DRAFT—UUCS-96-005
Flexible M ulti-Policy Scheduling based on CPU Inheritance

Bryan A. Ford Sai R. Susarla

Department of Computer Science
University of Utah
Salt Lake City, UT 84112

flux@s. ut ah. edu
http://ww. cs. utah. edu/ proj ects/fl ux/

May 10, 1996

Abstract 1 Introduction

Traditional operating systems control the sharing of the
machine’s CPU resources among threads using a fixed
scheduling scheme, typically based on priorities. Some-

. i , i times a few variants on the basic policy are provided, such
. Traditional processer.schedullng meehamsms in operat- as support for fixed-priority (non-degrading) threa@],
Ing systems are fairly rigid, often supporting on!y one fixed or several “scheduling classes” to which threads with dif-
scheduling policy, or, at most, a few “scheduling classes” ¢o ent hyrposes can be assigned (e.g. real-time, interactive,
whose |mplementat|ons are clesely.tled together'm the OS background).]. However, even these variants are gener-
kernel. This paper preser'twu mhentance schedulmg, a ally hard-coded into the system implementation and cannot
novel processor scheduling framework in which arbltrary easily be adapted to the specific needs of individual appli-
threads can act as schedulers for other threads. Widely d'f'cations.
ferent scheduling policies can be implemented ur'1de.r the In this paper we develop a novel processor scheduling
fr.amework, and many different policies can CPEX'St N & framework based on a generalized notion of priority in-
single system, providing much greater scheduling flexibil- o iance 1n this framework, known &PU inheritance
ity. Modular, .h'lerercmcal cqntrol can pe.prov!ded over.the scheduling, arbitrary threads can act as schedulers for other
processor utilization of arbitrary administrative domains, threads by temporarilonating their CPU time to selected
such as processes, jobs, users, and ggo:cjps, acr;d th% CID(ijther threads while waiting on events of interest such as
resources consur.ned. can be accounted for an aF"' utediock/timer interrupts. The receiving threads can further
accurately. Apphcauons as Well as .the OS can imple- donate their CPU time to other threads, and so on, form-
ment customized Ioca! schedullng .poI|C|es; the framework ing a logical hierarchy of schedulers, as illustrated in Fig-
ensures that ell the dlﬁerenF policies work together logi- ure 1. Scheduler threads can be notified when the thread
cally and predlctably.. A,S a side eﬁect, the fremework also to which they donated their CPU time no longer needs it
eleanly addreseee prlorlty'lnversmn by prOVIdl'ngageneraI- (e.g., because the target thread has blocked), so that they
IZ.Gd. form of priority mhe'rltanc'e that automat!cally W.OF"S can reassign their CPU to other target threads. The basic
W'thm. and. among mult|ple diverse scheduling polleles. thread dispatching mechanism necessary to implement this
CPU inheritance scheduling extends naturally to multlpro- framework does not have any notion of thread priority, CPU
cessors, and supports' processor management t_eChn'queuQSage, or clocks and timers; all of these functions, when
such as processor affinity [7]'and echeduler actlvatlops needed, are implemented by threads acting as schedulers.
[1]. Experimental results and simulations indicate that this Under this framework, arbitrary scheduling policies can

framework can be provided with negligible overhead in be impl nted by ordinary threads cooperating with each
typical situations, and fairly small (5-10%) performance © Impleme y y P g

degradation even in scheduling-intensive situations. 1We use the terms CPU and processor synonymously.

Root Scheduler
(realtime fixed-priority
RR/FIFO scheduler)

®
—— 5

Timesharing class
(lottery scheduler)

Mike
\iSD scheduler)

Realtime threads

O

O

Jay
(lottery scheduler)

Jay's threads
. - = O

O

Background class
(gang scheduler)

Background jobs

Figure 1: Example scheduling hierarchy. The red (solid)
circles represent threads acting as schedulers, while the yel-
low (open) circles represent “ordinary” threads.

other through well-defined interfaces that may cross protec-
tion boundaries. For example, a fixed-priority multiproces-
sor scheduling policy can be implemented by maintaining
among a group of scheduler threads (one for each available
CPU) a prioritized queue of “client” threads to be sched-
uled; each scheduler thread successively picks a thread to
run and donates its CPU time to the selected target thread
while waiting for an interesting event such as quantum ex-
piration (e.g., a clock interrupt). See Figure 2 for an illus-
tration. If the selected thread blocks, its scheduler thread is
notified so that it can reassign the CPU; on the other hand,
if an event causes the scheduler thread to wake up, the run-
ning thread is preempted and the CPU is given back to the
scheduler immediately. Other scheduling policies, such as
timesharing, rate monotonic, and lottery/stride scheduling,
can be implemented in the same way.

We believe this scheduling framework has the following
benefits:

e Provides coherent support for multiple arbitrary
scheduling policies on the same or different proces-
sors.

Scheduler

Scheduler

threads Ready

queues

scheduling
requests

O

Ready
threads

@)

O
O Waiting thread

App 2

Figure 2: Example fixed-priority scheduler

¢ Since scheduler threads may run either in the OS ker-

nel or in user mode, applications can easily extend or
replace the scheduling policies built into the OS.

¢ Provides hierarchical control over the processor re-

source usage of different logical or administrative do-
mains in a system, such as users, groups, individual
processes, and threads within a process.

¢ Usage of CPU resources can be accounted for to var-

ious degrees of accuracy depending on performance
tradeoffs.

e Addresses priority inversion naturally, without the

need for explicit priority inheritance/ceiling protocols,
in the presence of contention for resources.

e CPU use is attributed properly even in the presence of

priority inheritance.

¢ Naturally extends to multiprocessors.
e Supports processor affinity scheduling.

¢ Allows scheduler activations to be implemented eas-

ily.

The rest of this paper is organized as follows...

2 Motivation

Traditional operating systems control the sharing of the

machine’'s CPU resources among threads using a fixed

scheduling scheme, typically based on prioritigs How- threads,” so that those threads always run at a programmer-
ever, the requirements imposed on an operating system’sdefined priority. By carefully assigning priorities to the
scheduler often vary from application to application. For real-time threads in the system and ensuring that all non-
example, for interactive applications, response time is usu-realtime threads execute at lower priority levels, it is possi-
ally the most critical factor—i.e., how quickly the program ble to obtain real-time processor scheduling behavior suffi-
responds to the user’s commands. For batch jobs, through-cient for some real-time applications. However, it is well-
put is of primary importance but latency is a minor is- known that this approach has serious shortcomings: in
sue. For hard real-time applications, meeting application- many cases, entirely different non-priority-based schedul-
specific deadlines is a requirement, while for soft real- ing policies are needed, such as rate monotonic, earliest-
time applications, missing a deadline is unfortunate but not deadline-first, and benefit-accrual scheduli?ig [
catastrophic. There is no single scheduling scheme that
works well for all applications.

Over the years, the importance of providing a variety
of scheduling policies on a single machine has waxed and
waned, following hardware and application trends. In the
early years of computing, use of the entire machine was
limited to a single user thread; that evolved to multipro-
grammed machines with batch job loads, which could still
be handled by a single scheduling policy. The advent of
timesharing on machines still used for batch jobs caused
a need for two scheduling policies. As timesharing gradu-
ally gave way to single-user workstations and PCs, a single
scheduling policy was again usually adequate.

Today, we are entering what appears will be a long pe-
riod of needing multiple scheduling policies. Multimedia
content drives the need for an additional scheduling policy
on general purpose workstations: soft real-time. Untrusted
executable content (e.g., Java applets) will require policies
which limitresource use while also providing soft real-time
guarantees. Concomitantly, the hard real-time domain is

Furthermore, even in normal interactive or batch-
mode computing, traditional priority-based scheduling
algorithms are showing their age. For example, these
algorithms do not provide a clean way to encapsulate
sets of processes/threads as a single unit and isolate and
control their processor usage relative to the rest of the
system. This lack opens the system to various denial-of-
service attacks, the most well-known being the creation
of a large number of threads which conspire to consume
processor resources and crowd out other activity. These
vulnerabilities generally didn't cause serious problems in
the past for machines only used by one person, or when
the users of the system fall in one administrative domain
and can “complain to the boss” if someone is misusing the
system. However, as distributed computing becomes more
prevalent and administrative boundaries become increas-
ingly blurred, this form of system security is becoming
more important. This is especially true when completely
unknown, untrusted code is to be downloaded and run in a
supposedly secure environment such as that provided by
Yava P] or OmniWare P]. Schedulers have been designed
‘that promise to solve this problem by providing flexible
‘hierarchical control over CPU usage at different adminis-
trative boundaries [2, 8]. However, it is not yet clear how
these algorithms will address other needs, such as those of
various types of real-time applications: certainly it seems
unlikely that a single “holy grail” of scheduling algorithms
will be found that suits everyone’s needs.

two factors: processors and instruments supporting embed
ded applications are becoming networked, and some cus
tomers, e.g., the military, want the ability to flexibly shift
processing power to the problem of the moment.

Hence, as the diversity of applications increases, oper-
ating systems need to support multiple coexisting proces-
sor scheduling policies, in order to meet individual appli-
cation’s needs as well as to utilize the system’s processor

resources more efficiently. With the growing diversity of application needs and
scheduling policies, it becomes increasingly desirable for
2.1 Reated Work an operating system to be able to support multiple com-

pletely different policies. On multiprocessor systems, one
One relatively simple approach to providing real-time simple but limited way of doing this is to allow a differ-
support in systems with traditional timesharing schedulers, ent scheduling policy to be selected for each proces§or [
which has been adopted by many commonly-used sys-A more general but more controversial approach is to al-
tems such as Unix systems, MacH,[and Windows NT low multiple “scheduling classes” to run on a single proces-
[?], and has even become part of thesix standard 7], sor, with a specific scheduling policy associated with each
is support for fixed-priority threads. Although these sys- class. The classes have a strictly ordered priority relation-
tems generally still use conventional priority-based time- ship to each other, so the highest-priority class gets all the
sharing schedulers, they allow real-time applications to dis- CPU time it wants, the next class gets any CPU time left un-
able the normal dynamic priority adjustment mechanisms used by the first class, etc. Although this approach shows
on threads that are specifically designated as “real-timepromise, one drawback is that since the schedulers for the

different classes generally don't communicate or cooperate priority inheritance in conventional systems, except that it
with each other closely, only the highest-priority schedul- is done explicitly by the donating thread, and no notion of
ing class on a given processor can make any assumptionspriority” is directly involved, only a direct transfer of the
about how much CPU time it will have to dispense to the CPU from one thread to another; hence the name “CPU in-
threads under its control. heritance.”

