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Abstract

E�cient synchronization is an essential component of parallel computing� The designers of
traditional multiprocessors have included hardware support only for simple operations such as
compare�and�swap and load�linked�store�conditional� while high level synchronization primitives
such as locks� barriers� and condition variables have been implemented in software ��� ��� ����
With the advent of directory	based distributed shared memory 
DSM� multiprocessors with
signi�cant 
exibility in their cache controllers ��� ��� ���� it is worthwhile considering whether
this 
exibility should be used to support higher level synchronization primitives in hardware�
In particular� as part of maintaining data consistency� these architectures maintain lists of
processors with a copy of a given cache line� which is most of the hardware needed to implement
distributed locks�

We studied two software and four hardware implementations of locks and found that hard	
ware implementation can reduce lock acquire and release times by ��	��� compared to well
tuned software locks� In terms of macrobenchmark performance� hardware locks reduce appli	
cation running times by up to ��� on a synthetic benchmark with heavy lock contention and by
��	�� on a suite of SPLASH	� benchmarks� In addition� emerging cache coherence protocols
promise to increase the time spent synchronizing relative to the time spent accessing shared
data� and our study shows that hardware locks can reduce SPLASH	� execution times by up to
��	��� if the time spent accessing shared data is small�

Although the overall performance impact of hardware lock mechanisms varies tremendously
depending on the application� the added hardware complexity on a 
exible architecture like
FLASH ���� or Avalanche ��� is negligible� and thus hardware support for high level synchro	
nization operations should be provided�

�This work was supported by the Space and Naval Warfare Systems Command �SPAWAR� and Advanced Research
Projects Agency �ARPA�� Communication and Memory Architectures for Scalable Parallel Computing� ARPA order
�B��� under SPAWAR contract �N���������C���	
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� Introduction

Traditionally
 high level synchronization operations have implemented in software using low level
atomic hardware primitives such as compare�and�swap and load�linked�store�conditional� The design
decisions that led to this split in functionality was driven by the dominant bus�based architectures
of previous generation shared memory multiprocessors� On these machines
 broadcast invalidations
or updates are cheap and the existing memory system is only designed to handle basic loads and
stores � speci�cally
 no provision is made in the memory system to maintain lists of which nodes
have or want a copy of a cache line�
However
 over the past �ve years
 directory�based multiprocessors have emerged as the dominant
scalable shared memory architecture ��
 �
 ��
 ��
 ���� On these machines
 communication is ex�
pensive and the distributed directory controllers maintain a list of nodes that have copies of each
cache line so that they can be invalidated or updated� Furthermore
 the recent trend has been to
introduce greater intelligence and �exibility to the node memory controllers ��
 ��
 ���� Therefore

we believe that it is worth considering supporting for higher level synchronization primitives �e�g�

locks
 barriers
 condition variables
 etc�� in hardware� Speci�cally
 we explore the implementation
complexity and potential performance impact of adding hardware support for locks�
Many directory protocols have been proposed
 but all of them have in common the ability to keep
track of a list of nodes that are caching a particular cache line� This ability is almost exactly
what is required to implement locks in hardware � a list of nodes waiting for the lock� We show in
Section � that a variety of hardware lock primitives can be built using existing copyset management
hardware� The added �exibility in emerging architectures makes it feasible to implement locks as
a special consistency protocol with no additional hardware support whatsoever�
Given the low hardware cost of implementing locks in directory�based multiprocessors
 we studied
the performance of two software and four hardware implementations of locks to determine whether
the provision of hardware locks would signi�cantly impact overall program execution times� We
found that hardware support can reduce lock acquire and release times by ���
�� compared to
well tuned software locks� In terms of application performance
 hardware locks outperform software
locks by up to ��� on a synthetic benchmark with heavy lock contention and by ����� on a suite
of SPLASH�� benchmark programs� Given that the added hardware design cost of supporting
hardware locks is minimal
 even moderate performance improvements are worth pursuing� Fur�
thermore
 the synthetic experiments and microbenchmarks indicate that much larger performance
improvements are possible for programs with high synchronization to data management ratios�
The rest of the paper is organized as follows� In Section �
 we brie�y describe the architecture in
our Widget project ��� and the implementation of various fundamental synchronization operations�
In Section �
 we present two software lock mechanisms �ticket locks and MCS locks ����� that can
be built on conventional shared memory systems and four hardware lock mechanisms that can
be built as extensions to conventional directory controller protocols� In Section �
 we discuss the
simulation methodology that we employed to evaluate the various synchronization mechanisms and
describe the applications used to evaluate the mechanisms
 with special emphasis given to their
synchronization patterns� In Section �
 we present the results of our simulation studies and evaluate
the tradeo�s between software and hardware synchronization mechanisms
 and the advantages
of distributed hardware synchronization mechanisms compared to centralized implementations�
Finally
 concluding remarks and suggestions for future works are provided in Section ��
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� System Organization

The goal of the Widget project is to develop a communication and memory architecture that sup�
ports signi�cantly higher e�ective scalability than existing multiprocessors by attacking all sources
of end�to�end communication latency for both shared memory and message passing architectures�
Our approach for achieving this goal is to design a �exible cache and communication controller
that tightly integrates the multiprocessor�s communication and memory systems and incorporates
features designed speci�cally to attack the problem of excessive latency in current multiprocessor
architectures� The focus of the work described in this paper is leveraging the hardware already
required for data consistency management to reduce the often high synchronization stall times ex�
perienced by shared memory programs� This section provides a brief overview of the features of the
Widget most pertinent to the work described herein � further details can be found on the Widget
home page �http���www�somewhere�edu�projects������

��� Basic Widget Architecture

A block diagram of an node Widget controller is given in Figure �� An Widget controller sits directly
on HP�s Runway memory bus� The Runway bus is a ���bit multiplexed address�data bus that
supports snoopy based multiprocessor coherency protocol� It is a split transaction bus and o�ers
sustainable bandwidth of ��	 Mbytes�s at ��� MHz� Each Widget controller contains a Runway
Interface and Munger �RIM�
 a Network Interface �NI�
 a Shared Bu�er �SB�
 a Cache Controller
�CC�
 a Directory Controller �DC�
 a Protocol Processing Engine �PPE�
 and a Bookkeeping Cache
�BC��
The RIM is responsible for multiplexing Runway transaction requests from the other components

arbitrating for control of the Runway bus
 and transferring data between the Runway bus and
the SB� The RIM also implements the logical operations necessary to keep a cache line coherent
when partial cache line updates or non�aligned data is received and to send only the dirty words
when part of a cache line is dirtied by the local processor� The NI interfaces with the Myrinet
interconnect ��� and is responsible for sending and receiving packets� The SB is used to stage the
data in transition between local memory and network and also to cache remote shared memory
lines and messages until they are invalidated by remote nodes or consumed by the local processor�
The BC is used to cache the meta�data needed by the various components� The CC maintains
the state and consistency of shared data in the SB and remote data cached in the local memory
� Widget will support a variant of the Simple COMA architecture ��	� that supports a graceful
transition to CC�NUMA when the DRAM cache is experiencing poor page�grained utilization� To
improve performance of the node controller
 we aggressively split control and data processing
 and
allow multiple functional units to perform in parallel� Each of the components except the NI snoop
the Runway bus so that control processing can be done in parallel with data transfers between the
RIM and SB� Similarly
 the NI splits the control and data portions of an incoming message so that
the receiving component can process the message in parallel with the NI staging the data to the
SB� This latter design is similar to the way in which the MAGIC chip splits data and control in
the FLASH multi�processor �����
The key component for the introduction of hardware synchronization mechanisms is the directory
controller �DC�� On conventional directory�based shared memory multiprocessors
 the DC is re�
sponsible for maintains the state of the distributed shared memory� Each block of global physical
memory has a �home� node and the DC at each home node keeps track of the state of each local
cache line
 tracking such information as the protocol being used to manage that block of data and
the set of nodes that have a copy of the data� As described in the following section
 it is trivial to
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extend the operation of the directory controller to add support for hardware locks � which we are
planning to incorporate in the Widget design�

��� Support for Multiple Protocols

Most of the current generation of massively parallel systems support shared memory in hardware
�e�g�
 machines by Convex
 Cray
 and IBM�� However
 they all support only a single
 hard�wired
write�invalidate consistency protocol� and do not provide any reasonable hooks with which the
compiler or run�time system can guide the hardware�s behavior� Using traces of shared memory
parallel programs
 researchers have found there are a small number of characteristic ways in which
shared memory is accessed ��
��
�
�� These characteristic �patterns� are su�ciently di�erent from
one another that any protocol designed to optimize one will not perform particularly well for the
others� In particular
 the exclusive use of write�invalidate protocols can lead to a large number
of avoidable cache misses when data that is being actively shared is invalidated and subsequently
reloaded� The in�exibility of existing machines� cache implementations limits the range of programs
that can achieve scalable performance regardless of the speed of the individual processing elements
and provides no mechanism for tuning by the compiler or run�time system�
These observations have led a number of researchers to propose building cache controllers that can
execute a variety of caching protocols ��
 ���
 support multiple communication models �	
 ���
 or
accept guidance from software ���
 ���� We are investigating cache designs that will implement a
variety of caching protocols
 support both shared memory and message passing e�ciently
 accept
guidance from software to tune its behavior
 and directly support e�cient high�level synchroniza�
tion primitives� Our goal is to signi�cantly reduce the number of messages required to maintain
coherence
 the number of cache misses taken by applications due to memory con�icts
 and the
overhead of interprocess synchronization� We propose to do this by allowing shared data and syn�
chronization protocols to be maintained using the protocol best�suited to the way the programming
is accessing the data� For example
 data that is being accessed primarily by a single processor would
likely be handled by a conventional write�invalidate protocol ���
 while data being heavily shared
by multiple processes
 such as global counters or edge elements in �nite di�erencing codes
 would
likely be handled using a delayed write�update protocol ���� Similarly
 locks will be handled using
appropriate locking protocol in hardware
 while more complex synchronization operations reduc�
tion operators for vector sums will be handled using specialized protocols in software� By handling
data and synchronization with a �exible protocol that can be customized for its expected use
 the
number of synchronization messages
 cache misses and messages required to maintain consistency
drop dramatically
 as illustrated in the following sections�
In Widget
 we support multiple hardware consistency protocols in hardware by introducing �proto�
col bits� on a per�page basis that tell the Widget node controller how to manage cache lines on that
particular page� The protocol used to manage a particular page will be speci�ed by the compiler
or operating system
 and the protocol bits in the page table are copied to the meta�data of the
DC and the CC when the page is created or accessed� The DC and the CC maintain � protocol
bits per cache line
 thus allowing �� di�erent protocols to be supported directly by the hardware�
The DC and the CC have programmable state engines giving �exibility to control the protocol
and the performance of hard�wired protocol� Support for high�level synchronization in hardware
can be easily implemented by the Widget controller using reads and writes to pages marked as
managed via the �lock� protocol and mapped into IO space� To acquire a lock
 the application
would simply read the lock address in IO space� As part of its normal operation
 the CC interprets

�Except in the case of the Cray� which does not cache shared data�
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the read
 determines that it is a read to shared data
 and sends a message to the DC at the home
node
 which returns the lock status �free
 busy
 ����� The CC state engine takes the appropriate
action depending on the protocol and state� To release a lock
 the processor simply stores any
value to the lock address� Since the CC and DC are already designed to have simple programmable
state engines
 supporting multiple synchronization protocols in hardware does not add signi�cant
design complexity� Architectures such as FLASH ���� and Tempest�Typhoon ���� should be able
to support hardware locks with similar ease�
Currently
 we are simulating three di�erent shared data consistency protocols � migratory
 delayed
write update
 and write invalidate� The various lock protocols being considered is explained in
the following section� We are also considering whether other high level synchronization operations
�e�g�
 barriers� are worthy of hardware support�

� Hardware and Software Lock Mechanisms

The designers of traditional multiprocessors have included hardware support only for simple opera�
tions such as test�and�set
 fetch�and�op
 compare�and�swap
 and load�linked�store�conditional� Higher
level synchronization primitives such as locks
 barriers
 and condition variables have been imple�
mented in software �

��
���� However
 these designs were all originally based on simple bus�based
shared memory architectures� Recent scalable shared memory designs have employed distributed
directories and increasingly sophisticated and �exible node controllers ��
 ��
 ���� In particular

as part of maintaining data consistency
 these architectures are already required to maintain lists
of processors with a copy of a given cache line
 which is most of the hardware needed to imple�
ment distributed locks� Given the negligible implementation overhead of supporting locks in these
architectures
 we believe that it is worthwhile to reconsider whether higher level synchronization
primitives should be supported in hardware�
In this section we describe two of the best software lock protocols described in the literature

ticket locks and MCS locks ���� and four hardware lock implementations built on Widget�s �exible
directory controller�

��� Software Locks

Many software synchronization algorithms have been proposed for shared memory multiproces�
sors ���
 ���� Existing software synchronization algorithms are built on simple hardware atomic
operations provided by the hardware designers� A study by Michael and Scott ���� showed that
it is possible to achieve good overall synchronization performance on a multiprocessor with a se�
quentially consistent write�invalidate consistency protocol if great care is taken in the way in which
the lock data is laid out in memory and access to this data is carefully managed to avoid undue
contention� In particular
 ticket locks and queue�based MCS locks can be implemented using only
atomic fetch�and�increment
 fetch�and�store
 and compare�and�swap operations� Although the two
algorithms di�er slightly in their performance under high and low loads
 both avoid much of the
overhead found in conventional spin lock implementations caused by excessive invalidation and
reload tra�c�

����� Ticket Locks

Michael and Scott ���� described a ticket�based locking system in which each process desiring access
to a critical section selects a unique �ticket� value using fetch�and�increment �see Algorithm ���
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After receiving a unique ticket value
 each process waiting on the lock spins on whose turn until
their number is set� In our implementation
 each lock record has been allocated on a separate
cache line� When only one process is contending for the lock
 the process performing the fetch�and�
increment will obtain an exclusive copy in its cache and the read on whose turn will be executed
locally� However
 when multiple processes are contending for a lock
 the release will invalidate
the shared cache lines in all competing processes� nodes
 which introduces a signi�cant amount
of communication for both the invalidates and the subsequent reloads� Ticket locks have lower
overhead under low contention conditions compared to array�based queuing locks and MCS locks�
However
 under heavy contention conditions
 the number of invalidations and reloads will seriously
degrade interconnect performance�
In addition
 it is di�cult to dynamically choose a generally useful value for proportional backo�

which is used to reduce the amount of unnecessary tra�c and improve the performance of ticket
locks under heavy contention conditions� We used ��� cycles and ���� cycles for proportional backo�
under low and heavy contention conditions respectively� Also
 the use of a random backo� means
that the ticket lock protocol cannot guarantee FIFO lock acquisition�

typedef struct TIXLOCK f
unsigned long next�tix�

unsigned long whose�turn� g
tix�lock�type�

void acquire�long lock�addr� f
unsigned long my�tix�

tix�lock�type� L � �tix�lock�type��lock�addr�

my�tix � fetch�and�increment��long���L��next�tix���

while �L��whose�turn 	� my�tix�

pause�proportional�backoff � �my�tix� L��whose�turn���

g

void release�long lock�addr� f
tix�lock�type� L � �tix�lock�type��lock�addr�

L��whose�turn � L��whose�turn
��

g

Algorithm �� Ticket Lock Algorithm

����� MCS Locks �software distributed locks	

Mellor�Crummey and Scott introduced a software lock protocol that builds a distributed queue
of waiting processes rather than contending for a single counter or �ag �see Algorithm ��� The
introduction of a distributed queue removes the serious problem seen in ticket locks and spinlocks
during periods of heavy contention � releases cause global invalidates that are followed by a �urry
of �mostly useless� reloads� Since each process spins on its own personal �ag
 each release�acquire
pair only results in a single invalidation and reload �plus the one required to put a process on to the
queue in the �rst place�� During periods of low contention
 the extra work required to implement
the distributed queue is unnecessary and can signi�cantly increase the synchronization overhead
compared to ticket locks� However
 MCS locks had the best overall performance in a previous

	



study of synchronization mechanisms ����
 which led Lim and Agarwal to adopt it as their high
contention mechanism in their reactive synchronization implementation ����� MCS locks perform
best on machines that support both the compare�and�swap and fetch�and�store operations
 but it
can be implemented using only fetch�and�store
 albeit with higher overhead and without FIFO order
guaranteed� Our implementation assumes that the underlying hardware provides both primitives�
The important thing to note is that each competing process only spins on its local cache line �qnode�
until its predecessor reassigns qnode�locked to false�

typedef struct qnode f
struct qnode �next�

boolean locked� g
qnode�type�

typedef struct MCSLOCK f
qnode�type �q�ptr� g

mcs�lock�type�

void acquire�long lock�addr� f
�� allocated to each lock acquire instance ��

�� and keep permanent until release ��

qnode�type� qnode � allocate�qnode�lock�addr��

mcs�lock�type� ml � �mcs�lock�type��lock�addr�

qnode�type �pred�

qnode��next � NULL�

pred � �qnode�type �� fetch�and�store��long��ml��q�ptr
 �long�qnode��

if�pred	�NULL� f
qnode��locked � TRUE�

pred��next � qnode�

while �qnode��locked��

g
g

void release�long lock�addr� f
qnode�type� qnode � get�qnode�lock�addr��

mcs�lock�type� ml � �mcs�lock�type��lock�addr�

if �qnode��next �� NULL� f
if �compare�and�swap��long��ml��q�ptr
 �long�qnode
 NULL�� return�

while �qnode��next �� NULL��

g
qnode��next��locked � FALSE�

g

Algorithm �� MCS Lock Algorithm

��� Hardware Locks

In a directory�based distributed shared memory system
 the natural place to implement even the
basic atomic operations �fetch�and�op
 compare�and�swap
 test�and�set
 etc� is at the directory con�
troller �or memory controller� on the lock�s home node� The directory controller is required to






maintain lists of nodes with copies of individual cache lines
 and therefore maintaining a list of
nodes waiting for a lock requires negligible added hardware complexity� Thus
 in directory�based
multiprocessors
 implementing locks and other higher level synchronization operations does not
require signi�cantly increased hardware or �rmware complexity� Both hardware and software locks
must communicate with the directory controllers managing the lock�s cache line
 but since con�
ventional data consistency protocols are not well suited to synchronization access patterns ���
 the
software lock implementations will require extra communication tra�c� These observations led us
to investigate four directory�based hardware lock mechanisms�
The two simplest hardware mechanisms communicate only with the directory controller on the
lock�s home node to acquire and release locks� These centralized mechanisms di�er only in the
way in which the manage the list of waiting processes� The third hardware protocol mimics the
distributed queueing nature of MCS locks
 but without the extra software and coherence overhead of
the software implementation� The �nal adaptive protocol attempts to switch between centralized
and distributed modes based on dynamic access behavior
 in a manner analogous to Lim and
Agarwal�s software reactive locks ����� All four mechanisms exploit Widget�s ability to support
multiple consistency protocols by extending the hardware state engine in each directory controller
to exchange the required synchronization messages
 described below� In each case
 we assume that
locks are allocated one�per�line in IO space so that all reads and writes can be snooped o� of the
Runway by the Widget node controller�

����� Simple Centralized Hardware Lock Mechanism

The DASH multiprocessor�s directory controllers maintain a ���bit copyset for each cache line

where each bit represents one of the �� DASH processors ����� This full map directory design can
be adapted to support locking by converting acquire requests for remote locks into lock requests
to the relevant directory controller� When a directory controller receives a lock request message

it either immediately replies with a lock grant message if the lock is free or it marks the node as
waiting for the lock by setting the bit in its copyset corresponding to the requesting node� When
a node releases a lock
 it sends a lock relinquish message to the corresponding directory controller

which either marks the lock as free if no other node is waiting for the lock
 or selects a random
waiting processor and forwards the lock to that processor� This implementation is extremely simple

but starvation is possible and FIFO ordering is not maintained�

����� Ordered Centralized Hardware Lock Mechanism

Architectures
 such as Alewife�s ���
 that manage their directories using linked lists can easily
implement a centralized locking strategy that maintains FIFO ordering� For example
 in Alewife
each directory entry can directly store up to four sharing processors or nodes awaiting a lock� Once
the number of contending nodes exceeds four
 a software handler is invoked to �ush the record of
the sharing processors into a software emulated full map bu�er� This architecture can implement
the centralized scheme described above with FIFO access guarantees� The only disadvantage of
this scheme is the software cost for handling copyset over�ows� In the FLASH multiprocessor ����

the linked list could easily be managed by the MAGIC chip and stored in the data cache�

����� Distributed Hardware Lock Mechanism

The ordered centralized lock mechanism guarantees FIFO access ordering
 but like all centralized
protocols
 it can result in serious network and controller hot spots that degrade other transactions
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processed by the same node� In addition
 because all lock requests are handled by the lock�s home
node
 two messages are required to forward a lock between nodes during periods of heavy contention
�one from the lock holder to the home node and one from the home node to the requester�� To
address these problems
 we developed a simple distributed lock mechanism based on an MCS�like
distributed queueing model�
In this protocol
 each directory controller records only the next requester in the distributed queue
� the lock�s home node maintains a pointer to the end of the distributed queue� When a process
attempts to acquire a lock
 it sends a lock request message to the lock�s home directory controller

which either grants the lock immediately if it is free or forwards the request to the node at the end
of the distributed queue while updating its tail pointer �see Figure ��� If when a process releases a
lock it has already received a lock request message
 it immediately forwards the lock to that node
without �rst informing the lock�s home node� During periods of heavy load
 this approach reduces
the number of messages required to acquire a lock from four to three� In addition
 if a lock has
a high degree of reuse by a particular node
 that node will be able to reacquire the lock with no
communication whatsoever during periods of low contention �see Figure ��� Compared to software
queue�based �MCS� locks
 this hardware mechanism does not add overhead during periods of low
contention
 and the number of messages required to forward a lock are reduced from seven �four to
invalidate it and three to reload it� to two�

2. P1 is granted with the lock

1. P1 requests the lock

3. P2 requests the lock

5. P1 releases the lock and forwards to P2

4. P1 is forwarded with the request from P2

tail

P1

P2

P2

1
2

3

4

5

Figure �� Example of forwarding requests in the distributed hardware lock mechanism

����� Adaptive Hardware Locks

Because the centralized and distributed lock mechanisms perform quite di�erently during periods
of heavy and light contention
 we developed an adaptive hardware lock scheme� The basic idea of the
adaptive protocol is to adopt a centralized scheme during periods of low contention and switch to a
distributed protocol during periods of heavy contention� For each directory entry in the directory
controller
 a list of the �rst four nodes waiting on the lock are stored in the lock�s directory entry

as in Alewife ���� As long as no more than four nodes are waiting on the lock at a time
 it remains
in low contention �centralized� mode � releases go back to the home node and the lock cannot be
cached� However
 instead of handling directory entry over�ow by trapping to software
 we instead
switch to the distributed mechanism
 as illustrated in Figure �� We remain in distributed mode
until the burst of heavy contention passes and the lock becomes free� When a processor releases
the lock and �nds that no other node is waiting for it
 it sends a release hint message to the home
node to propose a return to centralized mode
 as illustrated in Figure �� If the home node has not
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    but still holds the lock

2. P3 requests the lock

1. P2 releases the lock, 

4. P2 is forwarded with the request from P3

3. P2 reacquires the lock

5. P2 releases the lock

6. P2 forwards the lock to P3

P21

6

3

5

tail

P3
P3

4

2

Figure �� Example of lock reuse in the distributed hardware lock mechanism
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3.5. P1 releases the lock

4. P3 requests the lock

1. P1 requests the lock

5. P4 requests the lock

t+1. P4 releases the lock and forwards to P5

6. P3 is forwarded with the request from P4

7. P5 requests the lock

8. P4 is forwarded with the request from P5

t. P3 releases the lock and forwards to P4 P1

1 2

t+1

3.5

P2

3

P3

P5P3P2
tail

P4

P5

4

5

6

7

8

t

Figure �� Example from central scheme to distributed scheme
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forwarded any recent requests
 it will respond with a release acknowledge message at which time
the protocol will revert to the centralized scheme� Until the acknowledgement arrives
 the last node
to acquire the lock will continue to respond to lock requests to avoid race conditions�

    home node, but still keeps the lock

2. P6 requests the lock

3. P5 is forwarded with the request from P6

1. P5 sends a release hint  to the 

4. P5 relinquishes the lock to P6

7. P7 is granted with lock from home node

5. P7 requests the lock and is entered into the queue

6. P6 releases the lock

tail

P5

4

P6

P7

P5P7

1

2

3

5 6

7

Figure �� Example from distributed scheme to central scheme

� Experimental Methodology

��� Simulation Environment

To evaluate a wide variety of possible synchronization implementations
 we used the PAINT sim�
ulation environment
 a locally ported HP PA�RISC version of the MINT multiprocessor memory
hierarchy simulation environment ����� PAINT simulates a collection of processors and provides
support for spinlocks
 semaphores
 barriers
 shared memory
 and most Unix system calls� It gener�
ates multiple streams of memory reference events
 which we used to drive our detailed simulation
model of the Widget multiprocessor memory and communication hierarchy described in Section ��
We replaced the built�in spinlocks with our synchronization protocols as described in Section ��
Our experience and that of others ��� is that accurate performance measurements of a multipro�
cessor�s backplane is critical for e�ectively evaluating the true performance of DSM architectures�
Therefore
 we have developed a very detailed
 �it�by��it model of the Myrinet network fabric ���
to accurately model network delays and contention� The Myrinet fabric is mesh�connected
 with
one crossbar at the core of each switching node� Our network model accounts for all sources of
delay and contention within the network for each �it of data including per�switching�node fall
through times
 link propagation delays
 contention for the crossbars in each switching node
 and
contention for the input and output FIFOs in each compute and switching node� Because the
performance of the Myrinet fabric will soon be increased to be competitive with alternative multi�
processor interconnects and to avoid biasing our results in favor of hardware synchronization
 we
simulated a network with one�tenth of Myrinet�s high fall through latency �� cycles vs �� cycles��
This decision bene�ts the software protocols
 as they generate approximately two to six times more
synchronization�related network tra�c than the hardware protocols�
We made the following simplifying assumptions in the model we simulated�

� Each node contains a ����kilobyte �rst level cache� In order to reduce the e�ect of varying

��



con�ict misses between di�erent runs
 the cache was ��way set�associative�

� Only four components of the Widget controller shown in Figure � were modeled � the RIM

the CC
 the DC
 and the NI� The RIM only did bus arbitration
 and the DC was assumed to
have enough memory to store all needed metadata�

� Each of the four components handled only one request at a time� The contention that this
design entails was modeled using a FIFO input and output bu�er in each of the component�

� The bus was a split transaction
 �� bit multiplexed address�data bus�

� Table � lists the delay characteristics that we used in our model� We based these times on the
existing PA�RISC ���� implementation and our estimate of the time to perform operations
within the Widget controller�

Since our study evaluates various hardware and software synchronization protocols rather than
detailed node controller design alternatives
 the above simpli�cations do not a�ect the results
presented in this paper� Our model is su�cient to analyze the e�ect of cache misses
 and contention
between shared data
 control
 and synchronization messages� Data was kept coherent using a release
consistent invalidation protocol� Space constraints make it impossible to discuss all of the details
of the simulation environment herein � a more detailed description of the Widget architecture can
be found elsewhere ����

Operation Delay

Local read hit � cycle
Local write hit � cycle
DRAM read setup time � cycles
DRAM write setup time � cycles
Time to transfer each subsequent word tofrom DRAM � cycle
DRAM refresh �time between DRAM requests� � cycles
Enqueue a message in a FIFO between controllers � cycles
Dequeue a message from a controller�s input FIFO � cycle
Update directory entry � cycle
Interconnect latency per hop 	 cycles

Table �� Delay Characteristics

��� Applications

We used four programs in our study
 global counter
 barnes
 fmm
 and radiosity� Figure � contains
the parameters and a brief description for each of these test program� The global counter program
has been used in couple of previous studies ���
���� The program has one global counter protected
by a lock� All participating processes compete for the lock
 update the counter
 wait for a period
of time for the shared lock
 and compete for the next run� We have controlled the degree of
contention by using two parameters� the latency of the critical section and the duration between
a lock release and the subsequent lock acquire� In addition
 the number of participating processes
adds another dimension to the analysis� In the ensuing discussion
 counter�n represents the global
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counter program with ��� cycles in each critical section and n cycles between critical sections�
barnes
 fmm
 and radiosity are from the SPLASH�� benchmark suite ����� Table � contains the
average duration of critical sections and the average time between acquire attempts for each of
these programs� In barnes
 a cell lock is allocated to protect each space cell
 a global lock protects
the global maximum and minimum values
 and a global IO lock protects standard output� During
each time step
 all processes wait on a barrier at the start and then load the bodies into a tree
structure� This phase of the program uses the maximum number of locks� The degree of contention
increases as the number of processes is increased without changing the problem size� After the local
structures are initialized
 a signi�cant amount of time is spent in the computation phase� After
the computation phase
 each process updates a global structure that is protected by the global
lock� Contention for the global lock is not as high as that for cell locks
 because of irregular load
distributions� In barnes the tree is traversed once for every particle
 while the processes in fmm
perform only one upward pass followed by a downward pass for each cell during each time step�
The result is propagated to the bodies in the downward pass� Therefore
 the average duration of
critical section is longer
 but the contention is lower than that in barnes� radiosity uses distributed
task queues
 which are protected by locks
 for parallelism� Each process manages its own local
distributed task queue
 which is accessed by other processes infrequently� Therefore
 the contention
in radiosity is the lowest among all the applications we considered�

Application Parameter Description

Global counter �� cycle critical section with ���
to ����� cycles between critical
sections� Total of ��� lock
acquire and release by each
process�

A global lock is used to protect
a global counter

Barnes ���� nbodies Simulates the interaction of a
system of bodies in three
dimensions over a number of
time	steps� using the Barnes	Hut
hierarchical N	body method�

Fmm ���� nbodies Simulates a system of bodies in
two dimensions over a number of
time	steps� using the adaptive
Fast Multipole Method�

Radiosity The small test scene Computing the equilibrium
distribution of light in a scene
using interactive hierarchical
di�use radiosity method�

Figure �� Description of Applications
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� of nodes � 	 �� ��

Global Counter � ����������� �	��������� 
���������� N�A
Global Counter � ����������k �	��������k 
���������k N�A
Barnes������ ������	���������k �����
���	������k �����������������k ������	
��������
k
Fmm������ ��	��
����������k ��
��������������k ��		���		�������
k N�A
Radiosity �	��
������������k ���

����
�������k �����������������k �	
	
�������	�����k

Table �� Number of locks
 average critical section in processor cycles
 average lock reacquire attempt
cycle �k������ �based on MCS lock running with release invalidation coherence protocol��

� of nodes � 	 �� ��

Barnes������ ������
���������k ���	��
���������k ��
���	���������k �	��������
�����k
Fmm������ ���������������	k ���������
������k �	�
������	�����k N�A
Radiosity �	���	�	��������k �	��
��	��������k �������	��	�����k �	

���	��	����
k

Table �� Number of locks
 average critical section cycle
 average lock reacquire attempt cycle
�k������ �based on MCS lock with � cycle data access time for all kind of regular data accesses��

� Results

In this section we compare the performance of the software and hardware lock implementations on
a variety of programs� In addition
 we evaluate the various hardware lock mechanisms to determine
which
 if any
 perform particularly well or poorly�

��� Software vs Hardware Locks

Table � presents the average time to perform an acquire and a release for each of the applications
and each of the six lock protocols on sixteen nodes� The four hardware protocols all require sig�
ni�cantly less time ����
��� to acquire and release locks compared to the software protocols� This
dramatic di�erence in raw synchronization latency con�rms our suspicion that specialized hardware
synchronizatin implementations have great potential in distributed shared memory multiprocessors�

App counter��� counter��k barnes���� fmm���� radiosity

MCS ��������������� ��������������� ��������������� ��������������� ���������������
Tic ��������������� �������������� �������������� ��������������� ��������������
Ran ������������ ����������� ������������� ������������� �������������
Ord ������������ ����������� ������������� ������������� �������������
Dis ������������ ������������ ������������� ������������� �������������
Ada ������������ ����������� ������������� ������������� �������������

Table �� Average Acquire and Release Times ��� nodes�

In terms of impact on overall application performance
 Figures � and 	 show the simulation elapsed
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Figure �� Global Counter Performance Comparison

time for each protocol running the global counter program
 normalized to the running time us�
ing software MCS locks� We ran two versions of the global counter program� counter���
 which
represents programs with heavy contention for the same lock
 and counter�����
 which represents
tuned programs with relatively low contention for a given lock� Under heavy lock contention
 the
hardware locking schemes perform signi�cantly better than the software schemes across the board

reducing executing time by up to ���� Thus
 for programs with high degrees of lock contention
or during periods of contention
 the provision of hardware locking can have a dramatic impact on
performance� Also
 under these load conditions
 the distributed hardware lock scheme performs up
to ��� better than the centralized schemes� Under light load conditions
 ticket locks perform signif�
icantly better than MCS locks
 as expected
 although as more nodes are added
 their performance
deteriorates rapidly� The good performance of the hardware lock schemes
 on the other hand
 is
independent of the number of nodes in the system� The hardware lock schemes outperform the
software lock schemes up to ��� in the ���node case� However
 the performance di�erence between
the centralized lock schemes and the distributed lock schemes is not as signi�cant as in the highly
contended counter��� program�
In Figure 

 we present the performance of the various locking mechanisms on the �����body barnes
program� Like in counter�����
 the performance of the hardware schemes improves as the number
of nodes increases
 peaking at ����� improvement for the distributed lock protocol for sixteen
nodes �over ��� compared to the ticket lock protocol�� Because of the low level of lock contention
in barnes
 the di�erence between the centralized and and distributed hardware schemes is small�
As illustrated in Figure �� and Table �
 the amount of contention for locks in fmm is very similar
to that seen in barnes� However
 the critical sections and the time between lock requests are longer
in fmm
 which reduces the potential performance impact of the hardware lock implementations�
Nevertheless
 they manage to outperform the software lock schemes by �� in the ���node case��
From Figure �� it is clear that radiosity has much di�erent synchronization characteristics from
barnes and fmm� As described in Section �
 radiosity has a signi�cant number of locks and each
protects a fairly �ne grain data and local access task queues� Processes do not interact
 so contention
for locks between processes is very infrequent� Therefore
 the centralized lock schemes signi�cantly
outperform the distributed lock schemes for ��node and 	�node cases� However
 once the number
of nodes reaches sixteen
 the distributed hardware lock outperforms the centralized lock schemes
due to the inherently greater contention caused by the smaller amount of work per processor�
All of the SPLASH�� programs have been carefully tuned to avoid performing synchronization


�We were unable to run fmm on �� nodes due to a problem in the simulation environment 
 something we plan
to correct before the �nal paper deadline�
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Figure 	� Global Counter Performance Comparison
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Figure 
� Barnes�Hut with ���� bodies
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Figure ��� FMM with ���� bodies
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Figure ��� Radiosity
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Figure ��� Barnes�Hut with ���� bodies
 �xed data access time

which limits the degree to which any synchronization mechanism can impact overall application
performance� Also
 all of the data in our applications is managed via a conventional write�invalidate
protocol
 which can lead to a large amount of excess communication for programs with high degrees
of sharing� Therefore
 to investigate the impact of hardware synchronization support for programs
with higher synchronization�to�computation ratios than is found in the tuned SPLASH�� programs

we reran the simulations assuming that all shared data accesses took only one cycle �i�e�
 there
were no coherence misses�� Clearly this is unrealistic in real programs
 but our intent was to
isolate the synchronization overhead from the shared data management overhead� Figures ��
through �� illustrate the performance of the various synchronization primitives when the impact
of synchronization is less masked by data management�

��� Central vs Distributed Hardware Locks

We observed three major characteristic synchronization access patterns in the applications� low
contention with long periods between reacquires by the same process
 low contention with repeated
reacquires by a single process
 and heavy contention by many processes�
In the �rst scenario
 the distributed lock mechanism performs relatively poorly because lock ac�
quire requests must be forwarded from the home node to the last lock holder
 who is usually not
reacquiring the lock� This requires an extra message and greater controller overhead� In central
lock scheme
 on the other hand
 requests usually can be serviced as soon as they arrive at the home
directory
 which reduces the average number of messages by one�
In the second scenario
 when the contention is low and lock reacquires are frequent such in radiosity
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Figure ��� FMM with ���� bodies
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the relative performance of the centralized and distributed lock mechanisms reversed�
The distributed locking mechanisms ability to cache locks at the site of the last lock request means
that all reacquires occur at essentially no cost� In the central lock scheme
 each acquire and release
must go through the home directory even if the same node is repeatedly reacquiring a lock in a
short period of time� This behavior results in signi�cantly higher lock acquire latencies and a much
heavier communication load on the network�
In the �nal scenario
 when contention is very high but there is not a large amount of locality
between two consecutive acquires
 the distributed lock mechanism outperforms the centralized lock
mechanism because of the directory controller hot spot and the fact that lock forwarding requires
an extra message on the average� In the distributed lock scheme
 instead of waiting in the directory

the request is forwarded to the previous process in the distributed linked list
 and it can be granted
via a single message once the previous process releases the lock�
In Figure ��
 the elapsed times for the ordered centralized
 distributed
 and adaptive hardware
locks are shown
 relative to the ordered centralized scheme� For most applications and number of
nodes
 the di�erence in performance between the various hardware protocols is neglible� Only in
the case of the high contention counter��� does the performance vary dramatically � in this case

the distributed and adaptive lock scheme signi�cantly outperform the centralized lock scheme� In
the other programs
 the relative performance of the centralized and distributed schemes tracked the
lock reacquisition rate almost exactly� Since this rate is highly program and problem size depen�
dent
 neither scheme clearly dominates the other in terms of performance� Somewhat surprisingly

the adaptive protocol does not perform particularly well �or poorly� for any of the programs� These
results indicate that any adaptation should be aimed at detecting periods of frequent lock reacqui�
sition rather than generally high levels of contention� Overall
 however
 it appears that while the
hardware locks consistently outperform the software locks by a signi�cant margin
 the di�erence in
performance between the various hardware implementation is generally small
 so the choice of hard�
ware protocol should probably be driven by implementation complexity rather than performance�

� Conclusions

Traditionally
 high level synchronization operations have implemented in software using low level
atomic primitives such as compare�and�swap and load�linked�store�conditional� This design makes
sense on bus�based multiprocessors
 since the hardware required to implement locks or barriers
would be non�trivial and the payo� small� However
 the emergence of directory�based distributed
shared memory multiprocessor architecture in the past decade makes hardware synchronization
mechanisms more attractive� Many directory protocols have been proposed
 all of which can imple�
ment at least one of the hardware synchronization protocols described in Section �� The directory
controllers in these architectures already provide the queueing or copyset logic needed to imple�
ment hardware locks
 and the higher communication costs present in these systems make even small
protocol enhancements important�
Given the low hardware cost of implementing locks in directory based multiprocessors
 we studied
the performance of two software and four hardware implementations of locks to determine whether
the provision of hardware locks would signi�cantly impact overall program execution times� We
found that hardware implementation can reduce lock acquire and release times by ���
�� compared
to well tuned software locks� In terms of macrobenchmark performance
 hardware locks reduce ap�
plication running times by up to ��� on a synthetic benchmark with heavy lock contention and by
����� on a suite of SPLASH�� benchmarks� As improved cache coherence protocols reduce the
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Figure ��� Relative Performance of Hardware Lock Mechanisms
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amount of time spent managing shared data relative to the time spent synchronizing
 the hardware
schemes will have an increasingly signi�cant impact on performance� To examine this trend
 we ran
several simulations with arti�cially reduced shared data management overheads� In these simula�
tions
 the hardware schemes outperformed the software schemes by up to ��� on the SPLASH��
benchmark programs� Given Widget�s �exible support for multiple cache coherence protocols
 the
added hardware design cost of supporting hardware locks is minimal
 so even moderate perfor�
mance improvements are worth pursuing� Furthermore
 the synthetic experiments indicate that
much larger performance improvements are possible for programs with higher synchronization to
data management ratios�
We studied four hardware lock mechanisms� two centralized mechanisms �one using an unordered
bitmap and another with a local linked list�
 one that implemented a distributed linked list
 and
one that switched between the centralized and distributed algorithms depending on dynamic access
patterns� The centralized lock schemes perform better when lock contention is low
 either due to
a small number of competing processes or low rate of interference� As the number of competing
processes or rate of interference increases
 the distributed lock schemes perform best� However
 the
overall di�erence in performance of the four hardware locking schemes is small
 so the choice of
which hardware mechanism to support should be driven more on ease of implementation than on
performance�
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