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Abstract. We present a new module system for Scheme that supports a high degree of imple-
mentation reuse via module composition. The module system encourages breaking down a program
mto the smallest possible individually meaningful modules, and recomposing them using a powerful
set of adaptation and combination mechanisms. Even hierarchical nesting is achieved via a com-
position operation. This module system is shown to support a stronger and more flexible notion of
compositionality and reuse than traditional class-based inheritance in object-oriented programming.
Finally, this module system is itself implemented by reusing a language independent OO framework.
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1 Introduction

Modularity is a fundamental facility for controlling complexity in large systems, via decomposition
and abstraction. In particular, software modules allow programmers to develop and maintain pieces
of a large system relatively independent of each other. However, decomposition alone does not
support reuse of software components, which is widely accepted to aid the efficient construction of
large systems. For this, it is necessary to provide mechanisms for effective recomposition, by which
conforming modules can be composed to obtain other modules.

Compositional modularity is a model that supports a simple notion of modules along with a
powerful notion of their composition. In addition to meeting requirements of large-scale software
development such as encapsulation, separate development, and checking of inter-module conforma-
bility, the distinguishing goal of this model is to enable maximal reuse of software components. It
encourages breaking down software into the smallest possible individually meaningful units, then
recomposing them in various ways to get larger modules. Aspects of modules can be adapted in
several ways to make them suitable for composition in new ways.

In essence, compositional modularity distills, unifies, and further advances many existing no-
tions of modularity. In particular, this includes varieties of class-based OO programming, in which
inheritance is the primary mechanism for implementation composition to create new classes (mod-
ules). Traditionally, OO inheritance is a composite notion, involving module extension, attribute
rebinding, encapsulation, static binding, etc. In contrast, individual aspects of inheritance are

achieved in our model using separate operations, which can be used in combination to emulate
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important varieties of composite inheritance. Beyond traditional inheritance, our model also sup-
ports a new notion of compositional nesting, whereby independently developed modules can even be
retroactively nested into conforming modules using a compositional embedding operation. Thus,
compositional modularity supports a stronger as well as a more flexible notion of compositionality
and reuse than traditional OO inheritance mechanisms.

The flexibility to emulate various notions of inheritance within a single model is itself advan-
tageous over traditional inheritance models. Users can choose the most appropriate inheritance
idiom for particular problems. Secondly, users have explicit and fine control over the semantics
of module combination such as sharing and conflict resolution, which they traditionally have little
control over.

We present the above module system within the context of a programming language named
Compositionally Modular Scheme, or CMS for short. CMS is an extension of vanilla Scheme [6]. In
the spirit of Scheme, CMS supports modules as first-class entities, and it is dynamic and interactive.
Also, the notion of modules and their instances have a clear denotational semantics based upon
record generators, described below. Although the model is presented here in the context of Scheme,
it is actually independent of the particular programming language within which it is embedded.

In the following section, we place our work in the context of existing work in module systems.
Section 3 introduces the basic concepts of the CMS module system and shows how CMS supports
the traditional requirements of modularity. Sections 4 and 5 show CMS’s ability to directly emulate
the important varieties of composition via QO inheritance. In Section 6, we discuss CMS’s support

for module nesting. Finally, we sketch the implementation of CMS in Section 7 and conclude.

2 Background and Previous Work

Traditionally, a module is understood as an environment for binding names to values. A module is a
namespace that explicitly provides (exports) names and requires (imports) other names. All names
in the environment are directly accessible within the environment itself, whereas names declared
public may be imported by others.

In contrast, a compositional module represents an abstracted environment. To understand this
notion, consider a parameterized module. A parameterized module abstracts over some subset
of names referenced within its environment. It can be instantiated into a concrete module by
supplying particular bindings for these abstracted names. Although simple, this technique allows
the module to be reused in many applicable situations. A compositional module takes this notion
of abstracting over names to its logical conclusion — it abstracts over all the names that can ever

be referenced from within its environment. This idea can be formalized as a closed record generator
Ae. As. {ay = v1,...,a, =V}

which is a record abstracted over its own self (denoted as s) as well as its surrounding environment,
e. Within the record, all names are accessed via the s or the e parameter. Such a structure is
instantiated into concrete modules by supplying it an environment and taking its fixpoint. The

crucial advantage of such an abstracted namespace, however, is that the s and e parameters can be



manipulated in many desirable ways before actually instantiating it into concrete namespaces. For
example, two such structures can be combined by appropriately composing their s parameters, or
one such structure can be embedded into another by supplying the e parameter of the former with
the s parameter of the latter. The reader is referred to [1, 2] for a development of the formalism.
This ability to manipulate the namespace enables a high degree of compositionality and reuse.

The design of CMS is based upon the above semantic notion of modules that goes back to record
calculi [11, 5]. Classes were modeled as record generators by Cook [7], who also first introduced
some of the operators used here. Based on this, Bracha and Lindstrom in [2] developed a suite
of operators to support sharing, encapsulation, and static binding. In this paper, we further
augment the above model with the notion of compositional nesting, enabled by the e parameter
of the previous paragraph. More importantly, we develop a consolidated notion of compositional
modularity, realize it as a new and realistic module system for Scheme, show how to emulate other
familiar composition mechanisms using this system, and illustrate typical programming styles and
idioms in the language.

Several module systems have been proposed for Scheme [8, 20, 18]. CMS is different from these
systems in its explicit goal of supporting reuse via module composition. In CMS, interconnection of
modules is not done via import/export declarations, but rather by explicitly combining the modules
involved, possibly after adaptation. (One simple notion of adaptation by renaming was supported in
[20].) Some previous systems (e.g. [8, 18]) support explicit interfaces. Although the CMS language
presented here does not support this, interfaces can be built up dynamically by specifying a module’s
public interface attributes and providing error stubs for methods. Subsequently, implementation
modules for this interface can be composed with it overriding the stub, and private attributes in
the resulting module encapsulated via a retroactive hiding operation.

In the context of Scheme, it is natural to support modules as first-class values. The uniformity
and expressive power obtained by using first-class modules was recognized in the early language
Pebble [3]. More recently, many other languages such as FX [19] and Rascal [12] also support
first-class modules.

Some Scheme implementations support first-class environments, which can be dynamically cre-
ated and extended, and expressions evaluated within them. The environment can also be captured
at any point by using a special primitive, such as the-environment. However, such simple notions
of environments are not very powerful — the only useful operation defined on them is eval.

A more powerful notion of first-class environments with reflective operations has been proposed
in the language Rascal [12]. While CMS and Rascal are similar in that they support operations
on first-class abstractions, the approaches used are entirely different. Rascal uses the approach
of reflection, adaptation, and reification of first-class environments. CMS uses the approach of
module combination and adaptation with the specific goal of reuse. Rascal does not support CMS’s
wide array of adaptation mechanisms such as name conflict resolution, static binding, retroactive
encapsulation, and compositional nesting.

From one perspective, the operations provided by CMS can be viewed as “meta-level” primitives
to achieve various goals of module composition. In some respects, e.g. inheritance (and method

dispatch to some extent), CMS provides the programmer flexibility akin to that provided by meta-



object protocols (MOPs) [14], without actually exposing the meta-architecture implementation to
direct user programming. However, a full-blown MOP gives the user much more control over various
other aspects of a language implementation as well, such as object layout.

Further comparisons with specific OO languages will be made as we proceed.

3 Modules and Instances

In CMS, a module consists of a set of attributes (symbol-binding pairs) with no order significance.
A module is a Scheme value that is created with the mk-module primitive. Modules can be ma-
nipulated, but their attributes cannot be accessed or evaluated until they are instantiated via the
mk-instance primitive. Attributes are of two kinds depending upon their mutability after instanti-
ation: mutable attributes are those that are bound to locations (similar to Scheme variables), and
can store any Scheme value; and immutable attributes are those that are bound to Scheme values
in a read-only manner, i.e. they can be accessed but not assigned to. The syntax of the above
primitives is:

(mk-module {mutable-attribute-list) (timmutable-attribute-list))

(mk-instance {module-expr))

Expressions that create modules, such as the mk-module expression above, are notated as

(module-expr). Similarly, instance expressions are notated as (instance-expr).

Attributes and Their Access. Immutable attributes correspond to the fixed “behavior” of the
abstraction represented by a module, whereas mutable attributes correspond to its “state.” Thus,
mutable attributes are bound to fresh locations upon module instantiation, and initialized with
the value associated with each attribute. Immutable attributes that are bound to procedures are
referred to as methods, borrowing from OO programming. Immutable attributes can also be bound
to other modules, called nested modules.

The values of mutable and immutable attributes are accessed with the primitive (attr-ref
(instance-expr) (attribute-name) (arg-expr*)) . If the referenced attribute is a method, it is ap-
plied with the given argument(s) and its value returned. Mutable attributes are assigned with the
primitive (attr-set! (instance-expr) (attribute-name) (expr)).

A method can access the instance within which it is executing via the expression (self). Thus,
a method can access a sibling attribute within the same instance as (attr-ref (self) (attr-name)).
However, encapsulated attributes (described below) cannot be accessed in this manner. For this, a
method uses the analogous primitive (self-ref (attribute-name) (arg-expr*)) to access the values of
attributes, and (self-set! (attribute-name) (expr)) to assign to mutable attributes, of the instance
within which it is executing. Accesses via these primitives are called self-references, whereas accesses
via attr-ref and attr-set! are called external references.

Figure 1 (a) shows a module bound to a Scheme variable fueled-vehicle. The module has one
mutable attribute fuel, and two immutable attributes: empty?, bound to a procedure which checks
to see if the fuel tank is empty, and fill, bound to a procedure that fills the fuel tank of the vehicle
to capacity. The fill method refers to an attribute capacity that is not defined within the module,



(define fueled-vehicle (mk-module
(a) ((fuel 0))
((empty? (lambda () (= (self-ref fuel) 0)))
(fill (lambda () (self-set! fuel (self-ref capacity)))))))

(define encap-fueled-vehicle (hide fueled-vehicle '(fuel)))
(b) (describe encap-fueled-vehicle)

—
((empty? (lambda () (= (self-ref <priv-attr>) 0))) ...

(define capacity-module

(mk-module ()
(c) ((capacity 10)

(greater-capacity? (lambda (in) (> (self-ref capacity) (attr-ref in capacity)))))))
(define vehicle (merge encap-fueled-vehicle capacity-module))

(define new-capacity

(d) (mk-module () ((capacity 25))))

(define new-vehicle (override vehicle new-capacity))

(e) (define v1 (mk-instance vehicle))

Figure 1: Basic module operations. (a) Definition via mk-module (b) Encapsulation via hide (c) Combi-

nation via merge (d) Rebinding via override, (€) Instantiation via mk-instance.

but is expected to be the fuel capacity of the vehicle in gallons. In the vocabulary of traditional
module systems, the above module exports the three symbols fuel, empty? and fill, and (implicitly)

imports one symbol capacity.

Encapsulation. The primitive hide returns a new module that encapsulates the given attributes.
(hide {module-expr) (attr-name-list-ezpr))

In Figure 1 (b), the hide expression creates a new module with an encapsulated fuel attribute
that has an internal, inaccessible name. This is shown by the describe primitive as <priv-attr>.

It is important to note that such retroactive encapsulation shrinks the interface of a module.
As a result, functions expecting an instance of a particular module may not necessarily operate
correctly on an instance of the module subjected to a hide operation. This represents the widely

accepted notion of separating inheritance from subtyping [4].

Combination. The module capacity-module given in Figure 1 (c) exports two symbols: capacity,
that represents the fuel capacity of a vehicle in gallons, and greater-capacity?, bound to a procedure
that determines if the current instance has greater fuel capacity than the incoming argument.
The module fueled-vehicle can be combined with capacity-module to satisfy its import require-
ments. This can be accomplished via the primitive (merge (module-expr1) (module-expr2)). The

new merged module vehicle in 1 (c¢) exports four symbols and imports none.



The primitive merge does not permit combining modules with conflicting defined attributes,
i.e. attributes that are defined to have the same name. If there are name conflicts, one can use
the operator (override (module-exprl) (module-expr2)). In the presence of conflicting attributes,
override creates a new module by choosing the right operand’s binding over the left operand’s in
the resulting module. For example, the module new-capacity in Figure 1 (d) cannot be merged
with vehicle since the two modules have a conflicting attribute capacity. However, new-capacity can
override vehicle, as shown. This way, immutable attributes can be re-bound, and mutable attributes

can be associated with new initial values.

Abstract modules and interfaces. An attribute is called undefined if it is self-referenced (see
above), or referenced from a nested module, but is not specified in the module. If it is specified, it
is called defined. A module is abstract if any attribute is left undefined. In keeping with dynamic
typing in Scheme, an abstract module can be instantiated, since it is possible that some methods
can run to completion if they do not refer to undefined attributes. It is a checked run-time error
to refer to an undefined attribute.

The role of abstract classes in OO programming is to specify the interface of a set of similar
classes, without specifying the implementation. As mentioned earlier, this can be done in CMS by

binding abstract methods with dummy error methods, and subsequently overriding these methods.

Adaptation. Thus far, we have mostly shown how CMS supports the notions of traditional
module systems. In this section, we go beyond traditional module systems, and describe operators
to adapt particular aspects of the attributes of existing modules, in order to make them suitable
for composition in new ways. Besides hide, there are four other primitives which can be used to
create new modules by adapting some aspect of the attributes of existing modules.

The primitive (restrict (module-ezpr) (attr-name-list-expr)) simply removes the definitions of
the given (defined) attributes from the module, i.e. makes them undefined.

The primitive (rename (module-expr) (from-name-list-expr) (to-name-list-expr)) changes the
names of the definitions of, and self-references to, attributes in (from-name-list-expr) to the corre-
sponding ones in (to-name-list-expr). Undefined attributes, i.e. attributes that are not defined but

are self-referenced, can also be renamed.

(describe (rename vehicle '(capacity) (fuel-capacity)))
—
((fuel-capacity 10)(fill (lambda () (self-set! fuel (self-ref fuel-capacity)))...

The primitive (copy-as (module-expr) (from-name-list-expr) (to-name-list-expr)) copies the de-
finitions of attributes in (from-name-list-expr) to attributes with corresponding names in argument
(to-name-list-expr). The from argument attributes must be defined.

(describe (copy-as vehicle '(capacity) ’(default-capacity)))
—
((capacity 10)(default-capacity 10)(fill (lambda () (self-set! fuel (self-ref capacity...
The primitive (freeze (module-expr) (attr-name-list-expr)) statically binds self-references to the

given attributes, provided they are defined in the module.



(describe (freeze vehicle '(capacity)))
_—
((capacity 10)(fill (lambda () (self-set! fuel (self-ref <priv-attr>)) ...

Freezing the attribute capacity in the module vehicle causes self-references to capacity to be
statically bound, but the attribute capacity itself is available in the public interface for further
manipulation, e.g. rebinding by combination. (This effect is similar to converting accesses to a
virtual C+4 method into accesses to a non-virtual method. The difference is that C4+-+ allows
non-virtual methods to be in the public interface of a class — the general philosophy here is that all
public attributes are rebindable, or virtual, like in Smalltalk.) As shown above, frozen self-references
to capacity are transformed to refer to a private version of the attribute.

The above module manipulation primitives are applicative, in the sense that they return new
modules without destructively modifying their arguments. However, destructive versions of the
operators are also available, so that composite module operations can be expressed without com-

promising efficiency by making unnecessary copies.

4 Single Inheritance

Super-based single inheritance. The operators discussed above can be used in combination
to get composite effects of single inheritance of classes, such as in Smalltalk-80. A class consists of
methods and encapsulated instance variables, which can be “extended” via inheritance. In CMS,
a similar notion of inheritable classes can be supported using a macro such as define-class below:

(define-class (name) (super) (inst-var-list) (method-list))

The macro specifies the name of the class, its superclasses, a list of encapsulated instance
variables and their initializers, and a publicly visible list of methods. Figure 2 (a) shows a class
vehicle with no superclasses (indicated by the Scheme constant #f) with one encapsulated instance
variable fuel and three public attributes. This macro definition simply expands into a mk-module
expression followed by a hide operation on the fuel attribute.

Subsequently, a subclass land-vehicle of vehicle can be specified as in box (b). In this definition,
a new attribute wheels is added, and the display binding is overridden with a method that accesses
the shadowed method as (self-ref super-display). To get the proper effect of rebinding of the display
method, this macro expands into the module expression in box (c), explained below.

In this expansion, a module corresponding to the subclass, with attributes wheels and display,
is created. This module cannot simply override the superclass module, since in that case, the
superclass display method will be wiped out. Neither can the superclass’ display method be renamed
to super-display before overriding, since in this case, self-references to display in the superclass will
also get renamed. The crucial aspect of single inheritance is to have the self-references in the
superclass access the rebound definitions of methods. Thus, the superclass’ display method must be
copied as super-display before the override operation. The copied super-display attribute is finally
hidden away to get a module with exactly one display method in the public interface, as desired.

CMS supports several primitives for determining various kinds of “meta-level” information

about modules and instances. For example, the macro define-class above can find conflicting at-



(define-class vehicle #£f

((fuel 0))

(a) ((capacity 10)
(fill (lambda () (self-set! fuel (self-ref capacity)) (self-ref display)))
(display (lambda () (format #t "fuel = ~ a (capacity ™ a) ”

(self-ref fuel) (self-ref capacity))))))

(define-class land-vehicle vehicle
0
(b) ((wheels 4)
(display (lambda () (self-ref super-display)
(format #t "wheels = ~ a " (self-ref wheels))))))

(define land-vehicle
(hide (override (copy-as vehicle "(display) '(super-display))
(mk-module ()
() ((wheels 4)
(display (lambda ()
(self-ref super-display)
(format #t "wheels = ~ a ” (self-ref wheels)))))))

"(super-display)))

Figure 2: Super-based single inheritance. (a) Superclass, (b) Subclass, (c¢) Expansion of macro in (b).

tributes between modules by querying for the names of their public attributes. Similarly, the

self-references within a module and the module of an instance can also be queried for.

Prefixing. The programming language Beta [15] supports a form of single inheritance called
prefizing which is quite different from the single inheritance presented earlier. In prefixing, a
superclass method that expects to be re-bound by a subclass definition uses a construct called inner
somewhere in its body. In instances of the superclass, calls to inner amount to null statements,
or no-ops. Subclasses can redefine the method, and in turn call inner. In subclass instances, the
superclass method is executed first, and the subclass’ redefinition is executed upon encountering
the inner statement.

The module operators of CMS can be used in combination to produce the effect of prefix-based
single inheritance as well. This is shown pictorially in Figure 3, where super-based and prefix-based
forms of inheritance can be contrasted side by side. Both forms essentially use the same sequence
of module operations: copy, override, and hide. The difference is that the superclass overrides
the subclass in the case of prefix-based inheritance, as opposed to the reverse for super-based
inheritance. Indeed, this is the difference between prefix-based and super-based forms of single
inheritance.

The general form of the module expressions shown in the figure turns out to be a frequent idiom
in CMS. We shall refer to this form as the copy-override-hide idiom. The other common idiom in

CMS is the rename-override-hide idiom. Since the rename operation can be applied to both defined
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Figure 3: Pictorial representation of single inheritance. (a) Super-based: (hide (override (copy-as SUPER
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and undefined (but self-referenced) attributes, the rename-override-hide idiom can be applied to

obtain a diverse number of useful effects, some of which are described in the following section.

5 Multiple Inheritance

We have seen in the previous section how to express the creation of a subclass from a single su-
perclass and a specification of the incremental changes. With multiple inheritance, there is the
additional problem of how to compose the superclasses by resolving conflicts and sharing attrib-
utes between them. Typically, a language supporting multiple inheritance makes available to the
programmer a small number of choices for attribute sharing and conflict resolution. The advantage
of compositional modularity is that the programmer has numerous options for, and fine-grained

control over, decisions taken while combining multiple modules.

Mixins and linearized multiple inheritance. A free-standing module that represents incre-
mental changes to existing modules is sometimes known as a “mixin,” since it can be combined
with any conforming module. A module representing the characteristics of a land vehicle, such as
that given in the inner mk-module expression in Figure 2 (c), is an example of a mixin.

One might conceivably want to combine multiple mixins with a base abstraction. For example,
one can envision combining two mixins named land-vehicle-chars and sea-vehicle-chars with vehicle
to produce an amphibian module. To do this in CMS, all one must do is to cascade copy-override-
hide expressions in the desired order, thus performing an explicit linearization of all the modules
involved, and combining them in the manner of single inheritance.

Linearization of multiple superclasses is the standard technique for multiple inheritance used in



(define color (mk-module

(a) ((color 'white))
((set-color (lambda (new-color) (self-set! color new-color)))

(display  (lambda () (format #t "color = ™ a” (self-ref color)))))))

(define car-class
(hide (merge (merge (rename color '(display) ’(color-display))
(b) (rename land-vehicle '(display) '(vehicle-display)))
(mk-module ()
((display (lambda () (self-ref vehicle-display)
(self-ref color-display))))))

"(color-display vehicle-display))

Figure 4: Multiple Inheritance with no common ancestors. (a) A color module, (b) Combining vehicle

and color into car-class.

languages such as Flavors and Loops, where the graph of ancestor classes of a class are linearized
into a single inheritance hierarchy. However, each of these languages specifies a different default
rule for the linearization of ancestor classes. For example, both these languages do a depth-first,
left-to-right traversal of ancestor classes up to join classes, i.e. classes that are encountered more
than once, which get traversed on their first visit in Flavors and last visit in Loops. It has been
argued that currently used linearizations do not ensure that “the inheritance mechanism behaves
“naturally” relative to the incremental design of the inheritance hierarchy” [9]. It is perhaps more
desirable to let the programmer select the precedence order of superclasses as dictated by individual
applications, as in the case of CMS. (In the case of CLOS, a programmer with considerable expertise

can use the meta-object protocol of the language and adapt the default rule.)

Multiple inheritance with no common ancestors. Consider the case of multiple superclasses
that are not linearized, and have no common ancestor. Say we have a module color defined as in
Figure 4 (a). We can combine color with the module land-vehicle shown earlier into car-class, as
shown in box (b). The method display that conflicts in the “superclasses” vehicle and color is
renamed in each and the superclasses are merged together. A new module that defines a display
method that calls the renamed display methods is then merged in to create the desired car-class.
This example can of course be extended to more than two superclasses. Also, if there are self-
references to conflicting attributes in superclasses, it may be more appropriate to copy and restrict

them before merging.

Multiple inheritance with common ancestors. In the case of superclasses with a common
ancestor, such as in the “diamond” problem of multiple inheritance, the situation gets more com-
plex. In this case, the attributes of the common ancestor are clearly conflicting in the superclasses.
Furthermore, there is the choice of inheriting either a single copy or multiple copies of mutable

attributes from the common ancestor. (This, of course, is the rationale for virtual and non-virtual
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(override (override (rename land-vehicle '(fuel) '(land-fuel))
(rename sea-vehicle '(fuel) "(sea-fuel)))
(mk-module ()
(display (lambda ()
(format ... (self-ref land-fuel) (self-ref sea-fuel) ... ))))))

Figure 5: Multiple Inheritance with common ancestors. Creating an amphibian module from land-vehicle

and sea-vehicle, which have each inherited from vehicle.

base classes in C++.)

To illustrate, consider two modules land-vehicle and sea-vehicle which have each inherited from
the previously given vehicle module. Say we want to create an amphibian module that inherits
from these two modules, but needs two copies of the fuel attribute to model two different kinds
of fuels for amphibians. This can be achieved with the expression in Figure 5. In this example,
the fuel attribute is renamed for each type of module. The two modules are then overridden since
the conflicting attributes capacity and fill are known to be identical, and the method display will
be overridden in the final module. A new display method that displays all the attributes in an
appropriate way is included in the final composition to get the desired module.

An important distinction between traditional inheritance and compositional modularity is il-
lustrated by this example. In systems of traditional inheritance where there are default rules for
resolving the diamond problem, a subclass might break if inheritance relationships, an implementa-
tion detail, are changed. This amounts to violation of encapsulation. In the case of compositional
modularity, problems of conflicts and sharing clearly manifest themselves, and compell the pro-
grammer to explicitly resolve them as the particular situation demands using introspection and
inheritance operators. For example, conflicts between superclasses can be inspected and super-
classes can be overridden in some appropriate order to share the attributes. Or, if multiple copies
of mutable attributes from the common ancestor are desired, they can be renamed (or hidden)

within each superclass, as shown above.

6 Module Nesting

Since modules are first-class, a module can be bound to an attribute of another, giving rise to
a nested module. Hierarchical nesting of modules has numerous applications. It helps control
problems associated with flat global name-spaces, such as name pollution and accidental name
conflicts. A module can serve as a shared data repository for nested modules, and could perhaps
serve as a “factory” that produces initialized instances of nested modules. Furthermore, nesting can
nicely solve some real-world modeling problems such as the prototype abstraction relation problem
([16], page 123). Madsen [16] has also shown that nested classes can be used to emulate the
functionality of meta-classes.

Since modules are first-class in CMS, a module can contain a nested module as well as methods

11



(define vehicle-category
(mk-module ()
((capacity 10)
(a) (typel (mk-module (...) ((fill (lambda... (env-ref capacity)... )))))
(type2 (mk-module (...) ((fill (lambda... (env-ref capacity)... )))))))
(define mycategory (mk-instance vehicle-category))
(define v1 (mk-instance (attr-ref mycategory typel)))

(b) (define veh-type (mk-module (...) ((fill (lambda ... (env-ref capacity) ... )))))
(define new-vehicle-category (nest type3 veh-type vehicle-category))

Figure 6: Nested Modules. (a) Lexical nesting, (b) Compositional nesting via the nest operator.

that compute composition operations on the nested module. The outer module can be thought of
as containing an inheritance hierarchy of modules. Such modules can themselves be manipulated

in several ways to realize a useful application known as inheritance hierarchy combination [17].

Lexical Nesting. In CMS, modules follow static scoping rules just like the rest of Scheme. The
methods of modules can refer to bindings in their surrounding environments using primitives such
as (env-ref (attribute-name) (arg-expr*)), analogous to the self-reference primitives given earlier.
These primitives refer to the given name in a lexically surrounding scope that has a binding for
that name. The environment of a module is determined by the lexical placement of the mk-module
expression that creates it. An example is shown in Figure 6 (a).

Nested modules have an instance of their surrounding module as their environment, and are
bound to their environment at the time of instantiation of the outer module. Hence, lexical scoping
is maintained regardless of whether nested modules are moved to and combined in other envi-
ronments with other nested modules created in yet other environments. This is analogous to the

creation and manipulation of first-class closures in Scheme.

Compositional Nesting. A fundamental requirement of modularity is that individual modules,
whether nested or not, must be specifiable independent of any particular context. As a result,
independently developed modules must be composable not only at the same level, but also in a
hierarchical sense. This means that one must be able to retroactively nest a separately developed
module within any other conforming module.

The benefits of compositional nested modules derives from the ability to retroactively nest
modules. Nested modules can be independently developed, thus supporting team development
even in the presence of hierarchical structure. Furthermore, a compositional nested module can be
embedded into, and thus reused in, any module that generates a conforming environment.

Modules can be retroactively nested via (nest (attr-name) (nested-mod-expr) (outer-mod-expr)).
This primitive returns a new module containing an attribute (attr-name) bound to the nested

module (nested-mod-expr) within the given outer module. An example is shown in Figure 6 (b).

12



The nest expression in the example produces a module that contains the attribute type3 bound to
a nested module just as if it was directly lexically nested.

In an interactive language such as CMS, modules that contain env-ref’s can be specified in
the “top-level” environment. However, since modules abstract over their environments, env-ref’s
in such modules are not automatically bound to names occurring in the top-level environment.
Instead, when such a module is instantiated via mk-instance, its environment is bound to the
Scheme environment at the point of instantiation. Alternatively, one can use the primitive (bind-env
(module-expr) [(environment)]) to explicitly bind a module to the optional argument (environment),

which defaults to the Scheme environment at that point.

7 Implementation and Future Work

The underlying concepts of compositional modularity are independent of the language within which
they are embedded. In fact, we have designed and implemented a generic reusable set of C++
classes that embody the language independent aspects of the model. This set of classes, also
known as an OO framework [13], can be subclassed and instantiated to implement processors
for particular languages. We have implemented an interpreter for CMS by extending an existing
Scheme interpreter implementation (available as part of the STk package [10]) with classes derived
from the reusable OO framework mentioned above. Due to the reusability of the framework, we
obtained very high levels of reuse (between 70 and 90%) for both the framework design (number
of classes and methods reused) as well as for the framework code (number of lines of code). The
implementation of CMS is interesting in its own right; please see [1] for details.

Some important areas of future work remain. Static typing is desirable and possible within our
model, although it would introduce several restrictions to the programming style presented here.
Compilation is a much more challenging issue, especially to devise separate compilation and linking

techniques paralleling the semantic composition operators.

8 Conclusions

Module systems and O-O programming have long strived to achieve the requirements of large-scale
programming such as encapsulation, component-wise development, and reuse. In this paper, we
have shown how the language CMS meets these requirements in a uniform and flexible manner,
via first-class modules and a powerful set of operations to combine them by sharing and resolving
name conflicts, adapt them by encapsulating and statically binding attributes, and embed one into
another.

We have shown that the CMS module system achieves its distinguishing goal of supporting
implementation reuse via module composition. We show this by demonstrating that it meets
and exceeds similar facilities supported by traditional class-based OO inheritance systems. It is
flexible enough to emulate a broad array of existing inheritance idioms including super-based, prefix-

based, mixin-based, and several varieties of multiple inheritance. Furthermore, our new notion of

13



compositional nesting permits users to seperately develop modules and retroactively embed them
into conforming modules via a composition operation.

In effect, the module system presented here unifies and advances many existing notions of
modularity. The module system has been implemented as a language independent set of classes,
from which an interpreter for CMS has been derived. Finally, the CMS module system is completely
consistent with Scheme’s original design philosophy that “... a very small number of rules for
forming expressions, with no restrictions on how they are composed, suffice to form a practical and
efficient programming language that is flexible enough to support most of the major programming

paradigms in use today.” [6]
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