An additional problem with existing multi-policy A scheduler thread is a thread that spends most of its
scheduling mechanisms is that all of them, as far as wetime donating whatever CPU resources it may have to other
know, still require every scheduling policy to be im- threads: it essentially distributes its own virtual CPU re-
plemented in the kernel and to be falrly C|OSE|y tied in sources among some numberabifent threads to Satisfy
with other kernel mechanisms such as threads, contexttheir CPU requirements. The client threads tinfeerit
switching, clocks, and timers. some portion of the scheduler thread’s CPU resources, and

Finally, most existing systems still suffer from vari- treat that portion asheir virtual CPU for use in any way
ous priority inversion problems. Priority inversion occurs they please. These client threads can in turn act as sched-
when a high-priority thread requesting a service has to wait yler threads, distributing their virtual CPU time among
arbitrarily long for a low-priority thread to finish being their own client threads, and so on, forming a scheduling
serviced. With traditional priority-based scheduling algo- hijerarchy.
rithms, this problem can be addressed with priority inher- The only threads in the system thaberently have real
itance [3, 4], wherein the thread holding up the service is CPU time available to them are the setrobt scheduler
made to inherit the priority of the highest priority thread threads; all other threads can only ever run if CPU time
waiting for service. In some cases this approach can bejg yonated to them. There is one root scheduler thread
adapted to other scheduling policies, such as with ticket for each real CPU in the system; each real CPU is perma-

transfer i.n Iottgry. sc.heduli.ng [8]. Howe\éer, the pfro.l:#em nently dedicated to supplying CPU time to its associated
of resolving priority inversion between threads of differ- root scheduler thread. The actions of the root scheduler

ent scheduling classes using policies with completely dif- thread on a given CPU determine fhese scheduling pol-
ferent and incomparable notions of “priority,” such as be- icy for that CPU.

tween a rate-monotonic realtime thread and a timeshared

lottery scheduling thread, has not been addressed so far.
3.2 TheDispatcher

3 CPU Inheritance Scheduling In order toimplement CPU inheritance scheduling, even

though all high-level scheduling decisions are performed
by threads, a small low-level mechanism is still needed
to implement primitive thread management functions. We
call this low-level mechanism traispatcher to distinguish

it clearly from high-level schedulers.

In our Schedu"ng model, as in traditional systems, a The role of the dispatcher is to to handle threads block-
thread is a virtual CPU whose purpose is to execute arbi- iNg and unblocking, donating CPU to each other, relin-
trary instructions. A thread may or may nothave areal CPU quishing the CPU, etc., without actually making any real
assigned to it at any gi\/en instant; a running thread may Scheduling decisions. The dispatcher fields events and di-
be preempted and its CPU reassigned to another thread atects them to threads waiting on those events. Events can
any time, depending on the scheduling policies involved. be synchronous, such as an explicit wake-up of a sleeping
(For the purposes of this framework, it is not important thread by a runningthread, or asynchronous, such an exter-
whether these threads are kernel-level or user-level threadshal interrupt (e.g., I/O or timer).
or whether they run in supervisor or user mode.) The dispatcher inherently contains no notion of thread

The basic idea of CPU inheritance scheduling is that un- priorities, CPU usage, or even measured time (e.g., clock
like in traditional systems where threads are scheduled byticks, timers, or CPU cycle counters). In an OS kernel
some lower-level entity (e.g., a scheduler in the OS kernel supporting CPU inheritance scheduling, the dispatcher is
or a user-level threads package), threads are instead schedhe only scheduling component thaiust be in the ker-
uledby other threads. Any thread that has areal CPU avail- nel; all other scheduling code could in theory run in user-
able to it at a given instant cafonate its CPU temporarily mode threads outside of the kernel (although this “purist”
to another thread of its choosing, instead of using the CPU approach is likely to be impractical for performance rea-
itself to execute instructions. This operation is similar to sons).

This section describes the CPU inheritance scheduling
framework in detail.

3.1 Basic Concepts

3.3 Requesting CPU time 3.5 Voluntary donation

Instead of simply blocking, a running thread can instead
voluntarily donate its CPU to another thread while waiting
'on an event of interest. This is done in situations where pri-
ority inheritance would traditionally be used: for example,
when a thread attempts to obtain a lock that is already held,
it may donate its CPU to the thread holding the lock; sim-

Since no thread (except a root scheduler thread) can
ever run unless some other thread donates CPU time to it
the first job of a newly-created or newly-woken thread is
to request CPU time from some scheduler. Each thread

has an associated scheduler that has primary responsibil
ity for providing CPU time to the thread. When the thread a1y "\yhen a thread makes an RPC to a server thread, the
becomes ready, the dispatcher makes the thread *spontagjient thread may donate its CPU time to the server for the

neously” notify its scheduler that it needs to be given CPU g, a1ion of the request. When the event of interest occurs,

time. The exact form such a notification takes is not im- e gonation ends and the CPU is given back to the original
portant; in our implementation, notifications are simply thread.

IPC messages sent by the dispatcher to Mach-like message It is possible for a single thread to inherit CPU time in

ports. this way from more than one source at a given time: for
When a thread wakes up and sends a notification to example, a thread holding a lock may inherit CPU time

its scheduler port, that notification may in turn wake up a from several threads waiting on that lock in addition to its

server (scheduler) thread waiting to receive messages orbwn scheduler. In this case, the effect is that the thread has

that port. Waking up that scheduler thread will cause an- the opportunity to run at any tingny of its donor threads

other notification to be sent ties scheduler, which may would have been able torun. Athread only “uses” one CPU

wake up still another thread, and so on. Thus, waking up source at a time; however, if its current CPU source runs

an arbitrary thread can cause a chain of wakeups to propaout (e.g., due to quantum expiration), it will automatically

gate back through the scheduler hierarchy. Eventually, this be switched to another if possible.

propagation may wake up a scheduler thread that is cur-

rently being supplied with CPU time but is donating itto 36 Theschedul e operation

some other thread. In that case, the thread currently run-

ning on that CPU is preempted and control is given back The call a scheduler thread makes to donate CPU time
to the woken scheduler thread immediately; the schedulerig 3 client thread is simply a special form of voluntary CPU
thread can then make a decision to re-run the preemptedqonation, in which the thread to donate to and the event to
client thread, switch to the newly-woken client thread, or ait for can be specified explicitly. In our implementation,
even some run other client thread. Alternatively, the prop- thisschedul e operation takes as parameters a thread to
agation of wake-up events may terminate at some point, donate to, a port on which to wait for messages from other
for example because a notified scheduler is already awakegjient threads, and wakeup sensitivity parameter indicat-
(not waiting for messages) but has been preempted. In thatng in what situations the scheduler should be woken. The
case, the dispatcher knows that the wake-up event is irrel-gperation donates the CPU to the specified target thread and
evant for scheduling purposes at the moment, so the cur-pyts the scheduler thread to sleep on the specified port; if
rently running thread is resumed immediately. a message arrives on that port, such as a notification that
another client thread has been woken or a message from
a clock device driver indicating that a timer has expired,
then theschedul e operation terminates and controlis re-
turned to the scheduler thread.

