Partial Order Reduction Without the
Proviso

Ratan Nalumasu
Ganesh Gopalakrishnan

UUCS-96-008

Department of Computer Science
University of Utah
Salt Lake City, UT 84112 USA

August 6, 1996

Abstract

In this paper, we present a new partial order reduction agorithm that can help reduce both space
and time reguirements of on-the-fly explicit enumeration based verifiers. The partial order reduction
algorithms described in [God95, HP94, Pel 94, Pel96] were observed to yield very little savings in
many practical examples. The reason was traced to the proviso in these al gorithmsthat often caused
their search to generate many unnecessary states. Our algorithm, called the two-phase agorithm,
avoidstheproviso, and followsan execution strategy consisting of alternating phasesof partial order
reduction of deterministic states and depth-first search. In this paper, we describe the two-phase
algorithm, proveits correctness, describe anew verification tool employingit, and provideanumber
of significant examples, including directory based protocol sof amultiprocessor, that demonstratethe
superior performance of the two-phase agorithm.

1 Introduction

To motivate the problem studied here, consider two processesPand Q wherePiswhi | e(1) x++
andQiswhi | e(1) y++. If x andy arelocal variables, Pand Q are executed usingtheinterleaving
semantics, and if all the safety propertiesof interest are of theform p(z) or ¢(y) (i.e. binary relations
suchas» < y are not of interest), then it is not necessary to execute the concurrent actions x ++
and y++ in both orders; i.e., it sufficesto either execute x++ followed by y++, or viceversa. This
technique (and suitable generalizations thereof) of avoiding some of the possible interleavings of
independent actionsis known as partial order reduction [God95, GP93, HP94, Pel 93, Pel 94, Pel 96,
Val 90, Va 93] whose semantic underpinnings can be traced to Mazurkiewicz traces [Maz89].

In general, astraightforward realization of state-space enumeration based on the interleaving model
of concurrency executes all transitionsenabled at every state even when the transitionsare pairwise
independent (soon to be defined formally). Clearly this can result in a state explosion. Partial order
reduction methods, such as employed in [God95, HP94], attempt to mitigate this problem by exe-
cuting only a subset of these transitions (and postponing the rest) without affecting the truth val-

ues of the properties being verified. However, a naive implementation of partial order reduction
may postpone some of these transitionsindefinitely, which clearly does not preserve al properties.
This problem is referred to as ignoring problem. Current implementations of partial order reduc-
tion [God95, HP94] solve the ignoring problem by using a proviso, first reported in [Pel 94, Pel96].
Proviso ensuresthat the subset of transitionssel ected a state do not generate astatethat isin the stack
maintained by the depth first search (DFS) agorithm. If a subset of transitions satisfying this check
cannot befound at a state S, then al transitionsfrom S’ are executed by the DFS algorithm. The pro-
visos used in the two implementations, [God95] and [HP94], differ slightly. [God95] and [HGP92]

require that at least one of the transitionsdo not generate a statein the stack, while [HP94] requires
astronger condition that no transition generates a state in the stack. In addition to solving the ignor-

ing problem, the stronger proviso is sufficient to preserve al stutter free LTL formulae (including
the liveness properties) properties, while the weaker check preserves only stutter free safety proper-
ties[HGP92,HP94,Pel 94, Pel 96]. We observed that inalarge number of practical examplesarisingin
our problem domain (validation of directory based coherence protocolsand server-client protocols),
the proviso causesthe partial order reduction processto beineffective. Asan example, oninvalidate,
adistributed shared memory protocol (described later), the algorithm of [HP94] abortsits search by
running out of memory after generating more than 963,000 states. [God95] al gorithm also abortsits
search after generating asimilar number of states. We believe, based on our intuitions, that protocols
of this complexity ought to be easy for on-the-fly explicit enumeration toolsto handle (an intuition
confirmed by our algorithm that finishes comfortably on this protocol). This paper addresses two
guestions: (i) whether partial order reduction algorithmsto preserve safety propertiesthat avoid the
proviso can be developed; (ii) if so, do these algorithms perform better than the algorithms using the
proviso on realistic protocols? The answer both questionsis“yes’, aswill be described.

In this paper we present a new partia order reduction algorithm called the two-phase algorithm that

avoidsthe proviso. It followsa simple execution strategy consisting of alternating phases of partial

order reduction of deterministic states and depth-first search. A new verification tool employing
1

the two-phase algorithm has been implemented, and applied on a number of protocols. In general,
the two-phase verifier exhibits superior performance than the two agorithms that use the proviso
mentioned earlier. In particular, theinvalidateprotocol finishescomfortably generating only 193,389
states.

Thispaper describes the two-phase algorithm, its correctness proof, and performance statistics. The
rest of the paper is organized as follows. Section 2 provides background information about model
checking and partial order reduction. Section 3 describes the algorithm presented in [HP94] and the
two-phasealgorithm. In Section 4 we provethat thetwo-phasea gorithm preserves stutter free safety
properties (this section may be skipped during first reading). Section 5 summarizes characteristics
of the agorithms on a number of examples. Section 6 provides concluding remarks and plans for
future work.

2 Background

Thetools SPIN (based on [HP94, Pel94, Pel96]) and PO-PACKAGE (based on [God95]) aswell as
our two-phase verifier use Promela [Hol91] as input language. In Promela, a concurrent program
consists of a set of sequential processes communicating via a set of global variables and channels.
Channelsmay have acapacity of zero or more. For zero capacity channels, therendezvous communi-
cation disciplineisemployed. The state of asequential process consistsof a control state (“program
counter”) and data state (the state of its local variables). In addition, the process can also access
global variablesand channels. For the sake of simplicity we assumethat a channel isa point to point
connection between two processes with a non-zero capacity, i.e., we do not consider the rendezvous
communication. In the actual implementation of our verifier, these restrictions have been removed.
Any process that attempts to send a message on a full channel blocks until a message is removed
from the channel. Similarly, any process attempting to receive a message from an empty channel
blocks until a message becomes available on that channel.

We now define the following termswiththe aid of Figure 1, whereg isaglobal variable, | isalocal
variable, ¢ isan output channel and d isan input channel for P, and guarded commands are written
asif ... fi. Similar classificationsare employed in other partial-order reduction related works.

local: Atransitionissaidtobelocal if it doesnotinvolveaglobal variable. Examples: ¢! 7, d?l,
[=0, 1==0, 1!=0, andskip.

global: A transitionissaidto be global if it involvesa global variable. Example: g=I .

unconditionally safe: A local transitionis said to be unconditionally safeif its executability cannot
be changed by the execution of any other process. Examples: | =0, | ==0, | | =0.

conditionally safe: A local transitionissaid to beconditionally safeif itsexecutability can bechanged
by the execution of (atransition of) some other process. Example: ¢! 7; when c isfull, the
2

process P

{
int |;
if
c! 7 -> skip;
| d?1 -> skip;
fi
I =0
g=1;
if
| == 0 -> skip
| I I'=0 ->skip
fi;
}

Figure 1. A sample processto illustrate definitions

statement cannot be executed. However, as soon asanother process consumes a message from
¢, the statement becomes executable. Hencethisisaconditionally safetransitionwith the con-
dition being that ¢ isnot full. Another example: d?1 , with the condition that d is not empty.

safe: Atransitiont issafeinastate S if ¢ isan unconditionally safe transitionor ¢ isaconditionally
safe transition whose condition evaluatesto truein S.

internal: A control state of aprocessissaidto beinternal if all thetransitionspossiblefromit arelo-
cal transitions. Example: In Figure 1, the control state corresponding to thefirsti f statement
isinternal sincethe two transitions possible here, namely ¢! 7 and d?l arelocal transitions.

deterministic: A process P is said to be deterministic in a product state S if P isinterna in S,
written deterministic(P, S), if al transitions from the control state are safe, and exactly one
transition of P isexecutable. Example: In Figure 1, if control state of P is at the secondi f
statement, P is deterministic since only one of the two conditions| ==0 and | | =0 can be
true. In general, determining whether a given processisdeterministicin agiven state requires
knowledge of the values of variables and/or contents channels.

non-deterministic: A process P issaid to be non-deterministicin astate S if P isnot deterministic
ins.

The above definitions are made in order to effect partial-order reduction. For example assume that
inaproduct state S, ! is a safe and executabl e transition of process P (specifically let [be areceive
action on channel ¢ and ¢ has k& > 0 messages), m is an executable transition of a different process
(2, and execution of [in .S resultsin astate S1. Then, m will be executablein S1 for the following
reason. Since m was executable in S the only way m can become unexecutablein S1 isif m also
attempts to receive amessage from ¢ and £ is 1. But since al channels are assumed to be point-to-
point and m is atransition of a different process, m cannot be a receive transition from ¢. Thus m

3

continuesto be executable. Therefore, in S, it is permissible to consider the interleaving I; m and
never consider m; [, i.e., m can be postponedin S. A similar argument can show that if / isasafeand
unexecutabletransition, and if execution of m in S resultsin astate S2 then [will be unexecutable
in.S2. Partial order reduction make use of these two propertiesto reduce the amount of interleaving
in the following fashion. Whenever a state S is explored by the partial order reduction algorithm,
instead of considering al successors of the .S, the algorithm attemptsto find a process P such that
Pisinaninternal state and al transitionsof P from that internal state are safe, and considers the
transitions of P only. The algorithm aso needs to address the ignoring problem, i.e., care must be
taken to ensure that m is not postponed indefinitely.

The two-phase algorithm performs the search in the following way. Whenever a state S isexplored
by the algorithm, in the first phase all deterministic processes are executed one after the other, re-
sultingin a state S’. In the second phase, the algorithm explores all transitionsenabled at S’. The
second phase of executing all transitionsof .S’ assures that the ignoring problem is addressed.

3 Algorithms

This section provides an overview of the algorithm presented in [HP94] and the two-phase algo-
rithm. The algorithm presented in [HP94] attempts to find a process in an internal state such that
all transitionsof that process from that internal state are safe and that none of the transitions of the
process result in a state that is in the stack. Thisis the stronger proviso, as pointed out earlier. If
a process satisfying the above criterion can be found, then the algorithm examines al the enabled
transitions of that process. If no such process can be found, all enabled transitionsin that state are
examined. In general, an algorithm using the strong proviso generates more states than another al-
gorithm using the weak proviso, since the weak proviso can be satisfied more often than the strong
proviso, and any time aprocess satisfying the above criterion cannot befound, all processinthat state
are examined by the algorithm. Since the two-phaseagorithm isintended to preserve only safety, to
obtain an equitable comparison of its performance against that of [HP94] algorithm we implemented
the [HP94] agorithm such that the algorithm uses the weaker proviso, and refer to thisimplemen-
tation as “the Proviso agorithm”. The proviso algorithm is shown in as dfsl() in Figure 2. In this
algorithm, Choos&() is used to find a process satisfying the above criterion. As mentioned earlier,
the use of proviso (weak or strong) can cause the algorithm to generates many unnecessary of states.
In some protocols, e.g., Figure 3 (@), al reachable states in the protocol are generated. Figure 3 (¢)
showsthe state space generated on this protocol. Another algorithm that usesthe (weak) provisoand
sleepsets [GHP92], [God95] (implemented in the tool PO-PACKAGE), also exhibits similar state
explosion.

The two-phase algorithm is shown as dfs2() in Figure 2. In the first phase, dfs2() executes deter-
ministic processes. States generated in this phase are saved in the temporary variablel i st . These
states are added to cache during the second phase. In the second phase, all transitions enabled at
S are examined.

initialize stack to contain initial state initialize stack to contain initial state
initialize cache to contain initial state initialize cache to ¢
df s1() df s2()
{ {
s = top(stack); s = top(stack);
(i, found) := Choose (s); list := {s};
if (found) { /* Phase |: partial order step */
tr :={t | t is enabled in s for i :=1 to nprocesses {
and PID(t)=i}; while (determnistic(s,i)) {
nxt := successors of s obtained by /* Execute the only enabl ed
executing transitions in tr; transition of process i */
} else { s := next(i, s);
tr := all enabled transitions froms; if (s € list) goto NEXT_PRCC
nxt := successors of s obtained list := list + {s}
by executing transitions in tr; }
} NEXT_PRCC: /* next i */
}
for each succ in nxt do { /* Phase |l: classical DFS */
if succ not in cache then if (s & cache) {
cache := cache + {succ}; cache := cache + list;
push(succ, stack); nxt := all successors of s
df s1(); for each succ in nxt {
if (succ ¢ cache)
pop(st ack) ; push(succ, stack);
} df s2();
}
} else {
cache : = cache + I|ist;

}
pop (stack);
}

Figure 2: dfsl() isapartia order reduction algorithm using proviso. dfs2() is performs avoids pro-
viso using a different execution strategy.

The two-phase algorithm outperforms the proviso algorithm and [God95] a gorithm when the pro-
viso is invoked many times; confirmed by the examplesin Section 5. In most reactive systems, a
transaction typically involvesasubset of processes. For example, inaserver-client model of compu-
tation, aserver and a client may communicate without any interruption from other serversor clients
to complete a transaction. After the transaction is completed, the state of the system is reset to the
initial state. If the partial order reduction a gorithm usesthe proviso, state resetting cannot be done
as the initial state will be in the stack until the entire reachability analysis is completed. Since at
least one process is not reset, the algorithm generates unnecessary states, thus increasing the num-
ber of states visited. As shown in Figure 3, in certain examples, dfsl() generates all the reachable
configurations of the systems. In realistic systems also the number of extra states generated due to
the proviso can be high. The two-phase a gorithm does not use the proviso. Instead it alternatesone
step of partia order reduction step with one step of complete depth first search. Thus on protocols

5

that have less non-determinism (and hence that have a large number of states that are determinis-
tic with respect to at least one process) and that reach the initial configuration after completion of
a transaction perform better with the two-phase algorithm. We have found this to be the case with
virtually all the protocolsarising in the context of distributed shared memory multiprocessor imple-
mentation [Ava]. If, on the other hand, the protocol under consideration haslot of non-determinism,
the two-phase algorithm would not perform well.

Appendix B showsasdlightly different version of the two-phase algorithm obtained from the follow-
ing observation. Execution of aprocess, say P2, inthefirst phase may make P1 deterministic. Since
the processes are examined in strict order in the f or loop of the first phase, P1 will be not be ex-
ecuted in the first phase. Intuitively, it seems that executing 1 in the second phase instead of the
first phase generates more states. Hence, it is beneficial to execute P1 in thefirst phaseitself. But
such a modification to the algorithm resultsin amore complex control structure. A similar effect can
be achieved by modifying the second phase. If the second phase examines only non-deterministic
processes, asimilar effect can be achieved. An algorithm with this modification to the second phase
isshown in Appendix B.

4 Correctnessof the Two-phase Algorithm

We show that dfs2() preserves al stutter free safety properties. dfs3() (Figure 7 in Appendix B) can
be shown to preserve safety properties along the same lines. To establish the correctness of dfs2(),
we need the following two lemmas.

Lemmal: A state S isadded to cache only after ensuring that all transitionsenabled at .S will be
executed at S or at a successor of S. Thislemma asserts that dfs2() does not suffer from ignoring
problem.

Proof: Proof isbased on induction on the “time” a stateis entered into cache.

Induction Basis: During the first call of dfs2() the outer “if” statement of the second phase will be
executed; duringthisphase, al statesinl i st areaddedto cache inthebody of the®if” statement.
Following that the algorithm examines all successorsof s. Let s’ bean arbitrary element of | i st .
By themanner inwhichl i st isgenerated, s’ canreach s viazero or more deterministictransitions.
By the definition of deterministic transition, any transition enabled at s’, but not executed in any of
the states along the path from s’ to s will remain executable at s. Since dl transitionsout of s are
considered in the second phase, it followsthat all unexecuted transitionsout of s’ are also considered.
Hence the addition of s’ to cache satisfiesLemma 1.

Induction Hypothesis. Let the states entered into cache during thefirst i — 1 callsto dfs2() be s ¢,
S2, - - Sp_1. Assume by induction hypothesisthat all transitionsenabled at every state s; inthislist
are guaranteed to be executed at s; or a successor of s;.

6

Induction Step: We wish to establish that the states entered into cache during the i call to dfs2()
also satisfy the Lemma. There are two casesto consider:

1. theouter “if” statement of the second phaseis executed

2. the“else” statement of the second phase is executed

In the first case, all successors of s are considered in the body of the “if” statement. Let s’ be an
arbitrary element of | i st . Any transition enabled at astate s’ and not taken inthe pathfrom s’ to s
isalsoenabledat s. Therefore s’ can be added to cache without violatingthe lemma. Inthe second
case, s isalready incache; it was entered during an earlier call to dfs2(). By induction hypothesis,
all transitionsenabled at s are already executed or guaranteed to be executed. Hence al transitions
enabled at s were either already considered at s or guaranteed to be executed by the hypothesis.
Hence adding s’ to cache does not violate the lemma. Thusin both cases, | i st can be added to
cache without violating the lemma.

Lemma 2: dfs2() terminates after a finite number of calls.

Proof: There are two parts to the proof: (a) eventually no new callsto dfs2() are made, and (b) the
whi | e loopinthefirst phaseterminates. To prove (a), note that new callsto dfs2() are made only in
the body of the outer “if” statement in the second phase. Before these callsare made, all elements of
| i st areaddedtocache. The preconditionto executethe“if” statementisthat s isnotincache.
By constructionof | i st, s isinl i st. Thusthe number of statesin cache increases at least by
oneasaresult of addingl i st tocache. Inother words, if number of statesin cache before the
it" level call of dfs2() is made is k, then the number of statesin cache beforei + 1" level call of
dfs2() ismadeisat least &£+ 1. Thusthe maximum depth of callsto dfs2() cannot exceed the number
of statesin the protocol, which isfinite. To prove (b), note that one new stateisaddedtol i st in
each iteration of whi | e loop. Again, since the number of statesin the protocol isfinite, eventually
no new states can beadded to | i st , thus the while loop terminates.

Theorem 1: dfs2() finds all safety violations present in the protocol.

Proof: (Informal) The proof of the theorem followsfrom the observation that finding a safety viola-
tion requiresthat every enabled transition be executed. Further, atransitionneed not be executed at a
stateif it isexecuted at a successor of that state obtained by executing a sequence of safe transitions.
dfs2() satisfiesthesetwo conditions. In particular, dfs2() might not execute atransitiont from a state
s if asafetransitiont’ istaken from s. This can happen during the first phase of dfs2() where only
deterministic processes are considered (a deterministic process has exactly one enabled transition
which is aso a safe transition). Lemma 1 guarantees that all enabled transitions at every state are
considered by dfs2(). Hence, dfs2() is safety preserving.

The fact that dfs3() preserves safety properties follows from the observation that the transitionsin
7

the second phase that would be considered by dfs2() but not by dfs3() would be considered by dfs3()
initsfirst-phase during the subsequent recursive calls of dfs3(). [Nal] presentsacomplete proof that
dfs3() preserves safety properties.

5 Casestudies

In this section, we present the results of running the proviso algorithm, the two-phase agorithms,
and the [God95] agorithm on two artificial protocolsand several redistic protocols.

5.1 Best case

Figure 3 presentsan exampl e of the protocol that runs more efficiently withthe two-phasealgorithms.
Table 1 shows the results of running the algorithms on this protocol. On a system comprising of n
processes, the two-phase algorithms generates 2n + 1 states while the proviso algorithm generates
3" dtates.

() ()
L " COICOIGDICEY
(a) Best case (b) State spaceby 2 phase

(c) State space generated by proviso algorithm

Figure 3. Best case protocol. (a) The protocol. (b) State space that generated by the 2-phase algo-
rithms. (c) State space generated by SPIN using weak proviso. Dotted linesin (c) show some of the
transitionsthat were not attempted due to proviso. Thethick linein (c) showsone of the transitions
that would be taken by the algorithm, but find that the state is already generated.

N | Proviso Algorithm [God95] Algorithm First two-phase Second two-phase
Algorithm Algorithm

4 81/0.32 70/0.35 9/0.33 9/0.33

5 | 243/0.34 217/0.42 11/0.33 11/0.33

6 | 729/0.38 683/0.64 13/0.33 13/0.33

7 | 2187/0.50 2113/1.4 15/0.33 15/0.33

8 | 6561/0.83 6422/4.34 17/0.33 17/0.33

Table 1: Number of states saved in the hash table, and time taken by different algorithms on Best

(=)
d & &

Figure 4: Worst case protocol. Statisticsfor this protocol arein Table 2.

5.2 Worst case

Figure 4 shows an example of the protocol that runs better with the proviso algorithm than the two-
phase agorithms. This protocol has atotal of 3" states where n isthe number of processesin the
system. As can be seen, the proviso algorithm can reduce the number of statesto 27+! — 1 states,
while the two-phase algorithmsfail to bring any reductions. The reason for the bad performance of
two-phase algorithmsisthat none of the reachable statesis deterministic with respect to any process.
Hence, the two-phase a gorithms degenerate to classical depth first search.

N | Proviso Algorithm [God95] Algorithm First two-phase Second two-phase
Algorithm Algorithm

5 63/0.33 64/0.37 243/0.39 243/0.35

6 | 127/0.39 128/0.42 729/0.49 729/0.45

7 | 255/0.43 256/0.51 2187/0.76 2187/0.76

8 | 511/0.43 512/0.7 6561/1.71 6561/1.62

9 | 1023/0.51 1024/1.21 19683/4.88 19683/4.92

Table 2: Number of states saved in the hash table, and time taken by different algorithms on Worst

Case.

N
I
)

&
Fl\

Figure 5: Wavefront arbiter of size 3x3. The dotted line shows one of the three wrapped diagonals.
All the lockable C-elements on awrapped diagonals may operate concurrently to implement the ar-
bitration.

N | Proviso Algorithm First two-phase Second two-phase
Algorithm Algorithm

6 | 281/0.53 172/0.42 156/0.40

7 | 384/0.68 230/0.47 210/0.42

8 | 503/0.91 296/0.56 272/0.47

9 | 638/1.30 370/0.69 342/0.55

10 | 789/1.76 452/0.89 420/0.66

Table 3: Number of states saved in the hash table, number of transition traversed and time taken for
the reachability analysis of the wavefront arbiter by different algorithms. [God95] algorithm is not
reported since it couldn’t handle the large number of processesinvolved.

5.3 Wavefront Arbiter

A cross-bar arbiter that operates by sweeping diagonally propagating “wavefronts’” within a circuit
array [Gop94] isshown in Figure 5. To request a cross-bar connection at a location 7j a request is
placed at the“lockable” C-element [Gop94] at thislocation. Thisrequest attemptsto “pin down” the
wavefront at thislocation. When this attempt succeeds, the crossbar connection i can be used. A
property maintained by thisarbiter isthat no two C-elements on any row or a column can support a
wavefront concurrently. Thisallowsthearbiter to support concurrent arbitration requests(e.g., those
falling on thewrapped diagonal inthefigure) that don’t conflict onarow or acolumn. Theresultsfor
thisprotocol are presented intable 3. Statisticsfor [God95] algorithmisnot reported on thisexample
as the protocol contains alarge number of processes that the implementation could not handle.

10

Protocol Proviso Algorithm [God95] Algorithm | First two-phase Second two-phase
Algorithm Algorithm

Migratory | 34906/5.08 28826/14.45 23163/2.84 23163/2.84

Invalidate | Unfinished Unfinished 193389/19.23 193389/19.23

Table4: Number of states saved in the hash table, time taken in secondsfor reachability analysison
migratory and invalidate protocols by different algorithms.

5.4 DSM Protocols

Several redlistic directory-based distributed shared memory protocol sfrom the Avalanche multipro-
cessor project [Aval underway at the University of Utah were experimented with. Directory based
protocol sto implement shared memory in multiprocessorsare gaining popularity dueto the scalable
nature of the protocols. In adirectory based system, every cache line hasadesignated home node—a
processor responsible for maintaining the coherency of that line. Whenever a node triesto access a
cachelinefor reading or writing if the lineis not present in the local cache in an appropriate state, a
message is sent to the home node of that line. The home node, upon receiving the request may need
to contact some or all of the nodes that currently hold the linein their caches. The home node then
will supply the data with the required access permissions to the requester.

Some of thewell known directory based coherency protocolsare writeinvalidate, write update, and
migratory. A brief explanation of these protocolsis provided for the sake of completeness. When-

ever a cache line managed by the write invalidate protocol is modified by a node, the node sends a
message to the home node. The home node in turn invalidates al the nodes holding a copy of the
shared linein their caches. In the write update protocol, on the other hand, the new value of the data
is broadcast to all the nodes holding a copy of the cache lineintheir caches. The migratory protocol

does not send such updates or invalidate messages, but instead ensures that the line is present in at

most one node’s cache!. Table 4 presentsthe results of running the different algorithms on the mi-

gratory and the invalidate protocols. Migratory protocol contains about 200 lines of Promela code
and invalidateprotocol containsabout 330 linesof Promelacode excluding comments. All the verifi-

cation runswere limited to 64 MB of memory. It can be seen that proviso algorithmdid not complete
the search oninvalidate protocol. Thisalgorithm aborted search after generating more than 963,000
states due to unavailability of more memory. In contrast, the two-phase agorithm completed the
search generating only amodest 193,389 states.

'Thisisasimplistic view of the protocol, asthe protocol allowsalineto be present at multiple nodesfor ashort period
of time for the sake of efficiency.

11

N | Proviso Algorithm [God95] Algorithm First two-phase Second two-phase
Algorithm Algorithm

2 295/0.47 242/0.47 272/0.34 169/0.35

3 | 11186/3.43 8639/7.74 3232/0.83 3037/0.92

4 | Unfinished Unfinished 62025/14.9 59421/14.5

Table 5: Number of states saved in the hash table, and time taken for reachability analysis on
Server/Client protocol by different algorithms.

5.5 A Server/Client protocol

A protocol consisting of N serversand N clientswas studied. In this protocol, whenever aclient is
free, it chooses one of the N servers, and starts communicating with the server. A server waits until

amessage isreceived from any one of the N clients, and then services the client. A service consists
of doingasimple local calculation, sending the result of the computation to the client, waiting for a
terminatemessage from theclient, and then acknowledging theter minate message with another mes-
sage. The results of running this protocol are presented in Table 5. Proviso algorithm and [God95]

algorithm did not finish the search in atotal of 64 Megabytes of memory when the protocol consists
of 4 serversand 4 clients.

5.6 Other Protocols

We also ran the two-phase protocols on the protocols provided as part of SPIN distribution. Some
of the protocols supplied with SPIN distribution are not perpetual processes (i.e., they terminate or
deadlock). Sort protocol in the SPIN distribution terminates after a finite number of steps, and the
snoopy protocol has a large number of sequences where the protocol deadlocks. Sort is a protocol
to sort a sequence of numbers. Since this protocol has no non-determinism and terminates after a fi-
nite number of steps, the proviso algorithm and two-phase generate equal number of states. Shoopy
is a cache coherency protocol to maintain consistency in a bus based multiprocessor system. This
protocol contains alarge number of deadlocks, and therefore the two-phase algorithm is not as ef-
fective. Pftpisaflow control protocol. This protocol containslittle determinacy. Hence two-phase
algorithm is not as effective. Run times of these protocols are summarized in Table 6.

6 Conclusions

We have presented two closely related new algorithmsfor partial order reduction to preserve safety
properties. Unlikethe proviso algorithm or [God95] algorithm, these algorithmsdo not use proviso.

12

Protocol | Proviso Algorithm [God95] Algorithm | First two-phase Second two-phase
Algorithm Algorithm

Sort 174/0.35 173/0.6 174/0.33 174/0.39

Snoopy | 20323/6.22 10311/10.53 20186/5.08 18842/5.0

Pftp 161751/34.5 125877/150.7 230862/36.3 230862/39.4

Table 6: Number of states saved in the hash table, and time taken for reachability analysison proto-
cols supplied as part of SPIN distribution by different algorithms.

Instead they alternate one step of partial order reduction step (using deterministic moves) with one
step of classical depth first search (using all moves). These algorithms are shown to perform bet-
ter than other the previous algorithms on protocols where the proviso isinvoked many times. As
shown using case studies, the number of states explored by these algorithms can be substantialy
less than the number of states explored by other algorithms on reactive systems where the initial

stateisreached after atransactioniscompleted. However, in certain cases, the two-phase agorithms
may generate more states than the algorithms using proviso. This can happen if the amount of non-
determinism is high in the protocol and the provisoisinvoked very few times as the protocol termi-

nates or deadlocks.

It is possible to modify the first phase of the two-phase algorithms to make use of all safe transi-
tionsinstead of using just deterministic transitions. The advantage of such an algorithm would be
that, unlike the two-phase algorithmsthat degenerate to full state search on such protocol s as worst-
case, thisalgorithm would degenerate to the proviso algorithm (we have implemented thisalgorithm
whose control structure turns out to be quite complex.) Also, [HP94] preserves all stutter free LTL
formulae [Pel 94, Pel 96] while the two-phase algorithms preserve only stutter free safety properties.
At present, itisnot clear, if thereisasimple variation of the two-phase algorithm that preserves al
stutter free LTL formulae.

13

A PromelaConstructs

Figure 6 illustrates the core constructs of Promela and condition for a statement to be local, exe-

cutable and if the statement islocal, the condition under which the statement is safe.

Statement Meaning local executable safe
x=E Assignment xislocal, and E true true
contains only
locals
await(B) Wait until B B contains no Bistrue true
becomes true global variables
c!'E Send thevalueof | E containsno cisnot full cisnot full
expression on global variables
channel ¢
c?v Receive thefirst vislocal cisnot empty c isnot empty
message of the
channel into
variablev
c?C Remove thefirst true First message onc | cisnot empty
message from the isconstant C
channel whichis
constant C
goto label Assignment to true true true
control state

Figure6: Core constructsof Promelaand conditionsunder whichthey are local, executable and safe

14

B A moreé€fficient two-phase algorithm

initialize stack to contain initial state
initialize cache to ¢

df s3()
{
s = top(stack);
list := {s}h
/* Phase |: partial order step */
for i := 1 to nprocesses {
while (determnistic(s,i)) {
s := next(i, s);
if (s € list) goto NEXT_PROCC;
list := list + {s}
}
NEXT_PROC:. /* next i */
}
/* Phase Il: classical DFS */
if (s ¢ cache) {
cache := cache + list;
pr := {all processes in non-determnistic state in s};
tr := {t | all transitions enabled in s such that PID(t) € pr};
nxt := successors of s obtained by executing transitions in tr;
call _dfs := true;
for each succ in nxt {
if (succ ¢ cache)
call _dfs := fal se;
push(succ, stack);
df s3();
}
if (call_dfs) {
push (s, stack);
df s3();
}
}
el se {
cache := cache + list;

}
pop (stack);

Figure 7: Two-phase algorithm to implement partial order reduction that avoidsthe proviso. In the
second phase only non-deterministic processes are considered.

15

References

[Avel
[GHP92]

[God95]

[Gop94]

[GPY3]

[HGP92]

[Hol91]

[HP94]

[Maz89]

[Nal]

[Pel93]

[Pel94]

[Pel96]

[Val9o]

[Val93]

See http://www.cs.utah.edu/projects/avalanchefor details.

Patrice Godefroid, Gerard Holzmann, and Didier Pirottin. State-space caching revisited.
In Computer Aided Verification, pages 178-191, Montreal, Canada, June 1992.

Patrice Godefroid. Partial-Order Methodsfor the \erification of Concurrent Systems: An
approach to the State-Explosion Problem. PhD thesis, Univerite De Liege, 1994-95.

Ganesh Gopal akrishnan. Developing micropipeline wavefront arbiters using lockable C-
elements. |EEE Design & Test of Computers, 11(4):55-64, Winter 1994.

Patrice Godefroid and Didier Pirottin. Refining dependenciesimproves partial-order veri-
fication methods. In Computer Aided Verification, pages 438450, Elounda, Greece, June
1993.

Gerard Holzmann, Patrice Godefroid, and Didier Pirottin. Coverage preserving reduction
strategiesfor reachability analysis. In Inter national Symposiumon Protocol Specification,
Testing, and Verification, Lake Buena Vista, Florida, USA, June 1992,

Gerard Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991.

Gerard Holzmann and Doron Peled. An improvement in formal verification. In FORTE,
Bern, Switzerland, October 1994,

A. Mazurkiewicz. Basic notions of trace theory. In Linear Time, Branching Time, and
Partial Order in Logicsand Modelsfor Concurrency, volume 354. Springer Verlag, Lec-
ture Notesin Computer Science, 19809.

See http://www.cs.utah.edu/™ ratan/verif/two2.html.

Doron Peled. All from one, one for al: On model checking using representatives. In
Computer Aided Verification, pages 409-423, Elounda, Greece, June 1993.

Doron Peled. Combining partial order reductions with on-the-fly model-checking. In
Computer Aided Verification, pages 377-390, Stanford, California, USA, June 1994.

Doron Peled. Combining partial order reductions with on-the-fly model-checking. Jour-
nal of Formal Methodsin Systems Design, 8 (1):39-64, 1996.

Antti Valmari. A stubborn attack on state explosion. In Computer Aided \erification,
pages 156-165, New Brunswick, NJ, USA, June 1990.

Antti Valmari. On-the-fly verification with stubborn sets. In Computer Aided \erification,
pages 397-408, Elounda, Greece, June 1993.

16

