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Abstract

In order to interactively investigate large�scale 	D data sets� we propose an improved
hierarchical data structure for structured grids and an original hierarchical data struc�
ture for unstructured grids
 These multi�tiered implementations allow the user to
interactively control both the local and global density of the mesh
 Therefore� the
user can interactively re�ne areas of interest and decimate peripheral regions
 By
controlling the density of the mesh throughout the volume� the user controls where
computational cycles are spent and gains a deeper insight into the geometric structure
of the mesh
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� Introduction

Computational scientists and engineers are producing ever larger sets of volume data

While the speci�c application problems encountered by computational scientists vary
widely across �as well as within
 disciplines� the computational structure of the col�
lected data varies remarkably little and is usually represented in the form of discrete
approximations of scalar and vector �elds
 In general� the scalar and vector �eld data
are measured or computationally simulated at discrete points throughout a volume

The main spatial variance among these volume data sets is typically characterized by
whether the grid is structured or unstructured
 Interactively visualizing the geometri�
cal structure of underlying models and simulation results for large�scale 	D problems
on both structured and unstructured grids remains a signi�cant challenge


Interactively visualizing models and simulation results presents both an aesthetic and
a computational challenge
 These challenges are especially important in visualizing
data on unstructured grids� when users often wish to view the mesh structure in
order to con�rm mesh re�nement within regions of high gradients
 The aesthetic
element of the visualization is important for more than merely aesthetic reasons� the
mere rendering of myriads of unstructured mesh elements on a �D screen is generally
not informative
 On the computational side� the time required to explore such large
solution spaces has traditionally been prohibitive to real�time interaction


The ability to perform mesh and volume visualization interactively a�ords the user
a global� high�level view of the solution space and then allows her�him to probe
more deeply in to selected areas of interest
 This notion of �closing the loop� gives
the user more direct control of the calculations being performed
 By employing a
�computational steering� paradigm� the user is no longer required to wait for lengthy
calculations to complete before seeing results
 Instead� the user can guide the compu�
tation by feeding back parameter changes to the system based on initial� often partial
results from a larger calculation ����
 Integrating the user into the computational vi�
sualization process means faster convergence time for the user to achieve the desired
results� and� ultimately� increased productivity


A variety of volume visualization techniques exist for probing 	D �elds and vary based
on the type of �eld being queried �i
e
 scalar� vector� tensor� or a combination of
these
� and the type of information being sought
 Some examples of these techniques
include isosurface extraction� streamline tracing� and volume rendering
 In this paper�
we focus our attention on the isosurfacing algorithm� comparing performance times of
this volume visualization methods implemented with and without our data structures
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In addition to visualizing volumes� our data structures are used for interactively vi�
sualizing large�scale� unstructured meshes
 For this challenge we focus solely on the
node locations and connectivities �i
e
 the elements
 of unstructured �elds� indepen�
dent of the values stored at those nodes
 Scientists are interested in probing the
structure of meshes� because scientists have increasingly found that solution accuracy
is inextricably tied to mesh discretization
 For example� in the �nite element �FE

method� the error across a tetrahedral element is often directly proportional to the
gradient across that element
 In order to reduce the total error in an FE solution�
one can re�ne the mesh in the areas of high gradients� and the system can then be
re�solved ��� �� 	� ��
 As mesh element size decreases� the result is guaranteed to
converge to the analytic solution ���
 Unfortunately� the mesh re�nement techniques
most frequently used by scientists often yield widely varying densities within the sup�
port mesh� thereby creating wide discrepancies in the accuracy of the visualization

We have found� however� that by storing the mesh hierarchically� we can allow the
user to interactively re�ne and de�re�ne the mesh locally as well as through local
regions of interest
 We will show that this interaction greatly increases the clarity of
the mesh and decreases the time associated with understanding the structure of the
mesh
 Furthermore� we will compare� both quantitatively and qualitatively� our mesh
visualization techniques with others currently in use


� Background

Historically� a common method for interactively visualizing large volume data sets
has been to operate on just a subset of the domain at a time
 This reduction serves
two primary functions
 First� it limits the amount of computation being performed�
because the algorithm ignores areas outside of the reduced domain
 Second� it reduces
the amount of �screen clutter� created when the results are rendered to the display

Examples of these types of domain reducing algorithms range from clipping plane
and seeding algorithms ���� to complete automatic re�nement in regions containing
information of interest ���
 Clipping planes and seeding algorithms localize the region
of operation and allow tight user control over the spatial domain
 In contrast� com�
pletely automatic re�nement limits the computational domain� but does not support
a means for interactively constraining where work is done spatially
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��� Structured Grids

The complete automatic re�nement algorithm is an isosurfacing algorithm which was
introduced by Wilhelm and Van Gelder in ���� ���
 The strength of this algorithm
comes from its e�cient use of octrees to store the volume data
 The hierarchical
nature of octree space decomposition enables the algorithm to trivially reject large
portions of the domain� without having to query any part of the subtree within the
rejected region
 The original octree data structure was proposed independently at
approximately the same time by Hunter et
al
 ���� and has found application areas in
mesh generation ���� modeling ��� and rendering ����� to name just a few
 In Wilhelm
and Van Gelder�s implementation� their Branch�On�Need Octree �BONO
 algorithm
stores the maximumand minimumscalar values of the region spanned by each subtree
in the region�s parent node
 The algorithm can then recursively traverse the tree�
only isosurfacing those subtrees with ranges containing the value being sought
 They
report overall speed�ups between �	�� and 	��� when comparing their algorithm to
the marching cubes isosurface extraction algorithm ����
 In this paper� we present
a further extension to the octree data structure
 Our extension allows the user to
interactively control the traversal depth within di�erent regions of the tree
 With this
improved octree� the user can now interactively control how detailed the extracted
isosurface will be locally within the domain� and can thus reduce the amount of time
spent computing outside the area of interest


��� Unstructured Grids

The second data structure we have implemented is a counterpart to the octree data
structure
 This new structure applies data hierarchies to unstructured �elds
 This
structure has enabled us to address two di�cult problems� unstructured mesh visu�
alization and unstructured volume visualization
 The �rst problem arises solely from
the unstructured nature of the geometric mesh� and trying from the need to visualize
the structure of the grid elements in a way that is meaningful to the researcher
 For
small meshes containing less than a couple of dozen elements� this problem does not
become an issue
 All of the elements can be rendered to the screen� and the user can
inspect the mesh with little or no di�culty
 But when the mesh expands to hundreds�
thousands� or even millions of elements� simply rendering all of these cells no longer
conveys practical information
 Current research in this area has focused on meth�
ods to limit the domain of the mesh� operating on only a subsection of the volume
at a time
 Examples of this type of method include clipping planes and seed�grow
algorithms ���
 In the clipping planes algorithm� elements �or parts of elements
 are

	



displayed only if they fall within the volume created by the planes
 The seed�grow
algorithm allows the user to choose a seed element from the mesh and a depth param�
eter� and then renders all elements connected within that depth of the seed element

These algorithms are very useful for exploring small local regions of large meshes�
but they fail to convey a sense of the global structure
 The second di�cult problem
associated with unstructured �eld visualization is that of how to interact with large
�elds using volume visualization algorithms
 Here again it is possible to extract some
smaller subregion from the �eld� and accordingly to operate only on that local parti�
tion� but the same �tunnel�vision� problem is encountered here
 The user sacri�ces
any global view of the problem� and is allowed to interact only with small subsections
of the �eld at a time


In this paper� we propose a new hierarchical data structure for storing unstructured
�elds
 This new structure contains a range of resolutions of the original mesh� with
lower levels of the hierarchy containing more re�ned representations
 This implemen�
tation allows the user to interact with and visualize the entire domain at varying
levels of resolution� and to move seamlessly between those levels for rapid exploration
of the �eld


� Methods

��� Octrees

We have extended the original octree data structure to contain a �LEAF� bit at each
node
 This extension provides the user control over how deeply an algorithm will
search a path of the octree for data
 The construct works in this way� for every
path from the top of the octree to the bottom� exactly one of the visited nodes will
have a LEAF �ag set
 This new construct serves many applications
 For example� a
user isosurfacing a large �eld would often �nd it useful to get a general sense of the
topology of the surface through the �eld before generating the surface in full detail

In this way� the user can interactively isosurface even a very large �eld
 Furthermore�
the user can select a very �ne discretization level �i
e
 move the LEAF bits down in
the octree
 in areas of determined interest� and select a lower discretization level �i
e

move the LEAF bits up in the octree
 in areas that are not as critical
 This gives the
user �ne�tuned control over where the �eld operator �i
e
 isosurfacing algorithm
 is
spending its compute time
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An attractive feature of this data structure is that algorithms such as isosurfacing
need not recompute in areas that have not changed as the user locally re�nes and de�
re�nes the structure
 We can cache the isosurface portions generated through regions
and recompute them only when that region changes or when the threshold value is
changed
 This allows the user to deeply probe local regions without spending time
to recompute old information


Several convenient methods have been added to the octree data structure to allow
the user to control the LEAF bits in the tree
 These methods give the user the ability
to push all of the bits to the top� to push all of the bits to the bottom� to move
all of the bits up or down one level� and to move all of the bits in a speci�c region
up or down one level
 All of these operators are implemented in such a way as to
maintain the integrity of the structure �i
e
 there is always exactly one LEAF bit set
along any path in the tree

 They are controlled via a simple user interface consisting
of a cross�hair widget ���� and a set of Tcl�Tk push�buttons ��	�
 Fig
 � shows the
SCIRun ���� visual programming map constructed for this algorithm
 The cross�hair
widget can be interactively moved through the �eld to identify regions of the octree�
and the buttons are linked to method callbacks which move the LEAF bits
 All of the
interactions are very fast since they involve only testing and setting bits� but formally
the global operations are O�n
� and the local operations are O�log n



There is some overhead associated with using an octree representation of a �eld as
opposed to a generic 	D array
 To build the octree takes O�n log n
 time� but this
structure needs to be built only once and can then be stored as a persistent object

Accessing the value at a point in the �eld is slower with the augmented octree� now
requiring O�log n
 time� instead of just the constant time required to access a �eld
value from an array or from an intelligently implemented non�augmented octree

Octrees can also be a memory liability if they are not stored correctly
 Wilhelm and
Van Gelder showed that e�ciently implemented octrees can take up less that ���
of the memory required to store the �eld as a straight 	D array
 However� because
we store the eight corner values in each node� we fail to show savings in our memory
consumption
 Furthermore� memory overhead is required to store the LEAF bit at
each node� as well as to store all of the pointers to the children nodes
 In the end�
our structure requires approximately twice as much memory as the generic array
structure
 The �nal disadvantage we have found with utilizing the augmented octree
data structure is that the isosurfaces created across regions discretized to di�erent
grades can be geometrically discontinuous
 These discontinuities are generally small
jumps across the disparate regions� but they are noticeable and should be mentioned�
if for no other reason than to avoid confusion
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Figure �� SCIRun Visual Programming Map
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��� Multimesh

Our solution to the problem of managing large unstructured �elds for interactive
visualization is to break the original mesh into a hierarchy of sub�meshes which rep�
resent some increasing percentage of the original mesh
 We call this data structure a
�multimesh
� A similar technique� detail elision �progressive re�nement
� has existed
for a long time in computer graphics for representing objects in a scene at di�erent
levels of detail based on their distance from the viewer
 The seminal work on this
topic was conducted by Clark ���� and continues to be used today in progressive re�
�nement for architectural walk�throughs and other interactive applications ����
 For
our multimesh data structure� the bottom level of the multimesh hierarchy contains
the original mesh� with all of its nodes and connectivities
 Each level up contains a
subset of the nodes on the level below and a new set of connections for those nodes

At the highest level there are just a few nodes left in the mesh
 Once this data
structure has been generated from the original mesh� the user can interactively move
between the levels of the hierarchy to visualize the mesh structure and �eld data

E�ectively� the user now has multiple representations of the original mesh� each with
a di�erent number of nodes and elements
 The coarsest representations might be used
for gaining a global sense of the �eld� whereas more detailed levels would be useful for
viewing the exact behavior of the mesh
 Since the multimesh is stored as an array of
independent meshes� it is simple to extract a mesh from the hierarchy
 Furthermore�
it is possible to then pass the extracted mesh into a �lter if the user wants to interact
with a localized region of the �eld


The major issues associated with constructing a multimesh data structure involve
deciding which subset of nodes will be contained in each higher level and determining
the connections of those nodes
 A simple solution is to decide on a �survival percent�
age� that indicates what percentage of the nodes on a given level will exist at the
level above� and then randomly selecting enough nodes to �ll that percentage
 This
method has the attractive property that the mesh is evenly de�re�ned� or decimated�
throughout
 Areas that were very �nely meshed to begin with maintain a proportion�
ately high percentage of the nodes at every level� and the global structure of the mesh�
though coarser� is maintained at all levels
 For example� imagine we are given an un�
structured mesh with ������� nodes� and are asked to create a multimesh hierarchy
with a ��� survival percentage and � hierarchical levels
 The resulting data structure
would contain an array of meshes� the sixth mesh containing all ������� nodes� the
�fth containing approximately ������ nodes� the fourth approximately ������ nodes�
the third approximately ������ nodes� the second approximately ����� nodes� and
the �rst approximately 	���� nodes
 All of these meshes will have similar node den�
sities� and all will approximate the original mesh� but the variance in the number of
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nodes �and correspondingly the number of elements
 from one level to another makes
the lower levels of the mesh interactive for volume visualization� whereas the original
mesh may not have been


We have improved on this method to allow the user to interactively select which areas
of the mesh are comparatively more important� and to skew the node survival percent�
ages such that important nodes have a greater chance of surviving to the next level

We have accomplished this by building an �importance weighting �eld� in 	�space�
where each node can look up its importance based on its geometric location
 The user
interactively places point sources into the scene and de�nes the �charge� and �fall�o�
rate� associated with each of these sources
 If a source has a large positive charge
and a high fall�o� rate� the nodes in its immediate vicinity have very high chances
of surviving to lower levels
 Alternatively� a source with a small negative charge and
low fall�o� rate can be placed in a region of the mesh which is less important� and the
nodes in that region will be less likely to survive to lower levels
 In this way the user
gains local� as well as global control of the mesh decimation process� and the con�
structed multimesh will enable the user to more quickly understand the unstructured
�eld
 However� it turns out that it is desirable to make the system somewhat random�
in order to remove a uniform sampling of the nodes
 To accomplish this we associate
a random weighting value with each node
 In a non�random system� the nodes with
the lowest weightings would be removed at each higher level in the structure
 In con�
trast� a completely random system would ignore the node weightings altogether and
randomly choose which nodes to remove
 The compromise we implemented between
these extremes allows us to remove nodes based on a linear combination of a node�s
actual weighting and it�s random value
 The linear combination is based on the chaos
bias value b between � and �� such that n � b � r� ��� b
 �w
 When the chaos bias
is � the node levels are completely dependent on the source charges in the scene� and
when the chaos bias is � the node levels are determined completely randomly


There are generally two ways to build the mesh connectivities for each level of the
hierarchy � top down� or bottom up
 Bottom up construction requires �rst copying
the existing mesh into the bottom level of the hierarchy� and then iteratively removing
the nodes and re�meshing as we construct higher levels
 The di�culty raised is that
of how to re�mesh areas of the mesh when nodes are removed
 Yu implemented an
algorithm for local mesh dere�nement ����� and his methods are very successful if
boundary nodes are never removed� the domain is convex� and the original mesh is
Delaunay
 However� as this is not always the case �especially with regard to the
removal of boundary nodes
� we have implemented a top�down construction
 For this
construction� we ignore the original mesh connectivities� and� adding nodes in order
of importance� construct the levels of the mesh from the top down
 Each node is
inserted via a Watson�s style algorithm ����� and as a result remains Delaunay at all
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times
 The top�down method is considerably faster than the bottom�up approach�
requiring on the average O�n log n
 time to build all levels of the multimesh


The multimesh data structure exploits the redundancy of nodes in multiple levels
of the hierarchy in two ways� by storing only one copy of each node� and by stor�
ing pointers rather than full node structures in each mesh
 Unfortunately� there is
not a corresponding feature for connectivities� and each mesh in the hierarchy must
maintain its own list of element connectivities
 The space requirements for a multi�
mesh depend very much on the depth of the hierarchy and the �global survival rate�
parameters


The primary weakness of this method� as we have implemented it� is that within
the use of the method non�Delaunay meshes are currently destroyed
 We have no
mechanism to account for or respect the topology of non�convex meshes
 If a fast�
reliable version of such a mechanism were found or developed� the above multimesh
creation algorithm could be easily rewritten in a bottom�up manner� and the resulting
meshes throughout the hierarchy would maintain the original non�Delaunay structure

This is an area for future work


� Results

We have applied our improved octree data structure to isosurface extraction of a
magnetic resonance image �MRI
 data set
 The original scan is of a patient�s head
and contains 	� axial slices with ��� � ��� pixels per slice
 We resampled this data
to construct a 	� � 	� � 	� grid
 We used this data set to explore our isosurfacing
algorithm
 All of our timings were done on an Indigo� Extreme with an R����
processor and ���MB of memory


We extracted an isosurface from the volume corresponding to the value of skin
 Our
algorithm required a set�up time of 	
�� seconds to construct the octree data struc�
ture
 This set�up time is somewhat negligible though� since the octree only needs to
be computed once
 We then applied the isosurfacing algorithm for di�erent levels of
mesh re�nement� and compared our results to those generated via a marching cubes
style algorithm ����
 Marching cubes required �
�� seconds to extract the isosurface

Wilhelm and Van Gelder�s BONO algorithm ��� was somewhat faster� requiring only
�
�	 seconds to execute
 The execution time for our algorithm varied linearly� depend�
ing on how deeply the mesh was discretized
 The isosurface in Fig
 � was generated
from the completely re�ned octree� and also required �
�	 seconds
 As an example

�



Figure �� Fully Re�ned Octree Isosurface

of locally de�re�ning peripheral regions of the mesh� we focus our attention on the
side� front side of the head� and de�re�ne peripheral regions
 We were able to reduce
the isosurfacing time by nearly half� to �
�� seconds� after locally de�re�ning the back
half of the head as seen in Fig
 	
 Further reducing the domain� we de�re�ne the left
side of the head� and are now able to isosurface the �eld in �
�� seconds


Next� we applied the multimesh isosurfacing and mesh visualization algorithms to a
simulated voltage �eld computed through the same cranial domain described above

We constructed this �eld by simulating the e�ect of a dipole source located in the right
frontal lobe
 The charge and orientation of the dipole were consistent with experi�
mental neural activity recorded from epilepsy patients during seizures
 To construct
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Figure 	� Half�Re�ned Octree Isosurface
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the anatomical domain for the simulation� the MRI data set was �rst segmented into
distinct material regions
 These regions were then discretized into �	����	 nodes and
����	�	 tetrahedral elements� which form the support structure for the �eld
 After the
mesh was constructed� Poisson�s equation for electrical conduction was approximated
using the FE method
 This simulation results in scalar and vector values� which are
subsampled at ���� nodes
 We used this simulation data to test our multimesh vi�
sualization methods
 The right� front side of the head is again chosen as the region
of interest� and we generate � levels of mesh re�nement for our multimesh hierarchy

Isosurfacing the fully re�ned �eld required �
�� seconds of CPU time� and the mesh
at this level is too dense to yield any insight to the viewer
 Switching to a less re�ned
version of the mesh� we are able to gain real intuition to the mesh structure� and to
reduce our isosurfacing time to �
�� seconds� with little change in the quality of the
surface


� Conclusions

Through original and improved hierarchical data structures� we have been able to
substantially improve the interactivity of mesh and volume visualization
 These data
structures allow the user to identify regions of interest and then interact with the
visualization algorithms to constrain work to be done only in those regions


There are many opportunities to further improve the data structures that we have
implemented
 Speci�cally� we intend to implement Wilhelm and Van Gelder�s octree
architecture� which relies on maintaining full nodes at the bottom of the octree and
partial nodes at the top
 This restructuring provides for fuller trees with ultimately
fewer nodes
 In addition� we would like to incorporate their hashing scheme for
visiting nodes during isosurfacing to further improve our performance


Based on the success we found applying our hierarchical data structures to isosurface
extraction� we plan to extend these data structures to more volume visualization
techniques
 We intend to integrate both hierarchical data structures into streamline
tracing and volume rendering algorithms
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