Atany time, arunning thread may block towaitforsome In addition, theschedul e operation may be inter-
event to occur, such as I/0 completibriwWhen a thread ~ rupted before a message arrives in some cases, depending
blocks, the dispatcher returns control of the CPU to the on the behavior of the thread to which the CPU is being
scheduler thread that provided it to the running thread. That donated and the value of the wakeup sensitivity parame-
scheduler may then choose another thread to run, or it mayter. The wakeup sensitivity level acts as a hint to the dis-
relinquish the CPU tdts scheduler, and so on up the line patcher allowing itto avoid waking up the scheduler thread
until some scheduler finds work to do. except when necessary; itis only an optimization and is not
required in theory for the system to work. The following
three sensitivity levels seem to be useful in practice:

3.4 Rélinquishing the CPU

?In our prototype implementation, a thread can only wait on one event

at a time; however, there is nothing in the CPU inheritance scheduling . L.
framework that makes it incompatible with thread models such as thatof ¢ VWAKEUP_ONLBLOCK: If the thread receiving the

Windows NT [?], in which threads can wait on multiple events at once. CPU blocks without further donating it, then the

O T2

Figure 3: CPU donation chain

schedul e operation terminates and control is re-
turned to the scheduler immediately. For example, in
Figure 3, if scheduler threagl has donated the CPU
to thread/> using this wakeup sensitivity setting, but
T blocks and can no longer use the CPU, ttgn
will receive control againWAKEUP_ONLBLOCK is the
“most sensitive” setting, and is typically used when
the scheduler has other (e.g., lower-priority) client
threads waiting to run.

WAKEUP_ONLSW TCH: If the client thread using the
CPU (e.g./1») blocks, control isnot immediately re-
turned to its schedulerS{): the dispatcher behaves
instead as if5; itself blocked, and passes control on
back toits scheduler,5;. If 75 is subsequently wo-
ken up, then whew, again provides the CPU t8,,
the dispatcher passes control directly back#evith-
out actually running’;, . However, if adifferent client

of Sy, such asli, wakes up and sends a notification
to S;’s message port, thefi,’s schedul e opera-
tion will be interrupted. This sensitivity level is typ-

ically used when a scheduler has only one thread to
run at the moment and doesn’t care when that thread

blocks or unblocks, but it stillwants to switch between
client threads manually: for example, the scheduler
may need to start and stop timers when switching be-
tween client threads.

WAKEUP_ONLCONFLI CT: As above, if7: blocks,

the scheduler blocks too. However, in this casanif
client of schedules; is subsequently woken, such as
T, the dispatcher passes control directly through to
the woken client thread without waking up the sched-
uler thread. The scheduler is only awakenedséa

ond client thread wakes up while the scheduler is al-
ready donating CPU to the first client (e.g., if baGth
and7: become runnable at the same time). At this
weakest sensitivity level, the dispatcher is allowed to
switch among client threads freely; the scheduler only
acts as a “conflict resolver,” making a decision when
two client threads become runnable at once.

4 |Implementing High-level Schedulers

This section describes how the basic CPU inheritance

scheduling mechanism can be used to implement various
high-level scheduling policies as well as other features such

as CPU usage accounting, processor affinity, and scheduler
activations.

4.1 Single-CPU Schedulers

Figure??shows example pseudocode for a simple fixed-
priority FIFO scheduler. The scheduler basically keeps a
prioritized queue of client threads waiting for CPU time,
and successively runs each one usingttieedul e oper-
ation while waiting for messages to arrive on its port (e.g.,
notifications from newly-woken client threads). When
there are no client threads waiting to be run, the sched-
uler uses the ordinary “non-donating” wait-for-message op-
eration instead of thechedul e operation, to relinquish
the CPU while waiting for messages. If there is only one
client thread in the scheduler’s queue, the scheduler uses
the WAKEUP_ONLCONFLI CT sensitivity level when run-
ning itto indicate to the dispatcher thatit may switch among
clientthreads arbitrarily as long as only one client thread at-
tempts to use the CPU at a time.

4.2 Timekeeping and Preemption

The simple FIFO scheduler above can be converted to a
round-robin scheduler by introducing some form of clock
or timer. For example, if the scheduler is the root scheduler
on a CPU, then the scheduler might be directly responsible
for servicing clock interrupts. Alternatively, the scheduler
may rely on a separate “timer thread” to notify it when a
periodic timer expires. In any case, a timer expiration or
clock interrupt is indicated to the scheduler by a message
being sent to the scheduler’s port. This message causes
the scheduler to break out of Bghedul e operation and
preempt the CPU from whatever client thread was using
it. The scheduler can then move that client to the tail of
the ready queue for its priority and give control to the next
client thread at the same priority.

4.3 Multiprocessor Support

Since the example scheduler above only contains a sin-
gle scheduler thread, it can only schedule a single client
thread at once. Therefore, althoughit can be run on a multi-
processor system, it cannot take advantage of multiple pro-
cessors simultaneously. For example, a separate instance
of the FIFO scheduler could be run as the root scheduler
on each processor; then, client threads assigned to a given

scheduler will effectively be bound to the CPU the sched- 4.3.2 Scheduler Activations

uler is associated with. Althoughin some situations this ar-

rangement can be useful, e.g., when each processor is to be

dedicated to a particular purpose in most cases itis notwhat|n the common case client threads “communicate” with

is needed. their schedulers implicitly through notifications sent by the
In order for a scheduler to provide “real” multiproces- dispatcher on behalf of the client threads. However, there

sor scheduling to its clients, where different client threads is nothing to prevent client threads fraxplicitly commu-

can be dynamically assigned to different processors on de-nicating with their schedulers through some agreed-upon

mand, the scheduler must itself be multi-threaded. Assumeinterface. One particularly useful explicit client/scheduler

for now that the scheduler knows how many processors interface is ascheduler activationsinterface [1], which al-

are available, and can bind threads to processors. (This idows clients to determine initially and later track the num-

clearly trivial if the scheduler is run as the root scheduler on ber of actual processors available to them, and create or

some or all processors; we will show later how this require- destroy threads as appropriate in order to make use of all

ment can be met for non-root schedulers.) The scheduleravailable processors without creating “extra” threads that

creates a separate thread bound to each processor; each obmpete with each other uselessly on a single processor.

these scheduler threads then selects and runs client threads

on that processor. The scheduler threads cooperate with Furthermore, since scheduler threads are notified by the

each other using shared variables, e.g., shared run queuedispatcher when a client thread blocks and temporarily can-
in the case of a mu|tiprocessor FIFO scheduler. not use the CPU available to it (e.g., because the thread is

Since the scheduler’s client threads are supposed to bewaitingforan I/O request or a page faultto be serviced), the

unaware that they are being scheduled on multiple proces-tsr:: hel?urlﬁr (r:1an notrltfyr']tirtletcllernt Itr;:zurigvstilrtz:g?c? Eg?(g'&’ge
sors, the scheduler exports only a single port representing € clientan opportunityto crea

the scheduler as a whole to all of its clients. When a client of the CPU while the original thread is blocked. For exam-

thread wakes up and sends a notification to the scheduler{? Ie,fa clle”nt %gnhirheate 2 pdooll ofk“dormartl)t" tf;rbeetds, or T}C'
port, the dispatcher arbitrarily wakes up one of the sched- vations,“w I:cc CFE:US(;) eauler ”OWIS gl outbu t;lorma y f
uler threads waiting on that port. (A good general policy is neverruns. ira ecomes available, €.g., because o

for the dispatcher to wake up the scheduler thread assocj-another client thread blocking, the scheduler “activates”

ated with the CPU on which the wakeup is being done; this one of the;e dormant threads on the CPU vacated by the
allows the scheduler to be invoked on the local processorblocked clientthread. Later, when the blocked thread even-

without interfering with other processors unnecessarily.) If tally unblocks and requests CPU time again, the scheduler

the woken scheduler thread discovers that the newly Woken':.’r.eempts one of thg currently running client thregds and no-
clientshould be run on a different processor (e.g., because ittIerS the cllent that it should make one of the active threads
is already running a high-priority client but another sched- dormant again.
uler thread is running a low-priority client), it can interrupt
the other scheduler threadshedul e operation by send-
ing it a message or “signal”; this corresponds to sending

inter-processor interrupts in traditional systems.

Scheduler activations were originally devised to pro-
vide better support for application-specific thread packages
running in a single user mode process. In an OS kernel
that implements CPU inheritance scheduling, extending a
scheduler to provide this support should be quite straight-
forward. However, in a multiprocessor system based on
4.3.1 Processor Affinity CPU inheritance scheduling, scheduler activations are also

highly useful to allow stacking of first-class schedulers. As
Scheduling policies that take processor affinity into consid- mentioned previously, multiprocessor schedulers need to
eration [5—7], can be implemented by treating each sched-know the number of processors available in order to use
uler thread as a processor and attempting to schedule ahe processors efficiently. Aslong as a base-level scheduler
clientthread from the same scheduler thread that previously(e.g., the root scheduler on a set of CPUs) exports a sched-
donated CPU time to that client thread. Of course, this will uler activations to its clients, a higher-level multiprocessor
only work if the scheduler threads are indeed consistently scheduler running as a client of the base-level scheduler can
run on the same processor. Any processor affinity supportuse the scheduler activations interface to track the number
in one scheduling layer will only work well if all the lay- of processors available and schedtelients effectively.
ers below it (between it and the root scheduler) also pay at- (Simple single-threaded schedulers that only make use of
tention to processor affinity. A mechanism to ensure thisis one CPU at a time don’t need scheduler activations and can
described in the next section. be stacked on top of any scheduler.)

4.4 Timing both of the above methods can be applied directly. To im-
plement statistical accounting, the scheduler simply checks
Most scheduling algorithms require@asurablenotion what thread it ran last upon being woken up by the arrival
of time, in order to implement preemptive scheduling. For of a timeout message. To implement time stamp-based ac-
most schedulers, a periodic interrupt is sufficient, although counting, the scheduler reads the current time each time it
some real-time schedulers may need finer-grained timersschedules a different client thread. The scheduler must use
whose periods can be changed between each time quantunthe WAKEUP_ON_BL OCK sensitivity level in order to ensure
In CPU inheritance scheduling, the precise nature of the thatitcan check the time at each thread switch and to ensure
timing mechanism available to schedulers is not important that idle time is not charged to any thread.
to the general framework; all that is needed is some way For schedulers stacked on top of other schedulers, CPU
for a scheduler thread to be woken up after some amountusage becomes a little more complicated because the CPU
of time has elapsed. In our implementation, schedulerstime supplied to such a scheduler is already “virtual” and
can registetimeoutswith a central clock interrupthandler; cannot be measured accurately by a wall-clock timer. For
when a timeout occurs, a message is sent to the appropriatexample, in Figure 3, if scheduléi measureg:'s CPU
scheduler’s port, waking up the scheduler. The dispatcherusage using a wall-clock timer, then it may mistakenly
automatically preempts the running thread if necessary andcharge against: time actually used by the high-priority
passes control back to the scheduler so that it can accounthread7y, which S; has no knowledge of because it is
for the elapsed time and possibly switch to a different client scheduled by the root schedulgy.

thread. In many cases, this inaccuracy caused by stacked sched-
ulers may be ignored in practice on the assumption that
441 CPU usage accounting high-priority threads and schedulers will consume rela-

. _ o . tively little CPU time. (If this weren't the case, then the
Besides simply deciding which thread to run next, sched- |ow-priority scheduler probably would not be able to run
ulers often must account for CPU resources consumed.at all!) This assumption corresponds to the one made in
CPU accounting information is used for a variety of pur- many existing kernels that hardware interrupthandlers con-
poses, such as reporting usage statistics to the user on desyme little enough CPU time that they may be ignored for
mand, modifying scheduling policy based on CPU usage accounting purposes.

(e.g., dynamically adjusting thread priority), or bilinga |n sjtuations in which this assumption is not valid and
customer for CPU time consumed for a particular job. As accurate CPU accounting is needed for stacked sched-
with scheduling policies, there are many possible CPU ac- ylers, virtual CPU time information provided by base-level
COUnting mechanisms, with different cost/benefit tradeoffs. schedulers can be used instead of wall-clock time, at some
The CPU inheritance scheduling framework allows a vari- additional cost due to additional communication between
ety of accounting policies to be implemented by scheduler schedulers. For example, in Figure 3, at each clock tick

threads. (for statistical accounting) or each context switch (for time
There are two well-known approaches to CPU usage ac-stamp-based accounting), schedufercould request its
counting: statistical andtime stamp-based [?]. With sta- own virtual CPU time usage from, instead of checking

tistical accounting, the scheduler wakes up on every clock the current wall-clock time. Itthen uses this virtualtime in-

tick, checks the currently running thread, and charges theformation to maintain usage statistics fteclients, 7’ and
entire time quantum to that thread. This method is quite in- 7,

expensive in terms of overhead, since the scheduler gen-
erally Walfes., up on every clock ltic.k anyway; however, it 442 Effects of CPU donation on timing
provides limited accuracy. A variation on this method that
provides better accuracy at slightly higher cost is to sam- As mentioned earlier, CPU donation can occur implicitly
ple the current thread at random poibéswieen clock ticks as well as explicitly, e.g., to avoid priority inversionwhen a
[?]. Alternatively, with time stamp-based accounting, the high-prioritythread attempts to lock aresource already held
scheduler reads the current time at every context switchby a low-priority thread. For example, in Figure 4, sched-
and charges the difference between the current time and theuler S, has donated the CPU to high-priority threBgin
time of the last context switch to the thread that was run- preference over low-priority thredtl. However, it turns
ning during that period. This method provides extremely outthat7} is holding a resource neededhy, so7; implic-
high accuracy, but also imposes a high cost due to length-itly donates its CPU time t®; . Since this donation merely
ened context switch times, especially on systems on whichextends the scheduling chais}, is unaware that the switch
reading the current time is an expensive operation. occurred, and it continues to charge CPU time useshto

In the root scheduler in a CPU inheritance hierarchy, instead ofS; which is the thread that iactually using the

CPU SO

A — @ — additional thread is created for each additional schedul-
O TO o ing policy desired; these threads then block forever on a
/ (high-priority) lock held by the first thread so that they perpetually donate
their CPU time to it. The dispatcher will automatically en-
T sure that the primary thread always uses the highest priority
(low-priority) scheduler available, because whenever the primary thread

becomes runnable and requests CPU time from its sched-
Figure 4: Implicit CPU donation from high-prioritythread yjer, the secondary threads will also request CPU time from
Tp to low-priority threadT'; to avoid priority inversiondur- thejr schedulers, and the scheduling algorithms will ensure
ing a resource conflict. that the highest-priority request always “wins.”

In situations in which this solution is not acceptable
for reasons of performance or memory overhead, the dis-
patcher could fairly easily be extended to allow multiple
schedulers to be associated with a single thread, so that
when such a thread becomes runnable the dispatcher auto-
matically notifies all of the appropriate schedulers.

Although it may at first seem inefficient to notify two or
more schedulers when a single thread awakes, in practice
many of these notifications never actually need tdddia/-
ered. For example, if a real-time/timesharing thread wakes
up, finishes all of its work and goes back to sleep again be-
fore its real-time scheduling quantum is expired (presum-
ably the common case), then the notification posted to the
low-priority timesharing scheduler at wakeup time will be
canceled (removed from the queue) when the thread goes to
sleep again, so the timesharing scheduler effectively never
sees it.

CPU.

While it may seem somewhat nonintuitive at first, in
practice thisis precisely the desired behavior; it stems from
the basic rule that with privilege comes responsibility. If
T, is donating CPU tdl'y, thenT) is effectively doing
work on behalf of 75 i.e., finishing its job and unlocking
the resource as quickly as possible so thatan get on
with its other activities. Since this work is being done (at
this point) primarily for the benefit ofy, the CPU time
consumed must be charged’fp. Demonstrated another
way, charging?/; rather than/y would be incorrect be-
cause it would allow the system to be subverted: for ex-
ample, if high-priority CPU time is “expensive” and low-
priority CPU time is “cheap,” thefi} could collude with
T} to use high-priority CPU time while being charged the
low-priority “rate” simply by arranging fof’; to do all the
actual work whileT;, blocks on a lock perpetually held by
Ty . This ability to charge the “proper” thread for CPU us-
age even in the presence of priority inheritance is generally
unnatural and difficult to implement in traditional systems,
and therefore is generalhpt implemented by thenf?]; on
the other hand, this feature falls out of the CPU inheritance
framework automatically.

5 Analysisand Experimental Results

We have created a prototype implementation of this
scheduling framework and devised a number of tests to
evaluate its flexibility and performance. The basic ques-
tions to be answered are:

45 Threadswith Multiple Scheduling Policies o Is the frameworkpractical? Can it perform the same
functions as existing schedulers without unacceptable

Sometimes it is desirable for a single thread to be asso- ~ Performance cost?

ciated with two or more scheduling policies at once. For 4 |sthe frameworkuseful? Does it provide sufficient ad-

example, a thread may normally run in a real-time rate- ditional flexibility or functionality to justify its use in
monotonic scheduling class; however, if the thread’s quan- practice?

tum expires before its work is done, it may be desirable for
the thread to drop down to the normal timesharing class in- 5,1 Test Environment
stead of simply stopping dead in its tracks.

Support for multiple scheduling policies per thread can In order to provide a clean, easily controllable environ-
be provided in the CPU inheritance scheduling framework ment, as our initial prototype we implemented a simple
intwo ways. First, the effect can be achieved even in an im- user-level threads package incorporating CPU inheritance
plementation such as ours that only directly supports a sin- scheduling as its mechanism for scheduling the user-level
gle permanent scheduler association per thread, althougthreads it provides. The threads package supports com-
in a somewhat ad-hoc and possibly inefficient way. First, mon abstractions such as mutexes, condition variables, and
the thread of interest is created and associated with its “pri- message ports for inter-thread communication and synchro-
mary” (presumably highest-priority) scheduler. Then, one nization. The package implements separate thread stacks

Real-time Scheduler Multilevel Scheduling Hierarchy

Root Scheduler Rate-monotonic O 20
leed-prlonty / Rate monotonic thread 1 71—
® ® Real-time 18 Rate monotohic thread 27—
periodic threads g 16 Lottery thre(aa}li:,,,
22 Applet thréad 1
O o 14 Appletthréad 2 -~
=4 /?J O'tnreag 1~
a 12 FHQ.thread 2 -
Roufd-robin thréad 1=
Lottery Scheduler o & w Rout-fopin téad 1.~ -
/ " ’/,' iy
@ 3 .
©
3
2 6
Lottery 3 4
Scheduler @) <
® . 2
Java applet e
threads 0 100 200 300 400 500 600 700 800 900
Time (clock ticks)
O
Figure 6: Behavior of a multilevel scheduling hierarchy
. FIFO Scheduler
() gg#e%tlre?bm Non-preemptive @)
— 5.2 Scheduling behavior

stacked on top of each other. For this test we use the
scheduling hierarchy shown in Figure 5, which is designed
to reflect the activity that might be present in a general-
purpose environment. In this environment, the root sched-
Figure 5: Multilevel scheduling hierarchy used for tests uleris a nonpreemptive fixed-priority scheduler with a first-
come-first-served policy among threads of same priority.
This scheduler is used to arbitrate between three schedul-
ing classes: a real-time rate-monotonic scheduler at the
highest priority, a lottery scheduler providing a timesharing

with set j np/l ongj np, and the virtual CPU timer alarm ~ class, and a simple round-robin scheduler for background
Signa| 6| G\/TALRM is used to provide preemption and jObS. On tOp of the Iottery scheduler managing the time-
simulate clock interrupts. (We used the virtual CPU timer sharing class, a second-level scheduler, also implementing
instead of the wall-clock timer in order to minimize distor- lottery scheduling, manages two threads of a Java applet.
tion of the results due to other activity in the host Unix sys- (Itis actually possible to collapse adjacent levels of lottery
tem. In a “real” user-level threads package based on thisscheduling while achieving the same effect by usiog
scheduling framework, intended for practical use, the nor- rencies; however, we show two separate schedulers here for

mal wall-clock timer would probably be used instead.) generality.) Finally, an application-specific FIFO scheduler

schedules two cooperating threads in a single application
Although our prototype is implemented in user space, Under the global timesharing scheduler. -

the prototype is designed to reflect the structure and exe- Figure 6 shows the scheduling behavior of the threads

cution environment of an actual OS kernel running in priv- Simulated in this hierarchy.

ileged mode. For example, the dispatcher itself is pas-

sive, nonpreemptible code executed in the context of the 5.3 Priority inheritance and priority-driven re-

currently running thread: an environment similar to that source ar bitration

of BSD and other traditional kernels. The dispatcher is

cleanly isolated from the rest of the system, and supports To study how our scheduling mechanism tackles the

scheduling hierarchies of unlimited depth and complexity. priority-inversion problem, we implemented a simple ap-

Our prototype schedulers are also isolated from each otherplication in which clients execute two services - one to look

and from their clients; the various components communi- up the IP address of a machine givenits name, which inturn

cate with each other through message-based protocols thatontacts the second service that models a network access

could easily be adapted to operate across protection do-service. We implemented both servers as critical sections

mains using IPC. protected by “prioritized” mutex locks. These locks avoid

® Cooperating
\hreads . . . L
o O Our first test demonstrates multiple scheduling policies
O

10

Priority Inheritance Example Thread || LevelO| Level1]| Level 2| Level 3

L2 1 |27 B A s tggsten bt ~oot R
Ls2 1 iy RM_T1 25.465
LS T1 | s RM_T2 14.978
£ RR_T1 _ LS1 0.082
Lo o | LS.T1 23.080
B LS2 0.020
RR § T LS2T1 5.882
RM_T1 - FIFO 0.001
Ls1 i FIFO.T1 5.722
, , , , , RR 0.056
0 10 20 30 40 50 60 RRT1 12.227
Time RR.T2 12.219
Total | 0.216] 0.189| 87.990| 11.604

. . Priofitv , | |
Figure 7: Priority inheritance between schedulers Percent of time used by schedulers: 0.426

Percent of time not used by schedulers: 99.573
unbounded priority inversion by donating the client's CPU]
to the lock holder while the lock is held. They also grantthe 1able 1 CPU consumption by scheduler and worker
lock in “priority order” by logically waking up all clients ~ threads
gueued for the lock. Whichever client gets CPU first will
succeed in acquiring the lock, while others continue donat-

ing CPU to the lock holder. ters S2 next. Note that its interleaved execution with

Elgure 7. illustrates an observed gxecutlon sequence. LS1 causes its to immediately get back the CPU thru’
Horizontal lines denote thread execution and vertical lines LS.T1

denote context switches. The smallest segment of execu-
tion denotes one clock period, at which time the root sched- . .
6. When the real-time thread RW1 eventually tries to
I k nd reschedules. Th nce of events are e .
ulerwakes up and reschedules. The sequenc enter S1, it finds that the holder of S1 is 13 and

as follows. The scheduling hierarchy used is shown in Fig- donates it the CPU. This CPU is utilized by 1T

cestor scheduler, which is the root. Hence_RRen-

ure >. to rapidly finish its work in both S2 as well as S1, as
1. First, the thread FIF'1 enters the ead_dat a ser- RM_T1 is the highest priority thread in the system.
vice's critical section by locking its mutex. starts exe-
cuting. 7. Oneimportant event not shown in the figure is the fact

. . . that LS2T1 triesto enter S1 before RNI1, and hence
2. Nextthe Roundrobmthread RRL tries to acquire the , gets queued up before RML in the lock’s wait queue.
above mutex and fails. It donates its CPU to the lock’s When LST1 unlocks S2's mutex, it wakes up both

current holder, FIFOT1. RM_T1as wellas LS2T'1. Butdue toits high priority,

3. Next the lottery scheduled thread I3 enters the RM_T1 jumps the queue and enters S1 before 132

first service which in turn tries to enter S2, but This is an example of prioritized granting of lock re-
blocks, again donating CPU to FIFTD. (we call it guests, between a lottery scheduled thread and a real-

get _avg.val (), or S1). time thread with totally different notions of priority.

4. A little after 20 clock ticks, root scheduler runs the 5.4 Scheduling overhead
round robin scheduler, which in turn selects to run

RR_T1. However, since RR'1 has donated its CPU))
to the S2 lock holder, FIFG'0. Hence FIFOTO gets Table 1 shows scheduling overhead in the test above.
CPU directly. The total amount of time spent in each scheduler is shown

in boldface, with the times for the corresponding threads to

5. When FIFQTO eventually leaves S2 by unlockingits the right of their schedulers. It can be seen in the table that

mutex, it logically wakes up and dispatches both of scheduling overhead is quite small compared to the time

the contenders namely RRL and LST1. The deci- spent doing actual work: all of the scheduler threads com-
sion to choose RHR1 is made by their common an- bined consume only about 1% of the total CPU time.

11

6

Conclusion

In this paper we have presented a novel processor

scheduling framework in which arbitrary threads can act

as schedulers for other threads. Widely different schedul-

ing policies can be implemented under the framework,
and many different policies can coexist in a single sys-
tem. Modular, hierarchical control can be provided overthe
processor utilization of arbitrary administrative domains,

such as processes, jobs, users, and groups, and the CPU

7] R. Vaswani and J. Zahorjan.

[6] J. Torrellas, A. Tucker, and A. Gupta. Evaluating the

Performance of Cache-Affinity Scheduling in Shared-
Memory Multiprocessorslournal of Parallel and Dis-
tributed Computing, 24:139-151, 1995.

The Implications of
Cache Affinity on Processor Scheduling for Multipro-
grammed, Shared Memory Multiprocessors.Phac.

of the 13th ACM Symposium on Operating Systems
Principles, pages 26-40, Oct. 1991.

resources consumed can be accounted for and attribute({lg] C. A. Waldspurger and W. E. Weihl. Lottery Schedul-
accurately. Applications as well as the OS can imple-

ment customized local scheduling policies; the framework
ensures that all the different policies work together log-
ically and predictably. The framework also cleanly ad-
dresses priority inversion by providing a generalized form
of priority inheritance that automatically works within and

among multiple diverse scheduling policies. CPU inheri-

tance scheduling extends naturally to multiprocessors, and
supports processor management techniques such as proces-

sor affinity [7] and scheduler activations [1]. Experimen-
tal results and simulations indicate that this framework can
be provided with negligible overhead in typical situations,
and fairly small (5-10%) performance degradation even in
scheduling-intensive situations.

References

[1] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and

H. M. Levy. Scheduler Activations: Effective Ker-
nel Support for the User-Level Management of Paral-
lelism. ACM Trans. Comput. Syst., 10(1):53-79, Feb.
1992.

[2] A. C. Bomberger and N. Hardy. The KeyKOS Nanok-

ernel Architecture. InProc. of the USENIX Work-
shop on Micro-kernelsand Other Kernel Architectures,
pages 95-112, Seattle, WA, Apr. 1992,

[3] S. Davari and L. Sha. Sources of Unbounded Prior-

[4]

[5]

ity Inversions in Real-time Systems and a Comparative
Study of Possible Solution®CM Operating Systems
Review, 23(2):110-120, April 1992.

L. Sha, R. Rajkumar, and J. P. Lehoczky. Prior-
ity Inheritance Protocols: An Approach to Real-time
Synchronization. |EEE Transactions on Computers,
39(9):1175-1185, 1990.

M. S. Squillante and E. D. Lazowska. Using Processor-
Cache Affinity Information in Shared-Memory Multi-
processor SchedulindEEE Transactions on Parallel

and Distributed Systems, 4(2):131-143, 1993.

12

ing: Flexible Proportional-Share Resource Manage-
ment. InProc. of the First Symposium on Operat-

ing Systems Design and Implementation, pages 1-11,
Monterey, CA, Nov. 1994. USENIX Association.

