
Compositionally Modular Scheme

Guruduth Banavar� Gary Lindstrom

Department of Computer Science

University of Utah� Salt Lake City� UT �����

Abstract� We present a new module system for Scheme that supports a high degree of imple�

mentation reuse via module composition� The module system encourages breaking down a program

into the smallest possible individually meaningful modules� and recomposing them using a powerful

set of adaptation and combination mechanisms� Even hierarchical nesting is achieved via a com�

position operation� This module system is shown to support a stronger and more �exible notion of

compositionality and reuse than traditional class�based inheritance in object�oriented programming�

Finally� this module system is itself implemented by reusing a language independent OO framework�

Keywords� module systems� object�oriented programming� inheritance� Scheme�

� Introduction

Modularity is a fundamental facility for controlling complexity in large systems� via decomposition

and abstraction� In particular� software modules allow programmers to develop and maintain pieces

of a large system relatively independent of each other� However� decomposition alone does not

support reuse of software components� which is widely accepted to aid the e�cient construction of

large systems� For this� it is necessary to provide mechanisms for e�ective recomposition� by which

conforming modules can be composed to obtain other modules�

Compositional modularity is a model that supports a simple notion of modules along with a

powerful notion of their composition� In addition to meeting requirements of large�scale software

development such as encapsulation� separate development� and checking of inter�module conforma�

bility� the distinguishing goal of this model is to enable maximal reuse of software components� It

encourages breaking down software into the smallest possible individually meaningful units� then

recomposing them in various ways to get larger modules� Aspects of modules can be adapted in

several ways to make them suitable for composition in new ways�

In essence� compositional modularity distills� uni�es� and further advances many existing no�

tions of modularity� In particular� this includes varieties of class�based OO programming� in which

inheritance is the primary mechanism for implementation composition to create new classes �mod�

ules�� Traditionally� OO inheritance is a composite notion� involving module extension� attribute

rebinding� encapsulation� static binding� etc� In contrast� individual aspects of inheritance are

achieved in our model using separate operations� which can be used in combination to emulate

�Contact� e�mail� banavar�watson�ibm�com� Phone� �������������		� fax� �������������		


�



important varieties of composite inheritance� Beyond traditional inheritance� our model also sup�

ports a new notion of compositional nesting� whereby independently developed modules can even be

retroactively nested into conforming modules using a compositional embedding operation� Thus�

compositional modularity supports a stronger as well as a more 	exible notion of compositionality

and reuse than traditional OO inheritance mechanisms�

The 	exibility to emulate various notions of inheritance within a single model is itself advan�

tageous over traditional inheritance models� Users can choose the most appropriate inheritance

idiom for particular problems� Secondly� users have explicit and �ne control over the semantics

of module combination such as sharing and con	ict resolution� which they traditionally have little

control over�

We present the above module system within the context of a programming language named

Compositionally Modular Scheme� or CMS for short� CMS is an extension of vanilla Scheme 
��� In

the spirit of Scheme� CMS supports modules as �rst�class entities� and it is dynamic and interactive�

Also� the notion of modules and their instances have a clear denotational semantics based upon

record generators� described below� Although the model is presented here in the context of Scheme�

it is actually independent of the particular programming language within which it is embedded�

In the following section� we place our work in the context of existing work in module systems�

Section 
 introduces the basic concepts of the CMS module system and shows how CMS supports

the traditional requirements of modularity� Sections � and � show CMS�s ability to directly emulate

the important varieties of composition via OO inheritance� In Section �� we discuss CMS�s support

for module nesting� Finally� we sketch the implementation of CMS in Section � and conclude�

� Background and Previous Work

Traditionally� a module is understood as an environment for binding names to values� A module is a

namespace that explicitly provides �exports� names and requires �imports� other names� All names

in the environment are directly accessible within the environment itself� whereas names declared

public may be imported by others�

In contrast� a compositional module represents an abstracted environment� To understand this

notion� consider a parameterized module� A parameterized module abstracts over some subset

of names referenced within its environment� It can be instantiated into a concrete module by

supplying particular bindings for these abstracted names� Although simple� this technique allows

the module to be reused in many applicable situations� A compositional module takes this notion

of abstracting over names to its logical conclusion � it abstracts over all the names that can ever

be referenced from within its environment� This idea can be formalized as a closed record generator

�e� �s� fa� � v�� � � � � an � v
n
g

which is a record abstracted over its own self �denoted as s� as well as its surrounding environment�

e� Within the record� all names are accessed via the s or the e parameter� Such a structure is

instantiated into concrete modules by supplying it an environment and taking its �xpoint� The

crucial advantage of such an abstracted namespace� however� is that the s and e parameters can be

�



manipulated in many desirable ways before actually instantiating it into concrete namespaces� For

example� two such structures can be combined by appropriately composing their s parameters� or

one such structure can be embedded into another by supplying the e parameter of the former with

the s parameter of the latter� The reader is referred to 
�� �� for a development of the formalism�

This ability to manipulate the namespace enables a high degree of compositionality and reuse�

The design of CMS is based upon the above semantic notion of modules that goes back to record

calculi 
��� ��� Classes were modeled as record generators by Cook 
��� who also �rst introduced

some of the operators used here� Based on this� Bracha and Lindstrom in 
�� developed a suite

of operators to support sharing� encapsulation� and static binding� In this paper� we further

augment the above model with the notion of compositional nesting� enabled by the e parameter

of the previous paragraph� More importantly� we develop a consolidated notion of compositional

modularity� realize it as a new and realistic module system for Scheme� show how to emulate other

familiar composition mechanisms using this system� and illustrate typical programming styles and

idioms in the language�

Several module systems have been proposed for Scheme 
�� ��� ���� CMS is di�erent from these

systems in its explicit goal of supporting reuse via module composition� In CMS� interconnection of

modules is not done via import�export declarations� but rather by explicitly combining the modules

involved� possibly after adaptation� �One simple notion of adaptation by renaming was supported in


����� Some previous systems �e�g� 
�� ���� support explicit interfaces� Although the CMS language

presented here does not support this� interfaces can be built up dynamically by specifying a module�s

public interface attributes and providing error stubs for methods� Subsequently� implementation

modules for this interface can be composed with it overriding the stub� and private attributes in

the resulting module encapsulated via a retroactive hiding operation�

In the context of Scheme� it is natural to support modules as �rst�class values� The uniformity

and expressive power obtained by using �rst�class modules was recognized in the early language

Pebble 

�� More recently� many other languages such as FX 
��� and Rascal 
��� also support

�rst�class modules�

Some Scheme implementations support �rst�class environments� which can be dynamically cre�

ated and extended� and expressions evaluated within them� The environment can also be captured

at any point by using a special primitive� such as the�environment� However� such simple notions

of environments are not very powerful � the only useful operation de�ned on them is eval�

A more powerful notion of �rst�class environments with re	ective operations has been proposed

in the language Rascal 
���� While CMS and Rascal are similar in that they support operations

on �rst�class abstractions� the approaches used are entirely di�erent� Rascal uses the approach

of re	ection� adaptation� and rei�cation of �rst�class environments� CMS uses the approach of

module combination and adaptation with the speci�c goal of reuse� Rascal does not support CMS�s

wide array of adaptation mechanisms such as name con	ict resolution� static binding� retroactive

encapsulation� and compositional nesting�

From one perspective� the operations provided by CMS can be viewed as �meta�level� primitives

to achieve various goals of module composition� In some respects� e�g� inheritance �and method

dispatch to some extent�� CMS provides the programmer 	exibility akin to that provided by meta�






object protocols �MOPs� 
���� without actually exposing the meta�architecture implementation to

direct user programming� However� a full�blown MOP gives the user much more control over various

other aspects of a language implementation as well� such as object layout�

Further comparisons with speci�c OO languages will be made as we proceed�

� Modules and Instances

In CMS� a module consists of a set of attributes �symbol�binding pairs� with no order signi�cance�

A module is a Scheme value that is created with the mk�module primitive� Modules can be ma�

nipulated� but their attributes cannot be accessed or evaluated until they are instantiated via the

mk�instance primitive� Attributes are of two kinds depending upon their mutability after instanti�

ation� mutable attributes are those that are bound to locations �similar to Scheme variables�� and

can store any Scheme value� and immutable attributes are those that are bound to Scheme values

in a read�only manner� i�e� they can be accessed but not assigned to� The syntax of the above

primitives is�

�mk�module hmutable�attribute�listi himmutable�attribute�listi�
�mk�instance hmodule�expri�

Expressions that create modules� such as the mk�module expression above� are notated as

hmodule�expri� Similarly� instance expressions are notated as hinstance�expri�

Attributes and Their Access� Immutable attributes correspond to the �xed �behavior� of the

abstraction represented by a module� whereas mutable attributes correspond to its �state�� Thus�

mutable attributes are bound to fresh locations upon module instantiation� and initialized with

the value associated with each attribute� Immutable attributes that are bound to procedures are

referred to as methods� borrowing from OO programming� Immutable attributes can also be bound

to other modules� called nested modules�

The values of mutable and immutable attributes are accessed with the primitive �attr�ref

hinstance�expri hattribute�namei harg�expr� i� � If the referenced attribute is a method� it is ap�

plied with the given argument�s� and its value returned� Mutable attributes are assigned with the

primitive �attr�set� hinstance�expri hattribute�namei hexpri��

A method can access the instance within which it is executing via the expression �self�� Thus�

a method can access a sibling attribute within the same instance as �attr�ref �self� hattr�namei��

However� encapsulated attributes �described below� cannot be accessed in this manner� For this� a

method uses the analogous primitive �self�ref hattribute�namei harg�expr� i� to access the values of

attributes� and �self�set� hattribute�namei hexpri� to assign to mutable attributes� of the instance

within which it is executing� Accesses via these primitives are called self�references� whereas accesses

via attr�ref and attr�set� are called external references�

Figure � �a� shows a module bound to a Scheme variable fueled�vehicle� The module has one

mutable attribute fuel� and two immutable attributes� empty�� bound to a procedure which checks

to see if the fuel tank is empty� and �ll� bound to a procedure that �lls the fuel tank of the vehicle

to capacity� The �ll method refers to an attribute capacity that is not de�ned within the module�

�



�a�

�de�ne fueled�vehicle �mk�module
��fuel ���
��empty� �lambda �� �� �self�ref fuel� ����
��ll �lambda �� �self�set� fuel �self�ref capacity�������

�b�

�de�ne encap�fueled�vehicle �hide fueled�vehicle ��fuel���
�describe encap�fueled�vehicle�

��
��empty� �lambda �� �� �self�ref �priv�attr�� ���� � � �

�c�

�de�ne capacity�module
�mk�module ��

��capacity 	��
�greater�capacity� �lambda �in� �� �self�ref capacity� �attr�ref in capacity�������

�de�ne vehicle �merge encap�fueled�vehicle capacity�module��

�d�
�de�ne new�capacity

�mk�module �� ��capacity 
�����
�de�ne new�vehicle �override vehicle new�capacity��

�e� �de�ne v	 �mk�instance vehicle��

Figure �� Basic module operations� �a� De�nition via mk�module �b� Encapsulation via hide �c� Combi�

nation via merge �d� Rebinding via override� �e� Instantiation via mk�instance�

but is expected to be the fuel capacity of the vehicle in gallons� In the vocabulary of traditional

module systems� the above module exports the three symbols fuel� empty� and �ll� and �implicitly�

imports one symbol capacity�

Encapsulation� The primitive hide returns a new module that encapsulates the given attributes�

�hide hmodule�expri hattr�name�list�expri�

In Figure � �b�� the hide expression creates a new module with an encapsulated fuel attribute

that has an internal� inaccessible name� This is shown by the describe primitive as �priv�attr��

It is important to note that such retroactive encapsulation shrinks the interface of a module�

As a result� functions expecting an instance of a particular module may not necessarily operate

correctly on an instance of the module subjected to a hide operation� This represents the widely

accepted notion of separating inheritance from subtyping 
���

Combination� The module capacity�module given in Figure � �c� exports two symbols� capacity�

that represents the fuel capacity of a vehicle in gallons� and greater�capacity�� bound to a procedure

that determines if the current instance has greater fuel capacity than the incoming argument�

The module fueled�vehicle can be combined with capacity�module to satisfy its import require�

ments� This can be accomplished via the primitive �merge hmodule�expr� i hmodule�expr� i�� The

new merged module vehicle in � �c� exports four symbols and imports none�

�



The primitive merge does not permit combining modules with con	icting de�ned attributes�

i�e� attributes that are de�ned to have the same name� If there are name con	icts� one can use

the operator �override hmodule�expr� i hmodule�expr� i�� In the presence of con	icting attributes�

override creates a new module by choosing the right operand�s binding over the left operand�s in

the resulting module� For example� the module new�capacity in Figure � �d� cannot be merged

with vehicle since the two modules have a con	icting attribute capacity� However� new�capacity can

override vehicle� as shown� This way� immutable attributes can be re�bound� and mutable attributes

can be associated with new initial values�

Abstract modules and interfaces� An attribute is called unde�ned if it is self�referenced �see

above�� or referenced from a nested module� but is not speci�ed in the module� If it is speci�ed� it

is called de�ned� A module is abstract if any attribute is left unde�ned� In keeping with dynamic

typing in Scheme� an abstract module can be instantiated� since it is possible that some methods

can run to completion if they do not refer to unde�ned attributes� It is a checked run�time error

to refer to an unde�ned attribute�

The role of abstract classes in OO programming is to specify the interface of a set of similar

classes� without specifying the implementation� As mentioned earlier� this can be done in CMS by

binding abstract methods with dummy error methods� and subsequently overriding these methods�

Adaptation� Thus far� we have mostly shown how CMS supports the notions of traditional

module systems� In this section� we go beyond traditional module systems� and describe operators

to adapt particular aspects of the attributes of existing modules� in order to make them suitable

for composition in new ways� Besides hide� there are four other primitives which can be used to

create new modules by adapting some aspect of the attributes of existing modules�

The primitive �restrict hmodule�expri hattr�name�list�expri� simply removes the de�nitions of

the given �de�ned� attributes from the module� i�e� makes them unde�ned�

The primitive �rename hmodule�expri hfrom�name�list�expri hto�name�list�expri� changes the

names of the de�nitions of� and self�references to� attributes in hfrom�name�list�expri to the corre�

sponding ones in hto�name�list�expri� Unde�ned attributes� i�e� attributes that are not de�ned but

are self�referenced� can also be renamed�

�describe �rename vehicle ��capacity� ��fuel�capacity���
��
��fuel�capacity 	����ll �lambda �� �self�set� fuel �self�ref fuel�capacity������

The primitive �copy�as hmodule�expri hfrom�name�list�expri hto�name�list�expri� copies the de�

�nitions of attributes in hfrom�name�list�expri to attributes with corresponding names in argument

hto�name�list�expri� The from argument attributes must be de�ned�

�describe �copy�as vehicle ��capacity� ��default�capacity���
��
��capacity 	���default�capacity 	����ll �lambda �� �self�set� fuel �self�ref capacity���

The primitive �freeze hmodule�expri hattr�name�list�expri� statically binds self�references to the

given attributes� provided they are de�ned in the module�

�



�describe �freeze vehicle ��capacity���
��
��capacity 	����ll �lambda �� �self�set� fuel �self�ref �priv�attr��� ���

Freezing the attribute capacity in the module vehicle causes self�references to capacity to be

statically bound� but the attribute capacity itself is available in the public interface for further

manipulation� e�g� rebinding by combination� �This e�ect is similar to converting accesses to a

virtual C�� method into accesses to a non�virtual method� The di�erence is that C�� allows

non�virtual methods to be in the public interface of a class � the general philosophy here is that all

public attributes are rebindable� or virtual� like in Smalltalk�� As shown above� frozen self�references

to capacity are transformed to refer to a private version of the attribute�

The above module manipulation primitives are applicative� in the sense that they return new

modules without destructively modifying their arguments� However� destructive versions of the

operators are also available� so that composite module operations can be expressed without com�

promising e�ciency by making unnecessary copies�

� Single Inheritance

Super�based single inheritance� The operators discussed above can be used in combination

to get composite e�ects of single inheritance of classes� such as in Smalltalk���� A class consists of

methods and encapsulated instance variables� which can be �extended� via inheritance� In CMS�

a similar notion of inheritable classes can be supported using a macro such as de�ne�class below�

�de�ne�class hnamei hsuperi hinst�var�listi hmethod�listi�

The macro speci�es the name of the class� its superclasses� a list of encapsulated instance

variables and their initializers� and a publicly visible list of methods� Figure � �a� shows a class

vehicle with no superclasses �indicated by the Scheme constant �f� with one encapsulated instance

variable fuel and three public attributes� This macro de�nition simply expands into a mk�module

expression followed by a hide operation on the fuel attribute�

Subsequently� a subclass land�vehicle of vehicle can be speci�ed as in box �b�� In this de�nition�

a new attribute wheels is added� and the display binding is overridden with a method that accesses

the shadowed method as �self�ref super�display�� To get the proper e�ect of rebinding of the display

method� this macro expands into the module expression in box �c�� explained below�

In this expansion� a module corresponding to the subclass� with attributes wheels and display�

is created� This module cannot simply override the superclass module� since in that case� the

superclass display method will be wiped out� Neither can the superclass� display method be renamed

to super�display before overriding� since in this case� self�references to display in the superclass will

also get renamed� The crucial aspect of single inheritance is to have the self�references in the

superclass access the rebound de�nitions of methods� Thus� the superclass� display method must be

copied as super�display before the override operation� The copied super�display attribute is �nally

hidden away to get a module with exactly one display method in the public interface� as desired�

CMS supports several primitives for determining various kinds of �meta�level� information

about modules and instances� For example� the macro de�ne�class above can �nd con	icting at�

�



�a�

�de�ne�class vehicle 
f
��fuel ���
��capacity 	��
��ll �lambda �� �self�set� fuel �self�ref capacity�� �self�ref display���
�display �lambda �� �format 
t �fuel � � a �capacity � a� �

�self�ref fuel� �self�ref capacity������

�b�

�de�ne�class land�vehicle vehicle
��
��wheels ��
�display �lambda �� �self�ref super�display�

�format 
t �wheels � � a � �self�ref wheels������

�c�

�de�ne land�vehicle
�hide �override �copy�as vehicle ��display� ��super�display��

�mk�module ��
��wheels ��
�display �lambda ��

�self�ref super�display�
�format 
t �wheels � � a � �self�ref wheels�������

��super�display���

Figure �� Super�based single inheritance� �a� Superclass� �b� Subclass� �c� Expansion of macro in �b��

tributes between modules by querying for the names of their public attributes� Similarly� the

self�references within a module and the module of an instance can also be queried for�

Pre�xing� The programming language Beta 
��� supports a form of single inheritance called

pre�xing which is quite di�erent from the single inheritance presented earlier� In pre�xing� a

superclass method that expects to be re�bound by a subclass de�nition uses a construct called inner

somewhere in its body� In instances of the superclass� calls to inner amount to null statements�

or no�ops� Subclasses can rede�ne the method� and in turn call inner� In subclass instances� the

superclass method is executed �rst� and the subclass� rede�nition is executed upon encountering

the inner statement�

The module operators of CMS can be used in combination to produce the e�ect of pre�x�based

single inheritance as well� This is shown pictorially in Figure 
� where super�based and pre�x�based

forms of inheritance can be contrasted side by side� Both forms essentially use the same sequence

of module operations� copy� override� and hide� The di�erence is that the superclass overrides

the subclass in the case of pre�x�based inheritance� as opposed to the reverse for super�based

inheritance� Indeed� this is the di�erence between pre�x�based and super�based forms of single

inheritance�

The general form of the module expressions shown in the �gure turns out to be a frequent idiom

in CMS� We shall refer to this form as the copy�override�hide idiom� The other common idiom in

CMS is the rename�override�hide idiom� Since the rename operation can be applied to both de�ned

�



METH METH

INNER

METH

METH’

METH

METH’

METH

(B)

INNER

INNER

METH

METH’

SUPER SUPER

DELTA

SUB

DELTA

SUB

(A)

Figure 
� Pictorial representation of single inheritance� �a� Super�based� �hide �override �copy�as SUPER

METH METH�� DELTA� METH��� �b� Pre�x�based� �hide �override �copy�as DELTA METH METH�� �rename

SUPER INNER METH��� METH���

and unde�ned �but self�referenced� attributes� the rename�override�hide idiom can be applied to

obtain a diverse number of useful e�ects� some of which are described in the following section�

� Multiple Inheritance

We have seen in the previous section how to express the creation of a subclass from a single su�

perclass and a speci�cation of the incremental changes� With multiple inheritance� there is the

additional problem of how to compose the superclasses by resolving con	icts and sharing attrib�

utes between them� Typically� a language supporting multiple inheritance makes available to the

programmer a small number of choices for attribute sharing and con	ict resolution� The advantage

of compositional modularity is that the programmer has numerous options for� and �ne�grained

control over� decisions taken while combining multiple modules�

Mixins and linearized multiple inheritance� A free�standing module that represents incre�

mental changes to existing modules is sometimes known as a �mixin�� since it can be combined

with any conforming module� A module representing the characteristics of a land vehicle� such as

that given in the inner mk�module expression in Figure � �c�� is an example of a mixin�

One might conceivably want to combine multiple mixins with a base abstraction� For example�

one can envision combining two mixins named land�vehicle�chars and sea�vehicle�chars with vehicle

to produce an amphibian module� To do this in CMS� all one must do is to cascade copy�override�

hide expressions in the desired order� thus performing an explicit linearization of all the modules

involved� and combining them in the manner of single inheritance�

Linearization of multiple superclasses is the standard technique for multiple inheritance used in

�



�a�

�de�ne color �mk�module
��color �white��
��set�color �lambda �new�color� �self�set� color new�color���
�display �lambda �� �format 
t �color � � a� �self�ref color�������

�b�

�de�ne car�class
�hide �merge �merge �rename color ��display� ��color�display��

�rename land�vehicle ��display� ��vehicle�display���
�mk�module ��

��display �lambda �� �self�ref vehicle�display�
�self�ref color�display������

��color�display vehicle�display��

Figure �� Multiple Inheritance with no common ancestors� �a� A color module� �b� Combining vehicle

and color into car�class�

languages such as Flavors and Loops� where the graph of ancestor classes of a class are linearized

into a single inheritance hierarchy� However� each of these languages speci�es a di�erent default

rule for the linearization of ancestor classes� For example� both these languages do a depth��rst�

left�to�right traversal of ancestor classes up to join classes� i�e� classes that are encountered more

than once� which get traversed on their �rst visit in Flavors and last visit in Loops� It has been

argued that currently used linearizations do not ensure that �the inheritance mechanism behaves

�naturally� relative to the incremental design of the inheritance hierarchy� 
��� It is perhaps more

desirable to let the programmer select the precedence order of superclasses as dictated by individual

applications� as in the case of CMS� �In the case of CLOS� a programmer with considerable expertise

can use the meta�object protocol of the language and adapt the default rule��

Multiple inheritance with no common ancestors� Consider the case of multiple superclasses

that are not linearized� and have no common ancestor� Say we have a module color de�ned as in

Figure � �a�� We can combine color with the module land�vehicle shown earlier into car�class� as

shown in box �b�� The method display that con	icts in the �superclasses� vehicle and color is

renamed in each and the superclasses are merged together� A new module that de�nes a display

method that calls the renamed display methods is then merged in to create the desired car�class�

This example can of course be extended to more than two superclasses� Also� if there are self�

references to con	icting attributes in superclasses� it may be more appropriate to copy and restrict

them before merging�

Multiple inheritance with common ancestors� In the case of superclasses with a common

ancestor� such as in the �diamond� problem of multiple inheritance� the situation gets more com�

plex� In this case� the attributes of the common ancestor are clearly con	icting in the superclasses�

Furthermore� there is the choice of inheriting either a single copy or multiple copies of mutable

attributes from the common ancestor� �This� of course� is the rationale for virtual and non�virtual

��



�override �override �rename land�vehicle ��fuel� ��land�fuel��
�rename sea�vehicle ��fuel� ��sea�fuel���

�mk�module ��
�display �lambda ��

�format � � � �self�ref land�fuel� �self�ref sea�fuel� � � � ������

Figure �� Multiple Inheritance with common ancestors� Creating an amphibianmodule from land�vehicle

and sea�vehicle� which have each inherited from vehicle�

base classes in C����

To illustrate� consider two modules land�vehicle and sea�vehicle which have each inherited from

the previously given vehicle module� Say we want to create an amphibian module that inherits

from these two modules� but needs two copies of the fuel attribute to model two di�erent kinds

of fuels for amphibians� This can be achieved with the expression in Figure �� In this example�

the fuel attribute is renamed for each type of module� The two modules are then overridden since

the con	icting attributes capacity and �ll are known to be identical� and the method display will

be overridden in the �nal module� A new display method that displays all the attributes in an

appropriate way is included in the �nal composition to get the desired module�

An important distinction between traditional inheritance and compositional modularity is il�

lustrated by this example� In systems of traditional inheritance where there are default rules for

resolving the diamond problem� a subclass might break if inheritance relationships� an implementa�

tion detail� are changed� This amounts to violation of encapsulation� In the case of compositional

modularity� problems of con	icts and sharing clearly manifest themselves� and compell the pro�

grammer to explicitly resolve them as the particular situation demands using introspection and

inheritance operators� For example� con	icts between superclasses can be inspected and super�

classes can be overridden in some appropriate order to share the attributes� Or� if multiple copies

of mutable attributes from the common ancestor are desired� they can be renamed �or hidden�

within each superclass� as shown above�

� Module Nesting

Since modules are �rst�class� a module can be bound to an attribute of another� giving rise to

a nested module� Hierarchical nesting of modules has numerous applications� It helps control

problems associated with 	at global name�spaces� such as name pollution and accidental name

con	icts� A module can serve as a shared data repository for nested modules� and could perhaps

serve as a �factory� that produces initialized instances of nested modules� Furthermore� nesting can

nicely solve some real�world modeling problems such as the prototype abstraction relation problem

�
���� page ��
�� Madsen 
��� has also shown that nested classes can be used to emulate the

functionality of meta�classes�

Since modules are �rst�class in CMS� a module can contain a nested module as well as methods

��



�a�

�de�ne vehicle�category
�mk�module ��

��capacity 	��
�type	 �mk�module �� � � � ���ll �lambda� � � �env�ref capacity�� � � �����
�type
 �mk�module �� � � � ���ll �lambda� � � �env�ref capacity�� � � ��������

�de�ne mycategory �mk�instance vehicle�category��
�de�ne v	 �mk�instance �attr�ref mycategory type	���

�b� �de�ne veh�type �mk�module �� � � � ���ll �lambda � � � �env�ref capacity� � � � �����
�de�ne new�vehicle�category �nest type� veh�type vehicle�category��

Figure �� Nested Modules� �a� Lexical nesting� �b� Compositional nesting via the nest operator�

that compute composition operations on the nested module� The outer module can be thought of

as containing an inheritance hierarchy of modules� Such modules can themselves be manipulated

in several ways to realize a useful application known as inheritance hierarchy combination 
����

Lexical Nesting� In CMS� modules follow static scoping rules just like the rest of Scheme� The

methods of modules can refer to bindings in their surrounding environments using primitives such

as �env�ref hattribute�namei harg�expr� i�� analogous to the self�reference primitives given earlier�

These primitives refer to the given name in a lexically surrounding scope that has a binding for

that name� The environment of a module is determined by the lexical placement of the mk�module

expression that creates it� An example is shown in Figure � �a��

Nested modules have an instance of their surrounding module as their environment� and are

bound to their environment at the time of instantiation of the outer module� Hence� lexical scoping

is maintained regardless of whether nested modules are moved to and combined in other envi�

ronments with other nested modules created in yet other environments� This is analogous to the

creation and manipulation of �rst�class closures in Scheme�

Compositional Nesting� A fundamental requirement of modularity is that individual modules�

whether nested or not� must be speci�able independent of any particular context� As a result�

independently developed modules must be composable not only at the same level� but also in a

hierarchical sense� This means that one must be able to retroactively nest a separately developed

module within any other conforming module�

The bene�ts of compositional nested modules derives from the ability to retroactively nest

modules� Nested modules can be independently developed� thus supporting team development

even in the presence of hierarchical structure� Furthermore� a compositional nested module can be

embedded into� and thus reused in� any module that generates a conforming environment�

Modules can be retroactively nested via �nest hattr�namei hnested�mod�expri houter�mod�expri��

This primitive returns a new module containing an attribute hattr�namei bound to the nested

module hnested�mod�expri within the given outer module� An example is shown in Figure � �b��

��



The nest expression in the example produces a module that contains the attribute type� bound to

a nested module just as if it was directly lexically nested�

In an interactive language such as CMS� modules that contain env�ref�s can be speci�ed in

the �top�level� environment� However� since modules abstract over their environments� env�ref�s

in such modules are not automatically bound to names occurring in the top�level environment�

Instead� when such a module is instantiated via mk�instance� its environment is bound to the

Scheme environment at the point of instantiation� Alternatively� one can use the primitive �bind�env

hmodule�expri �henvironmenti	� to explicitly bind a module to the optional argument henvironmenti�

which defaults to the Scheme environment at that point�

� Implementation and Future Work

The underlying concepts of compositional modularity are independent of the language within which

they are embedded� In fact� we have designed and implemented a generic reusable set of C��

classes that embody the language independent aspects of the model� This set of classes� also

known as an OO framework 
�
�� can be subclassed and instantiated to implement processors

for particular languages� We have implemented an interpreter for CMS by extending an existing

Scheme interpreter implementation �available as part of the STk package 
���� with classes derived

from the reusable OO framework mentioned above� Due to the reusability of the framework� we

obtained very high levels of reuse �between �� and ���� for both the framework design �number

of classes and methods reused� as well as for the framework code �number of lines of code�� The

implementation of CMS is interesting in its own right� please see 
�� for details�

Some important areas of future work remain� Static typing is desirable and possible within our

model� although it would introduce several restrictions to the programming style presented here�

Compilation is a much more challenging issue� especially to devise separate compilation and linking

techniques paralleling the semantic composition operators�

� Conclusions

Module systems and O�O programming have long strived to achieve the requirements of large�scale

programming such as encapsulation� component�wise development� and reuse� In this paper� we

have shown how the language CMS meets these requirements in a uniform and 	exible manner�

via �rst�class modules and a powerful set of operations to combine them by sharing and resolving

name con	icts� adapt them by encapsulating and statically binding attributes� and embed one into

another�

We have shown that the CMS module system achieves its distinguishing goal of supporting

implementation reuse via module composition� We show this by demonstrating that it meets

and exceeds similar facilities supported by traditional class�based OO inheritance systems� It is

	exible enough to emulate a broad array of existing inheritance idioms including super�based� pre�x�

based� mixin�based� and several varieties of multiple inheritance� Furthermore� our new notion of

�




compositional nesting permits users to seperately develop modules and retroactively embed them

into conforming modules via a composition operation�

In e�ect� the module system presented here uni�es and advances many existing notions of

modularity� The module system has been implemented as a language independent set of classes�

from which an interpreter for CMS has been derived� Finally� the CMSmodule system is completely

consistent with Scheme�s original design philosophy that ���� a very small number of rules for

forming expressions� with no restrictions on how they are composed� su�ce to form a practical and

e�cient programming language that is 	exible enough to support most of the major programming

paradigms in use today�� 
��

Acknowledgements� We gratefully acknowledge support and several useful comments on this work

from Jay Lepreau� Bjorn Freeman�Benson� Gilad Bracha� Bryan Ford� Doug Orr� Robert Mecklenburg� and

Nevenka Dimitrova�

References

�	
 Guruduth Banavar� An Application Framework for Compositional Modularity� PhD thesis� University

of Utah� Salt Lake City� Utah� 	����

�

 Gilad Bracha and Gary Lindstrom� Modularity meets inheritance� In Proc� International Conference on

Computer Languages� pages 
�
�
��� San Francisco� CA� April 
��
�� 	��
� IEEE Computer Society�

Also available as Technical Report UUCS��	��	��

��
 Rod Burstall and Butler Lampson� A kernel language for abstract data types and modules� In Giles

Kahn� David MacQueen� and Gordon Plotkin� editors� Proceedings� International Symposium on the

Semantics of Data Types� volume 	�� of Lecture Notes in Computer Science� pages 	���� Springer�

	����

��
 P� Canning� W� Cook� W� Hill� and W� Oltho�� Interfaces for strongly�typed object�oriented pro�

gramming� In Norman Meyrowitz� editor� Proceedings of the ACM Conference on Object�Oriented

Programming� Systems� Languages� and Applications� pages �������� 	����

��
 Luca Cardelli and John C� Mitchell� Operations on records� Technical Report ��� DEC SRC� August

	����

��
 William Clinger and Jonathan Rees� Revised� report on the algorithmic language Scheme� ACM Lisp

Pointers� ����� 	��	�

��
 William Cook and Jen Palsberg� A denotational semantics of inheritance and its correctness� In Proc�

ACM Conf� on Object�Oriented Programming� Systems� Languages and Applications� pages ��������

	����

��
 Pavel Curtis and James Rauen� A module system for Scheme� In Conference Record of the ACM Lisp

and Functional Programming� ACM� 	����

��
 R� Ducournau� M� Habib� M� Huchard� and M� L� Mugnier� Proposal for a monotonic multiple inheri�

tance linearization� In Proceedings of OOPSLA� pages pages 	�� � 	��� October 	����

�	�
 Erick Gallesio� STk reference manual� Available with STk release� version 
�	� 	�������

��



�		
 Robert Harper and Benjamin Pierce� A record calculus based on symmetric concatenation� In POPL�

pages 	�	�	�
� January 	��	�

�	

 Suresh Jagannathan� Metalevel building blocks for modular systems� ACM Transactions on Program�

ming Languages and Systems� 	�����������
� May 	����

�	�
 Ralph E� Johnson and Vincent F� Russo� Reusing object�oriented designs� Technical Report UIUCDCS�

R�	��	�	���� Department of Computer Science� University of Illinois at Urbana�Champaign� Urbana�

Illinois� 	��	�

�	�
 Gregor Kiczales� Jim des Rivi�eres� and Daniel G� Bobrow� The Art of the Metaobject Protocol� The

MIT Press� Cambridge� MA� 	��	�

�	�
 Bent Bruun Kristensen� Ole Lehrmann Madsen� Birger Moller�Pedersen� and Kristen Nygaard� The

BETA programming language� In Research Directions in Object�Oriented Programming� pages pages �

� ��� MIT Press� 	����

�	�
 Ole Lehrmann Madsen� Block structure and object�oriented languages� In Research Directions in

Object�Oriented Programming� pages pages 		� � 	
�� MIT Press� 	����

�	�
 Harold Ossher and WilliamHarrison� Combination of inheritance hierarchies� In OOPSLA Proceedings�

pages 
����� October 	��
�

�	�
 Jonathan Rees� Another module system for Scheme� Included in the Scheme �� distribution� 	����

�	�
 Mark A� Sheldon� Static dependent types for �rst class modules� In ACM Conference on Lisp and

Functional Programming� June 	����

�
�
 Sho�Huan Simon Tung� Interactive modular programming in Scheme� In Proceedings of the ACM Lisp

and Functional Programming Conference� pages pages �� � ��� ACM� 	��
�

Last modi�ed� October 
�� 	���

��


