
Low Latency Workstation Cluster Communications Using Sender�Based Protocols �

Mark R� Swanson
Leigh B� Stoller

E�mail� fswanson�stollerg�cs�utah�edu

UUCS�������

Department of Computer Science
University of Utah

Salt Lake City� UT ������ USA

January ��� ����

Abstract

The use of workstations on a local area network to form scalable multicomputers has become
quite common� A serious performance bottleneck in such �carpet clusters	 is the communication
protocol that is used to send data between nodes� We report on the design and implementation
of a class of communication protocols� known as sender
based� in which the sender speci�es the
locations at which messages are placed in the receiver�s address space� The protocols are shown to
deliver near
link latency and near
link bandwidth using Medusa FDDI controllers� within the BSD
��
 and HP
UX ���� operating systems� The protocols are also shown to be �exible and powerful
enough to support common distributed programming models� including but not limited to RPC�
while maintaining expected standards of system and application security and integrity�

�This work was supported by a grant from Hewlett�Packard� and by the Space and Naval Warfare Systems
Command �SPAWAR� and Advanced Research Projects Agency �ARPA�� Communication and Memory Architectures
for Scalable Parallel Computing� ARPA order �B��� under SPAWAR contract �N���������C���	


�



Contents

� Introduction �

� Sender�Based Protocols �

��� A Realization of a Sender
Based Protocol � � � � � � � � � � � � � � � � � � � � � � � � �

� Engineering E�cient Operating System Services �


�� Lightweight System Calls � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


�� Fast Path Interrupt Handling � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� E�cient Micro�level Implementation �

� Example Applications �

� Experimental Results �

��� Basic Interconnect Characteristics � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Performance of Protocol Primitives � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Conclusions 	

�



� Introduction

The use of workstations connected by a local area network to form low
priced� incrementally scal

able multicomputers has become common� One factor driving this development is the increasing
availability of low latency� high bandwidth interconnection fabrics� The latency of these fabrics is
su�ciently low that the time spent even in the control processing portion of standard general pur

pose protocols� notably IP
based protocols such as TCP and UDP� will soon dwarf the transmission
time���� Examples of the fabrics we consider potentially viable are Fibre Channel��� and R����� Our
target systems� clusters of commodity workstations running essentially standard operating systems�
rules out approaches such as those taken by Alewife���� Typhoon����� �T����� or MDP�
�� which rely
on custom processors and�or non
standard operating systems�

Continued reliance on standard protocols can impose unnecessary communication costs� The
services required by applications on these clusters are often far more modest than those provided
by the standard protocols� For example� consider a client
server application� As each client issues
a request to the server� it waits for an explicit reply� It does not need a separate acknowledgment
of its request� as the server�s reply will implicitly provide that acknowledgment� The problem is
not the additional network tra�c� but rather the software overhead of generating and handling the
unneeded acknowledgments�

Another way that the standard protocols impose unnecessary costs is in loss of information
across the protocol layers� For example� message
based applications are often implemented on top
of TCP� a stream protocol� It is common to see code that explicitly inserts the message length in
the data stream at the start of each message to allow the receiver to re
impose a message structure
on the received stream� It is also common for such receivers to embed their receive operations in
a loop to ensure acquisition of an entire message� since the stream may well provide the message
to the receiver in parts rather than as a whole� The added cost of extra system calls and potential
context switches can directly impact latency�

A third area of potential waste is insensitivity of the standard protocols to the characteris

tics of the given interconnect� For example� protocol software should not need to perform costly
operations to ensure in
order delivery when using a medium that provides that guarantee� Simi

larly� the protocol software should not generate acknowledgments if hardware acknowledgments are
implemented and visible to the software�

Regardless of the semantics of a given protocol� its performance is generally more strongly
in�uenced by its speci�c implementation than the semantics it imposes� Even relatively complex
protocols can be made e�cient through careful implementation��
� ���� One approach to reducing
protocol handling overhead is to allow the application to perform high frequency operations� usually
sending and receiving messages� directly� without involving the OS���� While this approach can
produce good results� it is often di�cult to ensure security and fairness within a general purpose
computing environment� Another approach� which we have pursued� is to leave these functions
in the OS� but to engineer e�cient implementations of them� Speci�cally� we are investigating
�sender
based	 protocols and their implementation within production operating systems�

The sender
based model relies on the ability to specify the location within a receiver�s address
space� where the packets of a message will be placed� In this manner� messages are guaranteed to
�t� thus avoiding the need for costly bu�ering operations� Further� the semantics of sender
based






protocols result in extremely low control processing overhead� An initial prototype using an FDDI
ring has shown that an e�cient implementation of sender
based protocols can result in near
link
latencies of �� microseconds for a minimal remote procedure call �RPC�� and near
link bandwidth
of ���� megabytes per second� between user processes�

In Section �� we discuss sender
based protocols in detail� Then� in Section 
� we describe an
e�cient implementation of these protocols within the operating system� Low
level implementation
concerns are addressed in Section �� In Section �� the use of sample applications to validate the
protocols is discussed� Section � presents timings of a prototype implementation�

� Sender�Based Protocols

The core concept of sender
based���� protocols lies in the speci�cation� by the sender� of the location
at which a message is to be placed in the receiver�s memory� This speci�cation enables the receiving
end to place the �packets comprising a� message directly into a user
space bu�er� Others��� �� have
shown that avoiding copying of large messages is of crucial importance given the limited memory
bandwidths in modern workstations� At the device driver level� the cost of bu�er allocation is
avoided� and at the kernel level the cost of copying from a kernel bu�er into user space is saved�

The address speci�cation provided by the sender implies that the sender manages a bu�er
within the receiver�s memory� Each packet of a message that it sends is tagged with a connection
identi�er� Each connection has an associated receive bu�er that is part of the user�s address space�
Each packet also contains an o�set within the receive bu�er at which to place the message� The
receiving entity� either a �smart	 hardware interface or the device driver software� need only ensure
that the message lies within the speci�ed bu�er� which involves a couple of simple range checks�
A correct sender� i�e�� one that always speci�es correct o�sets and sizes� will never have a message
rejected by the receiver due to bu�ering di�culties�

Direct copying of the message into the user�s space requires that the receiving entity �hardware
interface or software device driver� be able to identify the receiving process� or at least its bu�er�
from the packets� We accomplish this with the connection identi�er� A modest extension to
this knowledge about the receiving process also allows the receiving entity to post noti�cations of
message arrival directly to a noti�cation queue that the receiving process may poll or wait upon�

Another potential bene�t of using pre
allocated bu�ers for message receipt is that relatively
simple hardware can be implemented to perform reassembly of messages from their constituent
packets� With the small size of packets in many emerging communications fabrics� this may prove
to be crucial to economical communication by avoiding the need for operating system intervention
on arrival of the many small packets comprising large messages�

Because the receiving entity deposits packets directly into user bu�ers� that entity must provide
a measure of security for the receiving process� As stated above� bounds checks are performed to
prevent messages from being deposited in locations not explicitly speci�ed as bu�ers� A further
level of protection is needed to ensure that only quali�ed senders are allowed to direct messages to
a given endpoint� Barring the availability of a complex device interface to impose such security�
restricting device access to trusted operating system routines is the most expeditious method of
restricting senders to authorized connections� Separate header checksums are provided since the
body of the packet will be moved directly into memory using the header information� An error

�



in the header that was only identi�ed when the entire body had been processed would thus be
unacceptable�

��� A Realization of a Sender�Based Protocol

Going from the concept of sender
based protocols to a working protocol requires speci�cation of
many details�

� connection establishment and teardown�

� bu�er management�

� noti�cation of message arrival�

� system integrity and security�

� exploiting interconnect characteristics�

� exceptional conditions�

All of these will be addressed in this section in the full paper�

� Engineering E�cient Operating System Services

The prototype was implemented within two versions of Unix� the BSD ��
 kernel ported to the
PA
RISC at Utah and a production kernel for PA
RISC machines distributed by Hewlett
Packard�
HP
UX ����� The two kernels are structurally very similar� since they share common roots� They
have diverged signi�cantly at the detailed level� however� In both cases� those architectural features
of the PA
RISC��� that facilitated increased e�ciency were employed� We assume any serious
attempt to achieve low latency communication will need to be sensitive to the capabilities of the
host system�

Two performance
enhancing modi�cations to normal operating system facilities are described
here� We shall argue� in the complete paper� why these are reasonable and safe things to do for
systems that remain essentially general
purpose machines�

��� Lightweight System Calls

One major contributor to communication latency� on both send and receive sides� is the overhead
of performing a system call� As noted above� we have chosen not to rely on user
mode send and
receive operations� and thereby avoid system call overhead� Instead we have attacked the problem
of expensive system calls directly� Figure � lists the time to perform an �empty	 normal system
call in each of the systems�

We have implemented send and receive as lightweight system calls� in the same systems� the
time for an �empty	 lightweight system call is �� cycles� The major savings come in two areas�

�



Operating System BSD HP
UX

Component Cycles Usecs� Cycles Usecs�

entry 
�� ��� ��
 ���
exit ��� 
�� 

� ���

Total ��� ��� ��� �
��

Figure �� System call entry�exit times for an empty system call�

�� The amount of state �registers� context� that must be saved�restored when switching between
user and kernel mode is signi�cant in a full system call� The state goes onto a kernel stack and
is later restored involving a large number of memory references and associated cache misses�

�� The generic system call interface has to decode the system call number� arrange for the
arguments to be moved into the kernel�s address space� and must otherwise handle scheduling
and signal delivery� when appropriate�

A lightweight system call has state
saving requirements similar to those of a procedure call� The
primary cost lies in instantiating the kernel�s addressing context� which on the PA
RISC architecture
is accomplished by a �gate	 instruction� which sets the value of a single control register� The user�s
addressing context remains in force� facilitating direct access to the system call arguments� as well
as the message data� which can be copied directly into the network device�

This system call mechanism is appropriate for the common case of simple operations� In the
event that a more complex kernel service is required� e�g�� the process needs to sleep in the event
that there is no data to receive� the process simply proceeds on through the full system call interface�

��� Fast Path Interrupt Handling

On the receive end� a major portion of communication cost lies in interrupt service� On the PA

RISC� a network device posts an external interrupt on packet arrival� which is handled by the
generic interrupt handling code in the kernel� The time to process such an interrupt is between
�� and �� microseconds �for a one word message�� depending on the state of the cache when the
context for the currently running process is saved�

We have re
engineered the low
level external interrupt handler to deal directly with most net

work interrupts� reducing the interrupt handling time to just over seven microseconds for an in

coming message consisting of one word of data�

� E�cient Micro�level Implementation

On a workstation such as those used by our prototype� a cache miss is very expensive in terms of
processor cycles �
� cycles for the HP �
�� nearly �� microseconds�� The high cost of cache misses
argues for protocols to be designed so that they can be implemented with small data structures
occupying as few cache lines as possible� Keeping the per
connection data structures small also

�



allows us to allocate connection descriptors in a linear array and index directly into it� In software�
this saves search time and memory accesses compared to approaches that must use more complex
lookup schemes �e�g�� TCP with its very long connection identi�ers��

A second in�uence that has led to the same economical implementation of the protocols is
the desire to implement some part of the protocol in hardware� The expected �budget	 for such
hardware is limited� and as a result� any data structures that it would need to cache or store
onboard must be small�

The primary protocol data structures will be discussed in the full paper� with an emphasis on
their e�ect on cache and bus transaction costs�

� Example Applications

As an initial test of the correctness of our prototype and as a measure of the adequacy of the
protocols� we performed a trivial port of PVM to our prototype� In so doing� we observed some of
the expected e�ects of pushing some transport responsibilities up to user level� These e�ects and
those arising in further applications testing will be described in the full paper� Our next application
is a port� currently underway� of the HP
UX X�� server and library to the sender
based protocols�

� Experimental Results

We present some experimental results based on our prototype implementation� We used a cluster
of from � to � HP�
� workstations� which employ a �� MHz PA
RISC ��� cpu with o�
chip� single
level ���KB instruction and ���KB data caches� The operating systems were our modi�ed versions
of HP
UX ���� and BSD ��
� The workstations were connected to an FDDI ring using Medusa���
interfaces� no other machines were on the ring� We will present two sets of measurements�

� basic timings of the interconnect�

� micro
benchmarks of our protocols�

��� Basic Interconnect Characteristics

At the device level� our prototype is currently implemented for the Medusa FDDI controller� The
interesting characteristics of the Medusa for this discussion are�

� the controller has � megabyte of on
board memory which can be divided into ��� bu�ers�

� the controller has two queues� one for transmitting and the other for receiving�

� the controller �and its queues and bu�ers� are accessible to the processor via load and store
operations to IO space addresses�

We have measured the round
trip packet time on a two node ring with this controller as ����
microseconds ����� cycles � ��MHz�� This includes only the controller and transmission time� and

�



Activity Instructions Cycles Cycles CPI
�HP
UX� BSD BSD

Lightweight system call entry � ��� �� �� ���
Decode and process arguments �� �
� 

 

 ���
Read Medusa transmit queue � ��� 
� 
� ���

Read�Write � word FDDI header �� ��� ��� ��� ���
Write � word message body �� ��� �� �� 
��
Write � word protocol header 

 ��� �� �� ���
Write Medusa transmit queue 
 ��� � � ���

Total ��� ���� 
�� ��
 
��

Figure �� Cost of sending a � byte message�

provides a base �gure for the best possible round
trip RPC time� and a lower bound on the number
of instructions needed to send and receive a packet�

��� Performance of Protocol Primitives

Figure � shows the costs of sending a message containing one word of data� with checksumming
of the header and body� Of the total instruction count of ��� instructions� �� instructions are
measurement related �given in parentheses� and �� are Medusa or FDDI speci�c� The total of
non
device speci�c� non
timing instructions is thus �
�

A non
checksumming implementation uses �� fewer instructions� Since this packet had a payload
of only � word� only � of the additional instructions are for checksumming the data� The rest are
used to checksum the header� Separate header checksumming is performed so that the header
information can be reliably used for packet delivery before the entire packet has been processed�

Figure 
 shows the cost of sending and receiving a message in one direction �one half of an
RPC�� All times were measured using an interval timer� except for �Interrupt Handler �control�	�
where instruction counts and an estimated Cycles per Instruction were used�

The send path time of ��� microseconds includes the system call entry code and the user system
call stub� As indicated in Figure �� the send path proper includes validating arguments from
the user� obtaining a transmit bu�er identi�er from the Medusa� formatting the packet header�
performing checksums� copying the payload to the Medusa bu�er� and queuing the transmit bu�er
identi�er for sending�

The receive path is the time spent after the lightweight system call �receive� detects the arrival
of a message� via a noti�cation posted in memory by the interrupt handler� to the time it jumps
back to user mode� This time is spent accessing and updating a connection state block and writing
a connection identi�er� message address� and message size into locations provided in the send call�

The total time for an RPC is thus �� microseconds� though this is not user
to
user� Our mea

sured round
trip RPC time� user
to
user� is �� microseconds� The additional 
 microseconds is spent

�The PA�RISC contains a control register that is incremented� in the case of the HP ���� at each CPU cycle�

�



Component Time
�Usecs��

Send Path ���
Receive Path ���
Interrupt Handler ��

Interrupt Handler �control� ���
Controller �and on the wire� ���

Total ����

Figure 
� Break down of times for a one
way message�

Type Throughput
�MB�second�

Memory Copy ����
Filesystem Copy ���

Figure �� Measurements of network throughput�

in entering�leaving lightweight system calls and in user
mode system call stubs� Measurements of
an earlier version of RPC using standard interrupt paths for the Medusa gave an RPC time of ��
microseconds� The change in interrupt handling alone resulted in a savings of 
� microseconds or
��� total RPC time�

Figure � shows the measured throughput for two test cases� each of which involved sending a
large ��� megabyte� block of data from a sender to a receiver� In the �rst test� the data was simply
moved from the sender�s address space to the receiver�s address space� In the second test� the
copy was performed through the �lesystem �but not to disk� by reading from a �dev�zero pseudo
device on the sender side� and writing to �dev�null on the receiver side� In both cases� a signi�cant
percentage of the Medusa�s ���� megabyte per second bandwidth was achieved�

� Conclusions

A realization of a sender
based protocol has been developed and prototyped� As hoped� it has
delivered communications latencies that are a reasonable match to the physical layer latencies
of emerging mass
production interconnects such as FDDI� Fibre Channel� and R�� The achieved
latencies are as much a product of an aggressive engineering of the software� especially the operating
system components� as they are due to the protocol design� With the availability of low
latency
interconnects� we expect to see round
trip times of 
�

� microseconds� Following that� speci�cation
of appropriate communications interfaces for these interconnects� should provide even smaller total
end
to
end latencies� in the range of �� microseconds or less� At this level� the contribution of
communications to latency for any but the most trivial interactions will be negligible compared to
user
level processing�

�



References

��� Banks� D�� and Prudence� M� A High
Performance Network Architecture for a PA
RISC
Workstation� IEEE Journal on Selected Areas in Communications ��� � �February ���
��
��������

��� Clark� D�� Jacobson� V�� Romkey� J�� and Salwen� H� An Analysis of TCP Processing
Overhead� IEEE Communications Magazine ��� � �June ������ �
����

�
� Dally� W�� et al� The Message
Driven Processor� A Multicomputer Processing Node with
E�cient Mechanisms� IEEE Micro ��� � �April ������ �
�
��

��� Dalton� C�� Watson� G�� Banks� D�� Calamvokis� C�� Edwards� A�� and Lumley�

J� Afterburner� A Network
Independent Card Provides Architectural Support for High

Performance Protocols� IEEE Network �July ���
�� 
���
�

��� Davis� A�� Cherkasova� L�� Kotov� V�� Robinson� I�� and Rokicki� T� R� 
 A Damped
Adaptive Multiprocessor Interconnection Component� In Proceedings of the University of

Washington Conference on Multiprocessor Interconnects �May ������

��� Fibre Channel Association� Fibre Channel� Connection to the Future� �����

��� Hewlett�Packard Co� PA�RISC ��� Architecture and Instruction Set Reference Manual�
February �����

��� Kubiatowicz� J�� and Agarwal� A� Anatomy of a Message in the Alewife Multiprocessor�
In Proceedings of the �th ACM Internatonal Conference on Supercomputing �July ���
��

��� Maeda� C�� and Bershad� B� Protocol Service Decomposition for High
Performance Net

working� In Proceedings of the Fourteenth ACM Symposium on Operating System Principles

�December ���
�� pp� ��������

���� Mckenney� P� E�� and Dove� K� F� E�cient Demultiplexing of Incoming TCP Pack

ets� In Proceedings of the ���� Conference on Communications Architectures� Protocols� and

Applications �August ������ pp� ��������

���� Nikhil� R� S�� Papdopoulous� G�� and Arvind� �T� A Multithreaded Massively Paral

lel Architecture� In Proceedings of the ��th Annual International Symposium on Computer

Architecture �May ������ pp� ��������

���� Reinhardt� S�� Larus� J�� and Wood� D� Tempest and Typhoon� User
Level Shared
Memory� In Proceedings of the ��st Annual International Symposium on Computer Architecture

�April ������ pp� 
���

��

��
� Thekkath� C�� and Levy� H� Limits to Low
Latency Communications on High
Speed
Networks� ACM Transactions on Computer Systems ��� � �May ���
�� ������
�

���� Wilkes� J� Hamlyn 
 an interface for sender
based communication� Tech� Rep� HPL
OSR

��
�
� Hewlett
Packard Research Laboratory� November �����

��


