

from
th
e
n
ex
t
latch

to
th
e
righ

t

sig

n
alin

g
th
at

th
e
n
ex
t
stage

h
as

�
n
ish

ed
w
ith

th
e
cu
rren

t
d
ata��

E
ach

p
ip
e
stag

e
acts



FRED� AN ARCHITECTURE FOR A SELF�TIMED DECOUPLED COMPUTER �

as a concurrent process that will accept new data when the previous stage has data to give� and
the next stage is �nished with the data currently held� More details on building systems using a
two�phase micropipeline circuit style can be found elsewhere ���� ��� ��	�

� The Fred Architecture

The Fred architecture is based roughly on the NSR architecture developed at the University
of Utah �
� ��	� As such it consists of several decoupled independent processes connected by
FIFO queues of various lengths� an approach which we believe o�ers a number of advantages over
a clocked synchronous organization� The Fred architecture speci�es the instruction set and the
general layout and behavior of the processor� Other extensions to the Fred architecture may be
made� New instructions may be added� and additional functional units may be incorporated� The
existing functional units may be rearranged� combined� or replaced� The details of the exception
handling mechanism is not speci�ed by the architecture� but some means must be provided�

A prototype of Fred has been implemented in a detailed VHDL model� Figure 
 shows the
overall organization� Each box in the �gure is a self�timed process communicating via dedicated
data paths rather than buses� Each of these data paths� shown as wires in Figure 
� may be
pipelined to any desired depth without a�ecting the results of the computation� Because Fred uses
self�timed micropipelines ���	 in which pipeline stages communicate locally only with neighboring
stages in order to pass data� there is no extra control circuitry involved in adding additional pipeline
stages� Because buses are not used� the corresponding resource contention is avoided�

The VHDL version chooses particular implementations for each of the main pieces of Fred� In
particular� the Dispatch unit is organized so as to issue instructions in order� but to allow out�
of�order completion� This is of particular interest in a self�timed processor where the multiple
functional units might take varying amounts of time to compute a result� An individual functional
unit might even take di�erent amounts of time to compute a result based on the data which will
lead naturally to out of order instruction completion� The VHDL prototype is fully operational�
including out�of�order instruction completion and a functionally precise exception model� The
timing and con�guration parameters can be adjusted for each component of the design�

Multiple independent functional units allow several instructions to be in progress at a given time�
Because the machine organization is self�timed� the functional units may take as long or short a
time as necessary to complete their function� One of the performance advantages of a self�timed
organization is directly related to this ability to �nish an instruction as soon as possible� without
waiting for the next discrete clock cycle� It also allows the machine to be upgraded incrementally
by replacing functional units with higher performance circuits after the machine is built with no
global consequences or retiming� The performance bene�ts of the improved circuits are realized by
having the acknowledgment produced more quickly and thus the instruction that uses that circuit
�nishes faster�

There are �
 general registers in the Fred architecture� Registers r� through r�� are normal
general�purpose registers� but r� and r� have special meaning� Register r� may be used as the
destination of an instruction� but will always contain zero� Register r� is not really a register at all
but provides read access to a data memory pipeline similar to that used in the WM machine �
�	�
Specifying r� as the destination of an instruction inserts the result into the pipeline� Each use of r�
as a source for an instruction retrieves one word from the R� Queue� For example� the instruction



FRED� AN ARCHITECTURE FOR A SELF�TIMED DECOUPLED COMPUTER �

Scoreboard

Distributor

Branch Unit Arithmetic Unit

Logic Unit

Control Unit

Memory Unit

Data Memory

I
n
s
t
r
u
c
t
i
o
n
 
M
e
m
o
r
y

E
x
c
e
p
t
i
o
n
 
B
r
a
n
c
h
 
Q
u
e
u
e

B
r
a
n
c
h
 
Q
u
e
u
e

I
n
s
t
r
u
c
t
i
o
n
s

A
d
d
r
e
s
s

W
r
i
t
e
 
d
a
t
a

R
e
a
d
 
d
a
t
a

Address

Opcode

P
r
e
f
e
t
c
h
 
A
d
d
r
e
s
s

Dispatch Unit
Register File

Operands

Operand Request

Clear
Set/Clear

Read

R
1
 
Q
u
e
u
e

Result

Result

Result

Result

Execute Unit

D
o
n
e
 
Q
u
e
u
e

Figure 
� Fred Block Diagram� Solid black lines are primary data paths� grey lines are control
paths� All data and control paths may be pipelined�



FRED� AN ARCHITECTURE FOR A SELF�TIMED DECOUPLED COMPUTER �

�add r��r��r�� would fetch two words from the R� Queue� add them together� and place the sum
in register r�� Likewise� assuming that sequential access to register r� would result in values A� B�
and C� the instruction st r��r��r� would write the value C into memory location A � B� Data
from any of the functional units may be queued into the R� Queue� and loads from memory can
also be queued� It may be possible to subsume some of the memory latency by queuing loaded data
in the R� Queue in advance of its use� Note that the program receives di�erent information each
time it performs a read access on register r�� thus achieving a form of register renaming directly
in the R� Queue� Instructions which write to the R� Queue are forced to complete in�order� to
provide deterministic behavior�

Deadlocking the processor is theoretically possible� Because both the R� Queue and Branch
Queue 
section ��
�
� are �lled and emptied via two separate instructions� it is possible to issue an
incorrect number of these instructions so that the producer�consumer relationship of the queues is
violated� Fred�s dispatch logic will detect these cases� and take an exception before an instruction
sequence is issued that would result in deadlock�

��� Instruction Set

Choosing an instruction set for a RISC processor can be a complex task ��� �� ��	� Rather than
attempt to design a new instruction set from scratch� an instruction set from an existing commercial
RISC processor was adapted� Much of the Fred instruction set is taken directly from the Motorola
����� instruction set ��
	� However� Fred does not implement all the ����� instructions� and several
of Fred�s instructions do not correspond to any instructions of the ������ The instructions� and
the functional units that execute them� are shown in Figure ��

Logic � Bit�eld Arithmetic Memory Branch Control

and clr add ld blt bb� getcr
mask ext addu st ble bb� putcr
or extu cmp xmem bne br rte
xor �� div beq doit sync

�� divu bge mvpc trap
mak mul bgt
rot sub
set subu

Figure �� Fred Instructions

��� Instruction Dispatch

Instruction Dispatch is� in some sense� the main control unit for the Fred processor� It is responsi�
ble for keeping track of the Program Counter� fetching new instructions� issuing instructions to the
rest of the processor� and monitoring the instruction stream to watch for data hazards� Instructions
are fetched and issued in program order to the rest of the machine as quickly as possible� Because
di�erent functional units may take di�erent amounts of time to complete� individual instructions
may complete in a di�erent order than which they were issued�



FRED� AN ARCHITECTURE FOR A SELF�TIMED DECOUPLED COMPUTER 	

����� The Instruction Window

An Instruction Window 
IW� is used to bu�er incoming instructions and to track the status of
issued instructions ���	� A register scoreboard is used to avoid all data hazards� The IW is a set
of internal registers located in the Dispatch unit which tracks the state of all current instructions�
Each slot in the IW contains information about each instruction such as its opcode� address� current
status� and various other parameters� As each instruction is fetched� it is placed into the IW� New
instructions may continue to be added to the IW independently� as long as there is room for them�
The scoreboard is also maintained in the Dispatch unit� and is cleared when results arrive at the
Register File�

Instructions are issued from the IW in program order when all their data dependencies are sat�
is�ed 
including WAW dependencies�� Issuing an instruction does not remove it from the IW�
Instead� instructions are removed from the IW only after they have completed successfully� Each
issued instruction is assigned a tag which uniquely distinguishes it from all other current instruc�
tions� When an instruction completes� it uses this tag to report its status to back to the IW� The
status is usually an indication that the instruction completed successfully� but is also used to report
exceptions� Instructions signal completion as soon as the functional unit which processes them has
generated a valid result� even though that result may not yet have reached its �nal destination�
When an instruction is unsuccessful� it returns an exception status to the IW� which then begins
exception processing� Instructions which can never cause exceptions do not have to report their
status� and can be removed from the IW when they are dispatched� Because instructions may
complete out�of�order� recoverable exceptions can cause unforseen WAW hazards� The Instruction
Window contains enough information to resolve these issues�

The Dispatch unit uses the Instruction Window and scoreboard to determine when to issue new
instructions to the rest of the machine� When instruction issue occurs� the required operands are
requested from the Register File 
possibly through a FIFO�� and the instruction is issued to the
EX unit 
also possibly through a FIFO��

����� Branch Instructions

Flow control instructions are signi�cantly a�ected by the degree of decoupling in Fred� By
decoupling the branch instructions into an address generating part and a sequence change part�
we gain the ability to prefetch instructions e�ectively� Fred does not require any special external
memory system� but it can provide prefetching information which may be used by an intelligent
cache or prefetch unit� This information is generated by the Branch unit when branch target
addresses are computed� and is always correct�

The instructions for both absolute and relative branches compute a �
�bit value which will
replace the program counter if the branch is taken� but the branch is not taken immediately�
Instead� the branch target value is computed by the Branch unit and passed back to the Dispatch
unit� along with a condition bit indicating whether the branch should be taken or not� These data
are consumed by the Dispatch unit when a subsequent �doit� instruction is encountered� and the
branch is either taken or not taken at that time� Although this action is similar to the synchronous
concept of squashing instructions� Fred does not convert the doit instructions into NO�OPs� but
instead removes them completely from the main processor pipeline�

Any number of instructions 
including zero� may be placed between the branch target compu�



FRED� AN ARCHITECTURE FOR A SELF�TIMED DECOUPLED COMPUTER 


tation and the doit instruction� From the programmer�s view� these instructions do not have to
be common to both branches� nor must they be undone if the branch goes in an unexpected way�
The only requirement for these instructions is that they not be needed to determine the direc�
tion of the branch� The branch instruction can be placed in the current block as soon as it is
possible to compute the direction� The doit instruction should come only when the branch must
be taken� allowing maximum time for instruction prefetching� as shown in Figure �� Because the
doit is consumed entirely within the Dispatch Unit� it will take e�ect as soon as the branch target
data is available� allowing instructions past the branch point to be loaded into the IW before the
prior instructions have completed 
or even issued�� This lets the IW act as an instruction prefetch
bu�er� but it is always correct� never speculative� Figure � shows an example� based on the code
in Figure �B�

This two�phase branch model allows for a variable number of �delay slots� by allowing an arbi�
trary number of instructions to be executed between the computation of the branch target and its
use� It also allows other interesting behaviors such as achieving the e�ect of loop unrolling without
increasing code size� This can be accomplished by computing several branch targets at one time
and putting them in the branch queue before executing the loop code�� To avoid extra instruction
fetches� the doit instruction can be implicitly inserted into the instruction stream by setting a bit
available in the opcode of any other instruction�

Loop�

addu r��r���

mul r��r��r�

addu r��r���

subu r��r���

bcnd gt�r��Loop

doit

A� Simple ordering�

Loop�

subu r��r���

bcnd gt�r��Loop

addu r��r���

mul r��r��r�

addu�d r��r���

B� Reordered� with implicit doit�

Figure �� Two ways of ordering the same program segment�

��� Independent Functional Units

The Distributor is responsible for routing instructions to their proper functional unit� It takes
incoming instructions and operands� matches them up where needed� and routes instructions to
appropriate functional units� There are �ve independent functional units in the prototype imple�
mentation of Fred� Logic� Arithmetic� Memory� Branch� Control� Each functional unit is responsible
for a particular type of instruction shown in Figure �� Instructions arrive in program order but may
complete in any order because the pipelines are self�timed� and the functional units themselves may
take more or less time to execute a given instruction� The Distributor and its associated functional
units collectively make up the Execution unit 
EX��

Each of the functional units may produce results that are written back to the register �le directly�

�This trick may not be of much use� but it sounds interesting�



FRED� AN ARCHITECTURE FOR A SELF�TIMED DECOUPLED COMPUTER ��

Tag Status Instruction Loop�
� Issued subu r��r��� �

 � bcnd gt�r��Loop �
� � addu r��r��� �
� � mul r��r
�r� �
� � addu r
�r��
 �
� � doit �

A� Branch target not yet available�

Tag Status Instruction Loop�
� Issued mul r��r
�r� �
� � addu r
�r��
 �
� � subu r��r��� 

� � bcnd gt�r��Loop 

� � addu r��r��� 

�� � mul r��r
�r� 

�� � addu r
�r��
 

�
 � doit 


B� Branch target consumed�

Figure �� Prefetching by the Instruction Window� A� Prefetching must wait until the branch target
is available� B� When the target is available� the doit is consumed and prefetching continues with
the next iteration of the loop�

or reenter the register �le through the R� Queue� In addition� forwarding may take place in each
functional unit in a manner similar to that found in synchronous processors� The only di�erence is
that in a synchronous processor the forwarded data will stay in the forwarding register only until
the following clock tick� In a self�timed processor� data could stay in the forwarding register until
the next instruction that wanted that data removes it� Although this is not implemented in the
current version of Fred� this could be managed easily either by hardware or software 
compiler��

The Memory subunit is treated as just another functional unit� The only di�erence is that the
Memory unit sometimes produces data that is written to the data memory rather than the Register
File�

��� Register File

The Register File responds to requests from the Dispatch unit for operands which it delivers
through a FIFO to the EX unit� These operands are paired with instructions and passed to the
appropriate functional unit� Because the instructions are issued in program order� there is no
matching required to determine which operands should be paired with which instructions� They
emerge from the FIFO queues in the correct sequence�

On the incoming side� the Register File accepts results from each functional unit that produces
data� These results are accepted independently from each functional unit and are not multiplexed
onto a common bus� Data hazards are prevented by the scoreboard and the Dispatch unit� which
will not issue an instruction until all its data dependencies are satis�ed� so there will never be
con�icts for a register destination� The Register File clears the associated scoreboard bit when
results arrive at a particular register� Instruction results may also be written into the R� Queue
as described earlier� but there is no actual register associated with the R� Queue� Instead� the
Dispatch unit clears the scoreboard bit for register r� when the producing instruction completes
successfully�



FRED� AN ARCHITECTURE FOR A SELF�TIMED DECOUPLED COMPUTER ��

� Exceptions

Fred uses an Instruction Window ���	 in the Dispatch unit to maintain the status of all current
instructions� Exceptions are functionally precise� The exception model seen by the programmer
is not that of a single point where the exception occurred� Instead� there is a set of instructions
which were in progress� The hardware guarantees that this set 
unless empty� will consist only of
instructions which either faulted or which have been fetched but not yet issued when the exception
occurred� The instructions in this set are a subset of a sequential portion of the dynamic program
instructions� The missing elements are those instructions which completed successfully out of order�
and so should not be re�issued� Because the total state of the processor is not available at one known
time 
such as on a clock tick�� the details of the exception handling are somewhat complicated� but
no more so than for a synchronous processor that is deeply pipelined and may issue or complete
instructions out of order� This is described in more detail elsewhere ���	�

� Conclusions

Self�timed implementation seems to be a natural match for decoupled computer architectures�
The ability to allow di�erent parts of the machine to proceed at their own rate� and the natural
use of self�timed FIFO queues� enhances the decoupling due to the architecture� The current
prototype of Fred is in the form of a detailed VHDL model� This model is completely functional
including the out�of�order instruction completion and functionally precise exceptions� We have a
Fred assembler and a translator to convert ����� assembly language into Fred�s instruction set�
so we can run compiled C programs through the VHDL simulation� We are in the process of
investigating tradeo�s involved in queue depth� decoupled branches� functional unit performance�
out�of�order instruction completion� exception handling� and other features of the architecture�

References

�� Erik Brunvand� Using FPGAs to prototype a self�timed computer� In International Workshop
on Field Programmable Logic and Applications� Vienna University of Technology� September
���
�


� Erik Brunvand� The NSR processor� In Proceedings of the ��th Annual Hawaii International
Conference on System Sciences� pages �
������ Maui� Hawaii� January �����

�� Wesley A� Clark and Charles A� Molnar� Macromodular system design� Technical Report 
��
Computer Systems Laboratory� Washington University� April �����

�� A�L� Davis� The architecture and system method for DDM�� A recursively structured data�
driven machine� In �th Annual Symp� on Computer Architecture� April �����

�� Matthew Farrens� Pius Ng� and Phil Nico� A comparison of superscalar and decoupled ac�
cess�execute architectures� In Proceedings of the ��th Annual ACM�IEEE International Sym�

posium on Microarchitecture� Austin� Texas� December ����� IEEE�ACM�

�� S� B� Furber� P� Day� J� D� Garside� N� C� Paver� and J� V� Woods� A micropipelined ARM�
In Proceedings of the VII Ban� Workshop	 Asynchronous Hardware Design� Ban�� Canada�



FRED� AN ARCHITECTURE FOR A SELF�TIMED DECOUPLED COMPUTER ��

August �����

�� J� R� Goodman� J� Hsieh� K� Liou� A� R� Pleszkun� P� B� Schechter� and H� C� Young� PIPE�
A VLSI decoupled architecture� In ��th Annual International Symposium on Computer Archi�
tecture� pages 
��
�� IEEE Computer Society� June �����

�� Thomas R� Gross� John L� Hennessy� Stephen A� Przybylski� and Christopher Rowen� Measure�
ment and evaluation of the MIPS architecture and processor� ACM Transactions on Computer

Systems� �
���

��
��� August �����

�� John Hennessy� Norman Jouppi� Forest Baskett� Thomas Gross� and John Gill� Hard�
ware�software tradeo�s for increased performance� In Proceedings of the Symposium on Archi�
tectural Support for Programming Languages and Operating Systems� pages 
���� ACM� April
���
�

��� Manolis G� H� Katevenis� Reduced Instruction Set Computer Architectures for VLSI� MIT
Press� �����

��� Alain Martin� Steven Burns� T�K� Lee� Drazen Borkovic� and Pieter Hazewindus� The design
of an asynchronous microprocessor� In Proc� CalTech Conference on VLSI� �����

�
� Motorola� MC

��� RISC Microprocessor User�s Manual� Prentice Hall� Englewood Cli�s�
New Jersey ����
� second edition� �����

��� Alexandru Nicolau and Joseph A� Fisher� Measuring the parallelism available for very long in�
struction word architectures� IEEE Transactions on Computers� C���
������������ November
�����

��� Nigel Charles Paver� The Design and Implementation of an Asynchronous Microprocessor�
PhD thesis� Unversity of Manchester� �����
http�		www�cs�man�ac�uk	amulet	publications	thesis	paver�
�phd�html

��� William F� Richardson and Erik Brunvand� The NSR processor prototype� Technical Report
UUCS��
��
�� University of Utah� August ���
�
ftp�		ftp�cs�utah�edu	techreports	����	UUCS��������ps�Z

��� William F� Richardson and Erik Brunvand� Precise exception handling for a self�timed proces�
sor� To appear in �

� International Conference on Computer Design	 VLSI in Computers �

Processors� October �����

��� Robert F� Sproull and Ivan E� Sutherland� Counter�ow pipeline processor architecture� Tech�
nical Report SMLI TR����
�� Sun Microsystems Laboratories� Inc�� M�S 
����� 
��� Garcia
Avenue� Mountain View� CA ������ April �����
http�		www�sun�com	smli	technical�reports	���
	smli�tr��
��
�ps

��� Ivan Sutherland� Micropipelines� Communications of the ACM� �

����
������ �����

��� H� C� Torng and Martin Day� Interrupt handling for out�of�order execution processors� IEEE
Transactions on Computers� �

����

��
�� January �����



FRED� AN ARCHITECTURE FOR A SELF�TIMED DECOUPLED COMPUTER ��


�� David W� Wall� Limits of instruction�level parallelism� WRL Technical Note TN���� Digital
Western Research Laboratory� ��� Hamilton Avenue� Palo Alto� CA ������ December �����


�� Wm� A� Wulf� The WM computer architecture� Computer Architecture News� ��
��� March
�����


