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Abstract� Despite the growing interest in asynchronous
circuits� programmable asynchronous controllers based on the
idea of microprogramming have not been actively pursued�
Since programmable control is widely used in many com�
mercial ASICs to allow late correction of design errors� to
easily upgrade product families� to meet the time to market�
and even e�ect run�time modi�cations to control in adaptive
systems� we consider it crucial that self�timed techniques
support e�cient programmable control� This is especially
true given that asynchronous �self�timed� circuits are well
suited for realizing reactive and control�intensive designs�

We o�er a practical solution to programmable asyn�
chronous control in the form of application�speci�c micro�
programmed asynchronous controllers �or microengines�� The
features of our solution include a modular and easily extensi�
ble datapath structure� support for two main styles of hand�
shaking �namely two�phase and four�phase�� and many ef�
�ciency measures based on exploiting concurrency between
operations and employing e�cient circuit structures� Our
results demonstrate that the proposed microengine can yield
high performance�in fact performance close to that o�ered
by automated high�level synthesis tools targeting custom
hard�wired burstmode machines�

I� Introduction

Sequencing of activities in most VLSI digital circuits is
achieved by means of a global clock� Supporting global
clocking often comes at very high engineering costs� es�
pecially given the trend towards deep submicron VLSI� A
well�designed clocking system must� among other things�
ensure that the clock cycle time not wasted by the sub�
modules� Ensuring this situation involves considerable en�
gineering e�ort� given the ever�increasing wire�to�transistor
delay ratios� This becomes more of a problem in circuits
that are reactive and control�intensive in nature� Such cir�
cuits receive data values from the external world at unpre�
dictable moments and have to perform e�ciently a piece of
computation for each data value received� where the com�
putations and control decisions may take a data dependent
amount of time� Clocking power is also an increasingly
important issue� given the packaging and cooling issues
that highly dissipative circuits involve� Though advanced
clocking techniques in this area such as distributed clocking
methods ���� ��� and	or gated clocking �
� o�er a solution
to these problems� these techniques are not ready yet for
widespread incorporation into general application speci�c
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integrated circuit �ASIC
 design in a manner that is cost�
e�ective and meets the time to market�

Asynchronous �self�timed
 circuits are quite natural for
realizing circuits of a reactive and control�intensive na�
ture� Encouraging results are being obtained by many
groups in designing self�timed circuits in this domain� for
example in communications components used in multipro�
cessors ���� hardware to network portable electronic de�
vices ���� and digital signal processing algorithms used in
audio�electronics hardware ���� Despite the growing inter�
est in asynchronous circuits� programmable asynchronous
controllers based on the idea of microprogramming have
not been actively pursued� Since programmable control
is widely used in many commercial ASICs to allow late
correction of design errors� to easily upgrade product fam�
ilies� to meet the time to market� and even e�ect run�time
modi�cations to control in adaptive systems� we consider
it crucial that self�timed techniques support e�cient pro�
grammable control� This is especially true given that asyn�
chronous �self�timed
 circuits are well suited for realizing
reactive and control�intensive designs� For example� sup�
porting families of component types� such as bus adap�
tor chips� is greatly facilitated by programmability� Other
examples of systems realized using programmable control
�but not using asynchronous control
 are the S
MP proces�
sor ��� which uses a microprogram engine� and the FLASH
processor ��� which uses a processor�core� Programmable
asynchronous circuits have also recently shown advantages
in embedded and DSP applications ���� �����

Many of these programmable approaches are very gen�
eral purpose in their organization to accommodate both
pre� and post�fabrication changes of a broad nature� For
example� processor cores can be easily re�programmed� and
general�purpose microprogram sequencers can be easily
equipped with modi�ed microcode� We demonstrate in this
work that application speci�c microprogrammed structures
can be easily designed for many classes of circuits� perform
at least an order of magnitude better than general�purpose
solutions based on processor cores� and even approach the
performance of hard�wired control in many cases� The
method proposed in this report combines the advantages of
programmability and self�timing in an application�speci�c
manner� More speci�cally� the main contribution of this re�
port is the design and experimental evaluation of a general



�

and structured approach to a fully asynchronous micropro�
grammed control organization ����� amicroengine� that tar�
gets application speci�c implementations� The architecture
emphasizes simplicity� modularity� and high performance�
We will also demonstrate that asynchronous design meth�
ods can be used advantageously in the design of micropro�
grammed control and datapath structures that carry out
sequencing on the basis of completion sensing� instead of
a �xed clock schedule� This makes our solution especially
attractive for reactive and control�intensive designs�
This report is organized as follows� After surveying re�

lated work and motivating our approach of targeting asyn�
chronous microengines for e�cient high level control� we
describe our proposed asynchronous microengine architec�
ture in detail� using the simple example of a Di�erential
Equation solver in Section III� Section IV gives a more
detailed discussion of the structure and operation of the
microengine� Optimizations to enhance the microengines
performance are then presented in Section V� Section VI
presents system timing constraints that must be met to
ensure correct operation� In Section VII� a detailed pre�
sentation of performance comparisons between the micro�
engine and state�of�the�art asynchronous hard�wired con�
trollers are presented�

A� Related work

Our approach to programmable control targets imple�
mentations where both program store and datapath units
are fully customized in capacity and functionality� respec�
tively� while still o�ering a high degree of programmabil�
ity� In contrast to microprocessor cores the implemen�
tation in our approach is adapted to and optimized for
the given design speci�cation� rather than the other way
around� for maximum performance and �exibility� While
possibly having higher control overhead than hard�wired
control� our approach nevertheless allows a higher degree
of freedom in how to schedule and sequence actions at a
�ne�grained level� More speci�cally� our microengine al�
lows per�microinstruction programmability of its datapath

topology by arranging its datapath units into series�parallel
clusters� for each microinstruction� This feature allows the
parallel clusters to run concurrently� while allowing the se�
rial units within a cluster to chain ����� as will be elabo�
rated later� Chaining reduces the number of microinstruc�
tions needed to carry out a control task� For example� for
the di�erential equation solver example illustrated in Sec�
tion III� four microinstructions of �� bits width realize the
entire control algorithm� Chaining also reduces the overall
overhead of fetching microinstructions� because there are
fewer microinstructions to fetch� Chaining� in e�ect� �rolls�
many microinstructions into one large�grained instruction�
thus reducing control overhead since several operations can
be performed before a new microinstruction needs to be
fetched� Chaining also reduces the relative overhead of
completion sensing� because completion is now sensed for
larger grains of computation� Chaining in this manner is
next to impossible to e�ciently support in synchronous mi�
croprogrammed controllers because of the di�culty of mak�

ing sure that all desired chain lengths are integral multiples
of the clock period�
Programmable asynchronous structures were investi�

gated around the �����s ��
� in the context of a data��ow
computer� However� their organizational style did not sup�
port many of the features of microengines� including se�
rial	parallel organization and chaining� It was also not an
application�speci�c customization technique for micropro�
grammed structures�
Asynchronous microprocessors ����� ����� ���� have lately

been a popular target for showing advantages in power con�
sumption and speed� They are not applicable in all em�
bedded control systems however� due to their high fabri�
cation cost� large size� relatively high power consumption�
and �xed general purpose instruction set� As an exam�
ple we implemented a CD player error decoder ���� in our
microengine architecture �presented later in this report

and also accurately estimated the best�case performance of
the control algorithm of the same error decoder using the
MIPS�R
��� instruction set as realized by the ��� MIPS
asynchronous microprocessor presented in ����� The per�
formance di�erence using the same implementation tech�
nology� a ��� micron fabrication process� was a factor of ��
times in favor of our microengine� This example serves to
illustrate the performance advantage obtainable by special
purpose hardware such as our microengine compared to the
general purpose hardware of microprocessors�
Other programmable control approaches have recently

been investigated ���� ����� ����� These are best character�
ized as programmable microprocessor cores� For example�
��� allows a dedicated datapath unit to be added to a mi�
croprocessor core to speed up computation� However� this
organization has a large area due to its on�chip caches ���k
instructions� ��k data
 to support general purpose micro�
programs� Since these types of programmable microproces�
sor cores have �xed control structures and bus widths� they
are also not easily adaptable to speci�c design requirements
e�ciently�
Another method to obtain programmable control in a

self�timed design context is by using FPGAs such as Trip�
tych ����� However� these and other similar FPGA struc�
tures are con�guration�time reprogrammable� but not �eas�
ily
 run�time con�gurable� In addition� microengines are
superior both in terms of area and speed compared to Trip�
tych based structures �����

II� Architecture overview

A conventional �synchronously clocked
 micropro�
grammed control structure consists of a microprogram
store� next address logic� and a datapath� Microinstruc�
tions form commands applied on the datapath and control
�ow is handled by the next address logic that� with the
help of status signals fed back from the datapath� gener�
ates the address of the next microinstruction to be exe�
cuted� In a synchronous realization the execution rate is
set by the global clock which must take the worst case de�
lay of all units into account� When the next clock edge
arrives it is thus assumed that the datapath has �nished
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computing and the next address has been resolved� and
the next microinstruction can be propagated to the dat�
apath� Our asynchronous microengines have an organiza�
tion similar to those of conventional synchronous micropro�
grammed controllers� However� as illustrated in Figure ��
major di�erences between these approaches stem from the
use of handshaking to orchestrate both datapath� as well
as microprogram�store related activities�
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Fig� �� High Level Structure

In conventional synchronous microprogrammed con�
trollers� the computation is started by an arriving clock
edge and the datapath is assumed to have completed by
the following clock edge� In the asynchronous case we
have no clock to govern the start and end of an instruc�
tion execution� Instead a request is generated to trigger
the datapath units to start executing� Each datapath unit
then signals its completion by generating an acknowledge�
While the current microinstruction is being carried out�
the next microinstruction is concurrently fetched predict�
ing branches suitably� as elaborated later� The datapath
units must then be explicitly synchronized to ensure they
have all completed before the next microinstruction can be
propagated to the datapath� This function is performed
by the execution control unit �ECU in Figure �
� The ECU
collects acknowledge signals from all datapath units before
generating a request that propagates the already waiting
next microinstruction to the datapath� thus starting a new
execution cycle of the microengine�

Microengine highlights

The microengine achieves its e�ciency in a number of
ways� Its control and datapath structures are fully cus�
tomized to the control problem� thus minizing overhead�
Its designer has complete control as to the degree to which
the design should be programmable� A modular datapath
also allows easy replacement of datapath functional units�
thus facilitating upgrading as well as late�binding of design
decisions� Similar changes can� in a synchronous design�
obviate the clock schedule� thus requiring total re�designs�
The most crucial optimization exploited in the microengine
is that of per�microinstruction programmability of its dat�
apath topology� as explained earlier�
The overhead inherent to programmable control struc�

tures is further reduced by parallelizing microinstruction
prefetch with datapath evaluation� as well as by setting

up multiplexors for the next microinstruction concurrently
with acknowledge synchronization for the current microin�
struction� as will be elaborated later�

III� Microengine operation

The di�erential equation solver ���� in Figure � is a pop�
ular benchmark that will be used throughout this section
to illustrate the general operation of the microengine� The
algorithm illustrated in Figure ��a
 implements the forward
Euler method and is used to numerically obtain the values
of y satisfying the di�erential equation y�� � 
xy� � 
y � �
where x ranges from x��
 to a with step size dx� To avoid
unnecessary detail in the example it is assumed that the
input port values are stable throughout the algorithm ex�
ecution� and that the constant 
 � dx is available on an
input port� Three threads calculating y� y� �u in �gure
�
and incrementing x are needed per iteration� Computing
y� requires two multiplications� an addition� and a subtrac�
tion operation� Computing y requires one multiplication
and one addition� x requires only an addition� and evalu�
ating the while loop condition requires a comparator�
We decide to allocate one multiplier and one arithmetic

unit for the calculation of y�� a multiplier and an adder for
y and x� and a comparator for the loop condition� The
three threads of the algorithm can then be scheduled as
illustrated in Figure ��b
� Data�ow is identi�ed by wide
shaded arrows while control sequencing� the propagation of
the request signal through the datapath units� is illustrated
by thin black arrows�
Only four microinstructions are needed to formulate the

algorithm� The �rst instruction loads the X �Y � and U

registers with their initial values and then tests the initial
loop condition� The second calculates y and the �rst half
of y� while the third calculates x� the loop condition� and
the second half of y�� The second and third instructions
are then repeated until the loop condition x � a becomes
false at which time the fourth instruction makes an uncon�
ditional jump back to the beginning of the program and
signals the completion of the computation� The complete
microengine implementation with associated microprogram
is illustrated in Figure ��c
�

A� Microprogram structure

The following bit �elds of the microprogram are used
to control the local operation mode of each datapath unit
�DPU
� The set�execute� se� bits in the memory are used to
specify when a datapath unit is supposed to execute while
the set�sequence� ss� bits speci�es if it is setup to execute
in sequential �chained
 or parallel mode� Note that if a
datapath unit is setup to always operate in chained mode
the se bit may also be used to incorporates the functionality
of an ss bit� The set�mux� sm� and op�code� op� bits are
used to specify which operands and operation the datapath
unit should use� The enable� en� bits are used to enable
which registers� when there are multiple registers in the
same datapath unit� should latch data�
The following bit �elds of the microprogram are used

to control the global microprogram �ow� The current ad�
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diffeq {
    read(x, y, u, dx, a);
    while (x < a) {
        x1 := x + dx;
        u1 := u - 3 * dx(u * x + y);
        y1 := y + u * dx;
        x := x1; y := y1; u := u1; }
    write(y);
}

a) General algorithm

b) Data and Control 
     Flowgraph c) Microengine Implementation
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Fig� 	� Design Example� Di
erential Equation Solver

dress� curr�addr� speci�es which microinstruction that is
currently being fetched by the memory �but is not part of
the instruction
� The next address� next�addr� is only used
when the microinstruction contains a branch operation and
speci�es the address of the instruction being branched to�
The set�branch�detect�unit� bdu� bits speci�es which con�
ditional expression result the branch detect unit �BDU

should test on a branch operation� The branch prediction�
bra�pred� bit is used to specify if the branch test evaluation
was predicted to be true or false� The select address� sel�
addr� speci�es which microinstruction� the next sequential
one or the one speci�ed by next�addr� to prefetch� The
done bit indicates to the execution control unit when the
microprogram has completed its computation and eventual
data is available on output ports� The logic blocks that dif�
ferent microinstruction bits operate on are indicated by the
thin shaded lines connecting each logic block with its cor�
responding microinstruction bits in the memory block in
Figure ��c
�

B� Local datapath control

To keep the datapath units modular and support a stan�
dardized way to implement sequential and parallel schedul�
ing� a local control block associated with every datapath
unit is introduced� These control blocks are represented
by the RAS components as illustrated in Figure ��c
 and
are responsible for handling request� acknowledge� and se�
quencing for their respective datapath unit� Since the RAS

blocks handles the control aspect of the datapath units� the
microengine datapath forms a regular and modular struc�
ture where datapath units can be implemented in arbitrary
styles� all using a simple request�acknowledge handshake
protocol� In our example the datapath units� identi�ed by
the shaded boxes in the �gure� are implemented in a stan�
dard gate library and use bundled data ���� delays for ac�
knowledge generation� The datapath units will be referred
to by their internal components names� Thus XY refers to
the unit containing registers X and Y while MUL� refers to
the unit containing the MUL� labeled function block etc�

C� Microprogram execution

The following section will step through the execution of
the di�erential equation solver microprogram illustrated in
Figure ��c
�

Instruction �� The microengine starts its execution at a
speci�ed entry point in the microprogram� address � in our
example� upon receiving a request from the environment
�ext�req
� Bundled data is assumed in the communication
between microengine and its environment� meaning the val�
ues on data buses are valid by the time the request arrives�
The Execution Control Unit �ECU
 receives the external
request and in turn issues an event on the global request
wire� req� fanning out to the memory and all datapath
units� The microinstruction currently addressed� instruc�
tion �� is then latched to a register array internal to the
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memory by the global request� The request fanouts to the
datapath are su�ciently delayed to allow the instruction
to propagate to the RAS blocks and datapath units �rst�

Datapath execution� When the global request arrives at
the RAS blocks� those setup for parallel execution prop�
agates the request to their corresponding datapath unit
while those setup for sequential execution awaits the com�
pletion of previous datapath units in the chain� When the
datapath units have completed their computation they gen�
erate an acknowledge to their respective RAS blocks� In
our example� microinstruction � has setup datapath units
XY and TU to latch the values on input ports Xport� Yport�
and Uport in parallel� Datapath unit CMP is setup to await
the completion of unit XY before starting its own compu�
tation� Instruction � thus execute two parallel threads� one
thread containing units XY and CMP which are setup to
execute in a chained fashion� and one thread executing unit
TU� We represent this as �XY � CMP 
jj�TU
�

As the XY and TU units complete their computation
they generate acknowledges to their respective RAS blocks
that in turn propagate the acknowledges back to the ECU�
The RAS block acknowledges are also propagated as se�
quential request signals to other RAS blocks whose datap�
ath units are setup for chained execution� The RAS block
of datapath unit CMP� which is setup for chained execu�
tion� therefore waits until it gets a sequential request from
the RAS block of unit XY� indicating that unit XY has
completed its execution and that the values of registers X
and Y are now available on its outputs� The sequential re�
quest is then propagated by the RAS to its datapath unit
CMP which computes the conditional branch expression
X � Aport whereafter its acknowledge is sent back to the
ECU� While the BDU tests the result of the branch expres�
sion the ECU synchronizes the completion of the datapath
units�

Microinstruction prefetch� While the datapath is execut�
ing� the microinstruction predicted to be executed next is
prefetched� If the current microinstruction does not con�
tain a branch� the next address unit propagates the incre�
mented value of the current address as the next microin�
struction to be fetched from memory� If the microinstruc�
tion contains a branch� the prediction strategy is controlled
by the sel�addr and bra�pred bits� If the sel�addr bit is set
to a � the next�addr value is propagated� otherwise the
current address incremented by one is propagated to the
memory� In our example microinstruction � has the bra�

pred and sel�addr set to � and � respectively� since it is
likely that X � Aport when entering the while loop� and
address � is propagated to memory as the next microin�
struction� After the memory has fetched the instruction it
generates an acknowledge to the ECU and then waits for
the next global request before propagating the instruction
to the datapath�

If X � Aport is false however� the prediction was wrong
so microinstruction � must not be executed and microin�
struction � be fetched instead� This is achieved by toggling
the value of sel�addr if the bra�pred value is di�erent from
the evaluated branch result from the BDU the next time

a global request arrives� An extra cycle is thus needed to
fetch the correct microinstruction when a branch prediction
is wrong�

Instruction �� Assuming the while loop condition was true�
instruction � is propagated to the datapath at the next
arriving global request� As illustrated in Figure ��b
� in�
struction � contains two parallel threads� One computes
the �rst half of y� � �MUL�� ALU�� TU
 and the other
computes y � �MUL�� ALU�� XY 
� The chained re�
quest propagation in each thread commence as described
previously for instruction �� One di�erence however is the
latching of Y� Since Y is an operand to ALU� we must
at least make sure that ALU� has completed before latch�
ing the new value for Y �we assume T has time to latch
its new value before the changes in Y propagates to its
inputs
� We therefore introduce a cross�thread synchro�
nization point by requiring XY to wait for the completion
of both ALU� and ALU� before latching the new value of
Y� This is illustrated in the microinstruction by both set�
sequence signals� ss� and ss�� for XY being set� Note that
in the other thread TU still only has to wait for ALU� to
complete� The TU thread can thus complete before the
XY thread but never the other way around� It is worth
observing the generality in which the microengine struc�
ture allows threads to be formed and synchronized� By
letting several RAS blocks wait for the same sequential re�
quest�s
� multiple threads can be spawned from a single
thread� These threads can then be freely split into sub�
threads or joined with other threads to form any combina�
tion of series	parallel clusters of executing datapath units�
It is left to the designer as a performance	area	generality
tradeo� to specify to which extent such formations should
be supported� In our example� also note that since MUL��
ALU�� MUL�� and ALU� according to our scheduling can
never be last in a chain� their RAS blocks are not required
to generate acknowledges thus reducing the complexity of
the ECU� Therefore only the RAS blocks for XY� and TU

need to generate acknowledges this cycle� Since instruc�
tion � does not contain a branch� instruction 
 has been
guaranteed correctly prefetched by the memory while the
datapath was executing�

Instruction 
� Once the ECU has synchronized the ac�
knowledges from the datapath instruction 
 is propa�
gated to the datapath� This instruction also has two
parallel threads� One computes the second half of
y� � �MUL�� ALU�� TU
 and the other computes x

and the while loop condition � �ALU�� XY � CMP 
�
This time no cross�thread synchronization is necessary and
therefore only ss� for XY is set� i�e� this time the RAS
block only waits for ALU� to complete before generating
a request to the XY datapath unit� This instruction also
contains a branch� Since the sel�addr bit is set the value
of next�addr� which is �� is speci�ed to be propagated to
memory as the address of the instruction to prefetch�

Instruction �� While the loop condition holds true� instruc�
tions � and 
 are executed as described above� Once the
condition becomes false� the sel�addr value is toggled and
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address � is propagated to memory� Instruction � contains
an unconditional jump to instruction � and also indicates
to the ECU that the computation requested by the en�
vironment has been completed and the y output value is
available on port Youtport� The ECU then generates an ac�
knowledge �ext�ack in �gure
 to the environment and then
remains quiescent until the next request from the environ�
ment arrives�

IV� Architecture details

The following section provides a more in�depth discus�
sion regarding the next address generation� global and lo�
cal execution control� datapath unit structure� and archi�
tecture optimizations�

A� Next address generation

To reduce control related overhead of the microengine�
it is desirable to fetch the next microinstruction in par�
allel with the execution of the current microinstruction�
We solve this problem of branch prediction in our micro�
engine by fetching the next microinstruction most likely
to be executed� but not committing it before the address
selection has been resolved� We provide a �exible solu�
tion which allows each branch instruction to be individu�
ally programmed to employ a taken or not taken branch
prediction strategy� In order to keep the next address logic
simple� the next address in case of a branch instruction is
stored as part of the microinstruction�
To detect if a branch was correctly predicted� the Branch

Detection Unit �BDU
 communicates the state of the data�
path back to the next address logic at the end of the cycle�
The structure of the BDU is shown in Figure 
 and can be
functionally divided into two parts�
The �rst part evaluates if the branch condition is true

or false� A set of eval signals from memory are used to
select which conditional results from the datapath� cond�
to test� This functionality is achieved by a simple AND�OR
structure� Note that this branch test structure also allows
ORing tests of several conditional results�
The second part compares the branch result with the

predicted branch and asserts a clear signal if they di�er�
i�e� if the prediction was wrong� This clear signal has three
di�erent functions� Its �rst function is to toggle the sel�

addr bit from memory so that the correct address is prop�
agated to memory at the next global request� The toggle
circuit� which is part of the microinstruction register array�
for sel�addr is illustrated in Figure ��a
� Second� since the
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propagation of the global request to the datapath is never
disabled� the se and ss signals of the previously executed
instruction must be cleared in order to stop the RAS blocks
from propagating the request to the datapath units which
would otherwise repeat the execution of that instruction�
This is achieved by synchronously clearing these bits on the
next arriving global request� Other registers are simply dis�
abled from latching new data� The eval and bra�pred bits
are also cleared so as to not toggle the sel�addr bit again
after fetching the correct microinstruction� Third� the clear
signal is also used to disable the next address block� illus�
trated in Figure ��b
� from changing the internal values of
the addresses so that the old incremented address is prop�
agated to the memory correctly�
Note that unconditional branches are supported by spec�

ifying all eval and the bra�pred signals to be �� thus guar�
anteeing that whatever microinstruction speci�ed by the
sel�addr bit will be fetched and executed�
Thus if a branch is mispredicted� the sel�addr bit value is

toggled to propagate the correct address to memory� all se�
ss� eval and bra�pred bits are cleared� and the next address
block is disabled from latching a new incremented address
when the next global request arrives� A correctly predicted
branch thus has zero overhead while a misprediction re�
quires an extra cycle to fetch the correct microinstruction�

B� Microengine execution control

There are many ways of realizing a structure for request�
acknowledge handshaking between the microengine and the
datapath units� Since all datapath units must synchronize
with the memory before a new microinstruction can be
latched� there is little to gain by generating separate re�
quest signals to individual datapath units� An approach of
having only one global request signal that decides when to
fetch a new microinstruction from memory as well as cause
the datapath units to start executing is therefore used�
This approach reduces the complexity of the request con�
trol logic necessary� as well as simpli�es parallel datapath
unit operation and timing analysis� Our design problem
then reduces to one of designing request generation logic
that o�ers low overhead and good scalability with regard
to the number of datapath units� For implementation of
the request generation logic� burstmode ���� ����� ��
� type
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of asynchronous state machines are used� The operation of
a burstmode state machine allows the acknowledge signals
from the datapath units that are generated in response to
the global request to arrive at the state machine inputs in
arbitrary order at arbitrary times�

For e�ciency reasons we impose the requirement that
all RAS blocks should always respond with an acknowl�
edge even when their datapath units are not setup to exe�
cute� This will keep all acknowledges in phase and results
in greatly reduced logic complexity for the request gener�
ation logic� By using this strategy the number of transis�
tors of the request generation logic grows only linearly with
number of acknowledge inputs� If the acknowledges were
allowed to get out of phase the logic would become much
more complex� When using this approach of always ac�
knowledging the RAS blocks must generate a bypass path
for acknowledge generation when their datapath units are
not scheduled for execution� The cost for this however is
very small compared to the extra ECU complexity for the
out of phase acknowledge approach� In addition� the same
request generation logic can be used for both two and four
phase protocols�

An abstract event based FSM for the global request gen�
eration and resulting complex gate implementation using
the 
D synthesis tool ��
� is illustrated in Figure �� The
respective n and p transistor networks can be decomposed
into balanced tree structures of gates to simplify timing
analysis� or unbalanced ones to improve performance� This
request generation logic then forms part of what is called
the Execution Control Unit �ECU
 used to generate a new
event on the global request signal�

In our ECU realization� it is assumed that the same pro�
tocol is used for communication internal to the microengine
as well as with the environment� The ECU is initially qui�
escent� After receiving a request from the environment an
event on the global request signal is generated causing the
microengine to start executing� This global request latches
the next address and the new microinstruction from mem�
ory and triggers the datapath units to execute� For both

the two and four phase case� the not done signal in Figure �
is generated by a SELECT�element �not shown
 connected
to the done level signal from memory and the global request
signal� While done is false� the SELECT�element generates
events on the not done signal� When done is true� an event
is instead sent to the environment as an acknowledge that
the microengine has completed the requested computation�
The ECU then remains quiescent until a new request ar�
rives from the environment�

C� Local datapath execution control

A powerful feature of the proposed architecture is its
ability to dynamically form clusters of datapath units for
independent series	parallel execution during run�time� To
support this �ne grained control over execution� a lim�
ited form of control structure� the RAS block� is associ�
ated with each datapath unit as previously shown in Figure
��c
� The RAS block provides control over local request�
acknowledge generation and sequencing of actions� Given
the set�execute and set�sequence bits from the current mi�
croinstruction� the RAS block controls if its correspond�
ing datapath unit is supposed to execute during this cycle
and in what mode� sequential or parallel� with respect to
other datapath units� In parallel mode� the global request
is propagated directly to the datapath unit� In sequential
mode� the sequential request �acknowledge
 of the previ�
ous RAS block in the execution chain is propagated� If
the datapath unit is not set to execute during the current
cycle� a special bypass path is provided to generate a quick
acknowledge�

Sequence control� The sequence control function of the RAS
can in its simplest form be performed by a MUX� controlled
by the set�sequence bit� that propagates either the global
request or a sequential request to its datapath unit� The
output of the sequence control MUX is hazard free since
both the global and sequence request signals will reach sta�
ble values before the next microinstruction may alter the
MUX control signal �signal ss in Figure �
�
Carrying the above idea further along� in general it will

be necessary for a RAS block to wait for the completion of
an arbitrary set of concurrently executing datapath units
before generating the request signal to its attached data�
path unit� An e�cient way to realize such high �exibility
is illustrated by the complex gate structure on the left�
hand sides of Figures ��a�b
� Given a set of set�sequence
signals from the microinstruction and sequence request sig�
nals from other RAS blocks� this structure can synchronize
with all possible combinations of these datapath units� The
set�sequence signals provide a bypass path around the se�
quence request signals in the transistor stack that are not
currently of interest� This forces the sequence logic to wait
for an event on all sequence request signals in the current
subset of interest before a path in the transistor network
will conduct�
In general� sequencing actions between datapath units

will always be faster than starting a new cycle� because the
latter entails detecting completion of all datapath units and
fetching a new microinstruction� To gain a signi�cant per�
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formance edge however� the number of sequential request
signals to a RAS should be restricted� as practical realiza�
tions seldom call for the �in�nite �exibility� of all possible
combinations�

Request�acknowledge control� Besides sequencing control�
the RAS must also provide means to correctly perform an
internal request�acknowledge handshake with its datapath
unit if it is scheduled to execute during the current cycle�
and also provide a bypass path for acknowledge generation
if it is not�
A request signal should only be received by the datapath

unit if it is supposed to execute during the current cycle� A
blocker gate is therefore needed to block the request from
propagating to the datapath unit if it is not setup to ex�
ecute� Correct propagation of the internal request signal
to the datapath unit can in the case of four phase proto�
col be implemented by a simple AND�gate� The AND�gate
is then enabled if the datapath unit is scheduled for ex�
ecution� and disabled otherwise� respectively propagating
or blocking the request generated by the sequence control�
The request generation is more complicated for the two
phase protocol� since the control must keep track of the
value of the request signal last propagated through to the
datapath unit� An logic block that can generate events to
either the datapath unit� if it is scheduled for execution� or
to the bypass path if not is therefore needed� The corre�
sponding functionality is satis�ed by a SELECT�element�
which takes a level signal and an event signal� and gener�
ates an event on either of two outputs depending on the
value of the level signal set�execute�
The bypass path� illustrated by the shaded components

in Figures ��a�b
� can in the case of four phase protocol be
implemented by a MUX that directly propagates the global
request signal as the acknowledge if the datapath unit is
not scheduled for execution� In the case of two phase a
MUX cannot be used since the state �value
 of the input
signals are not known� An logic block that generates an
event on its output whenever receiving an event on either
of its inputs is therefore needed� An XOR�gate satis�es
this behavior� and is then used to generate the acknowledge
signal�

D� Datapath unit structure

Each datapath unit is assumed to be a self�timed ele�
ment using single rail bundled data in communication with
its environment� The request�acknowledge handshaking�
completion detection� and data representation internal to
a datapath unit however� can be implemented in an arbi�
trary fashion� For example� some datapath units can be
implemented using simple standard gates with matching
delays while others can use sophisticated completion sens�
ing such as complex gate domino�logic� A datapath unit
may also form complex structures such as a selftimed loop
or even a hierarchy of microengines� Assumptions about
safe data latching in the face of eventual datapath depen�
dencies� e�g� should cross�thread synchronization be used
or not� while performing scheduling is left to the designer
to decide based on knowledge about datapath timings� If
the designer choose to apply timing assumptions regard�
ing concurrent propagation of data signals through input
MUXes while the ECU performs completion synchroniza�
tion and the request propagates through the RAS block it
is also left to the designer to verify these assumptions�

V� Architecture optimizations

The structure presented for the microengine control so
far brings forth the high level concepts of the microengine
architecture in a clear fashion� However� it is not very
optimal seen from a performance point of view� Since the
microinstruction is latched only once the ECU has synchro�
nized the datapath completion and also must be allowed
su�cient time to propagate to the datapath and setup the
RAS blocks and datapath units� signi�cant control related
overhead is introduced� Also� since the microengine is re�
quired to synchronize with all datapath units before fetch�
ing the next microinstruction� signi�cant computational
overhead can be introduced in the datapath since the mi�
croengine has to wait for the longest thread to complete be�
fore starting the next cycle� The following sections will dis�
cuss operational and architectural optimizations that can
reduce the control and data computation overhead consid�
erably

A� Reducing control overhead

Control related overhead can be reduced considerably by
fetching the next microinstruction concurrently with the
ECU performing completion synchronization� This can be
achieved by� in the two phase case� letting each RAS block
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be responsible for latching its own portion of the microin�
struction directly after its datapath unit has completed its
execution� and� in the four phase case� latching the new mi�
croinstruction during the return to zero phase� These ap�
proaches also allow setup and propagation of data through
input muxes of the datapath units while the ECU performs
synchronization and the global request propagates through
the RAS blocks� In most cases the microinstruction propa�
gation to the datapath and data propagation through input
muxes can be completely hidden in the ECU and RAS com�
putations� The RAS blocks can also be optimized to yield
lower latency� For example� the propagation of the global
request through a four phase RAS block can be reduced to
the propagation delay through a single pass�gate�

Our goal with the optimized control approach then is to
reduce the control overhead by allowing the microinstruc�
tion to propagate to the datapath and allow data propaga�
tion through MUXes� concurrently with the ECU perform�
ing completion synchronization� The following sections will
present optimized approaches for the two phase and four
phase protocol implementations respectively� For the two
phase case� a solution where each datapath element latches
its own part of the new microinstruction upon completion
of its current task is presented� For the four phase case� a
simpler solution where the new microinstruction is latched
during the passive phase of the handshake is presented�

A�� Optimization for two phase

In this section we will present a solution for the two phase
protocol where each datapath element latches its own part
of the new microinstruction upon completion of its current
task� Necessary changes in the RAS to ensure a hazard�
free behavior under the new signal arrival order will also
be discussed� An overview of this optimized architecture is
illustrated in Figure ��a
�

Latching the next microinstruction� Using an approach
where each datapath element latches its own part of the
new microinstruction upon completion of its current task
allows propagation of new control and data signals to take

place concurrently with the evaluation of the execution con�
trol unit� The acknowledge signal local to each RAS could
then be used as a request signal to latch the corresponding
part of the next instruction� Since datapath elements may
execute in sequence however� data dependencies may exist
between such stages� Early latching of the new instruction
must therefore be restricted to control signals that do not
alter the data output values of a datapath element� Other
control signals such as set�mux signals for output MUXes
must not be latched until all datapath elements have com�
pleted their scheduled actions� These signals can then be
latched using the global request signal since they in general
have su�cient time to propagate to their respective com�
ponents inside the datapath units before new data arrives�

Since this approach may cause a datapath element to
request latching of a new instruction before the fetch from
memory has completed� synchronization logic for the RAS
and memory acknowledges must be provided� Since the
method of always generating an acknowledge keeps these
signals in phase� it is possible to realize this synchronization
with a simple C�element�

RAS block optimizations� Allowing new control signals to
arrive before all acknowledge signals have reached the same
phase again requires somewhat di�erent logic implementa�
tions of the RAS to avoid hazards� If a simple MUX was
used as the sequence logic part of the RAS it could ex�
hibit glitches if the set sequence signal of the next microin�
struction was allowed to arrive before the sequence request
signals had attained the same state �phase
 as the global
request� The RAS logic therefore must be made insensitive
to such early changes of the set sequence control signal�
The implementation of such a circuit is illustrated in Fig�
ure ��c
� In this realization� the set sequence and sequence
request signals� ss and sreq� are allowed to arrive in arbi�
trary order� These signals may only cause the branches of
the currently conducting transistor network �say P transis�
tors
 to go on or o�� The opposite transistor network �N
transistors
 however� will remain non�conducting until the
next event on the global request arrives� The output is thus
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hazard free and kept at its current logic level by a sustainer
in the form of cross�coupled inverters� The output of the
programmable sequence combination logic in Figure ��d
 is
then connected to the sreq inputs of the sequence logic in
Figure ��c
� Note that due to their similar structure� these
two logic blocks can be merged into a single complex gate�

The original approach of latching the new instruction
word relied on a synchronous clearing of the microinstruc�
tion register array� Subsequently it also required the branch
to be resolved before latching a new microinstruction�
Since the new approach means the new microinstruction
might be latched before the branch has been resolved� other
means of clearing the instruction before the next request
arrives to the datapath must be provided� This function
is implemented by introducing asynchronous branch clear
logic local to each DPE� The structure of the RAS block
under the assumption of early instruction propagation is
illustrated in Figure ��

A�� Optimization for four phase

In this section we will present a solution for the four
phase protocol where the new microinstruction is latched
during the passive phase of the handshake� While the
method presented for two phase could be used� using this
alternate approach enables further optimizations of the
RAS block for fast request propagation and also removes
the restriction on latching control signals that may alter
the data outputs separately� While precharging and data
propagation through transparent latches can be done� we
assume that no computations dependent on data inputs to
a datapath unit are performed during the passive phase�
An overview of this optimized architecture is illustrated in
Figure ��a
�

Latching the next microinstruction� Latching the new mi�
croinstruction during the passive phase of the handshake
allow propagation of new control and data signals to take
place concurrently with eventual precharge of datapath
units and the return to zero evaluation of the execution
control unit� Since no data dependent computations are
performed during the passive phase� the whole microin�
struction� including control signals that may change data
outputs� can be latched at once using the falling edge of the
global request signal� Using this approach a synchronous
clear signal derived from the branch result and predicted
branch signals� as in the original solution� can still be used�

RAS block optimizations� When using the four phase pro�
tocol� further optimizations can be made to the RAS logic
if the falling edge of the request signal is used to latch
the new microinstruction during the passive phase of the
handshake� The solution illustrated in Figure � reduces
the propagation delay of the global request through the
RAS to that of a single transmission gate� while still pro�
viding a lower delay for sequence requests than that of the
original approach� As with two phase� the output of the
programmable sequence combination logic in Figure ��b

is connected to the sreq inputs of the SEQ	REQ logic in
Figure ��c
�

In this solution� the global request is always used as the
signal to be propagated� Since the microinstruction signals
controlling execution and sequencing� se and ss are latched
during the passive phase� the transmission gate will already
be setup to its current mode of operation by the time the
rising edge of the global request arrives� If set to execute
in parallel mode� the global request is thus directly propa�
gated to the datapath element� yielding only the delay of
passing through an already conducting transmission gate�
If set to execute in sequential mode the transmission gate
will be closed� disabling the global request from propagat�
ing� until the arriving sequence request causes it to open�

An important feature when using the four phase proto�
col� is the ability to generate a parallel return to zero� re�
gardless of the actual mode of operation of the individual
datapath elements� This is possible since no useful compu�
tation is performed� and hence no data�dependencies exist�
during the passive phase of the handshake� Since the trans�
mission gate is guaranteed to remain open at least until the
next microinstruction has been fetched� the falling edge of
the global request will always pass through the transmis�
sion gate �if setup to execute
� This generates a fast parallel
return to zero of all datapath elements even for datapath
elements setup to execute in sequence� Since the propaga�
tion of the global request is concurrent with the latching
of the new microinstruction� one restriction is placed on
signal arrival order to this RAS realization� The global re�
quest must always arrive to the RAS block before any new
control signals of the next microinstruction� Otherwise a
change in the se and ss control signals might cause a glitch
on the propagated request signal� This restriction is triv�
ially satis�ed since the number of datapath elements will
always be less than or equal to the number of registers in
the register array� requiring less bu�ering� and also since
the instruction signals must propagate through registers
before arriving to the datapath�

B� Reducing datapath overhead

Although control overhead can be reduced considerably
as mentioned above� there may still be signi�cant computa�
tional overhead in the datapath since the microengine still
has to wait for the longest thread to complete before start�
ing the next cycle� This is not always desirable since long
latency operations may block other� concurrent� operations
that �nish quickly and need to fetch a new microinstruction
in order to continue their execution� We therefore intro�
duce the concept of decoupling clusters of datapath units
from the microengine operation during run�time� This al�
lows the microengine to fetch new microinstructions and
continue execution of non�decoupled datapath units with�
out having to wait for the completion of the decoupled clus�
ters� When the microengine needs the result of a decoupled
cluster� it initiates the resynchronization with the cluster�
As with the formation of series	parallel clusters� this de�
coupling of clusters and resynchronization with the same
can be done on a per cycle basis� This section presents
how ECU and RAS blocks must be altered to support de�
coupling of arbitrary clusters of datapath units for the four
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phase protocol�

ECU alterations� In order to allow a datapath unit to de�
couple itself from the microengine execution� that is mak�
ing itself independent of the execution of other parts of
the microengine� the always acknowledge scheme must be
abandoned� The reason for this is that the decoupled data�
path units are setup to execute and therefore cannot gener�
ate an acknowledge until they have completed their respec�
tive computations� With an always acknowledge scheme
this would lock up the execution of the rest of the mi�
croengine until all acknowledges� including those from the
decoupled units� have been generated�
We must devise a method that makes the ECU insen�

sitive to the acknowledge generations of decoupled datap�
ath units until it wants to resynchronize with them again�
While this behavior cannot be realized e�ciently by burst�
mode FSMs� a hand made complex gate ECU circuit can
be made quite e�cient� One approach to realize the de�
sired behavior of making the ECU insensitive to acknowl�
edges from certain datapath units is to provide a bypass
transistor that conducts� much in the style of the sequence
RAS logic presented earlier in Figure ��b
� whenever the
corresponding datapath unit is not setup to execute� By
providing such a bypass transistor path controlled by the
set�execute signals of the datapath units the ECU can be
programmed to ignore acknowledges from datapath units
not setup to execute� Note that this approach also allevi�
ates the problem of having the RAS block provide a bypass
path for the acknowledge� reducing its complexity and de�
lay� Each datapath unit that can be used in decoupled
mode also has an extra bypass transistor in both transistor
stacks�
Figure ��a
 illustrates the new structure of the ECU that

supports both �out of phase� acknowledges and decoupled
execution� When a datapath unit is setup to execute� the
n�stack transistor connected to the set�execute signal from
memory is not conducting and the ECU is forced to wait for
the corresponding datapath units acknowledge� If a datap�
ath unit is not setup to execute� the transistor instead pro�
vides a bypass path� enabling the ECU to continue without

receiving an acknowledge from the corresponding datapath
unit� Only the n�stack needs the set�execute bypass tran�
sistors since the acknowledge of a datapath unit not setup
to execute will remain low� automatically providing a by�
pass path for the p�stack� The observant reader might have
noticed that if no datapath unit is setup to execute� the n
and p�stacks in the ECU would short�circuit� This can
never happen however� since the memory is always setup
to fetch new instructions and thus does not have a bypass
transistor on its acknowledge path through the ECU�

If a datapath unit is setup to execute in decoupled mode�
the transistors connected to the set�decoupled� sd� signal
provide a bypass path e�ectively allowing the ECU to ig�
nore the acknowledge from the decoupled datapath unit un�
til it wishes to resynchronize with the decoupled datapath
unit by setting sd low� If the decoupled datapath unit �n�
ishes and generates an acknowledge before the microengine
wants to resynchronize with it� the acknowledge is simply
ignored until the microengine is ready to resynchronize and
sets the sd bit low� If the datapath unit has not �nished
its computation by the time sd is set low� the ECU will
simply wait until the computation has �nished and the cor�
responding acknowledge generated� This resynchonization
takes place between two completely asynchronous entities�
the microengine and the datapath unit� However� since the
ECU always initiates the resynchronization and then waits
for the datapath units acknowledge to arrive� there is never
any race present between the sd and acknowledge signals�
and metastability or glitches cannot occur�

While all se and ss signals from memory are latched on
the negative global request edge� sd must be latched on the
positive edge� Otherwise the sd signal could be set low� i�e�
telling the ECU to wait for a rising edge on the acknowledge
from the decoupled datapath unit� while the ECU in fact
is waiting for falling edges on the other acknowledges� The
p�stack will thus never conduct if the decoupled datapath
units acknowledge has aldready gone high� and the ECU
will deadlock waiting for a falling acknowledge that will
never occur�



��

(a) Execution Control Unit (b) RAS block

ss
sd

-
-

set chained execution
set decoupled execution

se
ack

-
-

set execution of DPU
acknowledge

req
sreq

-
-

global request
sequence request

sd

sreq

se

ss’
dpu_req

req

ack

DPU

dpu_ack

sd

start’

req

ack n

ack 1

ack 1

ack n

se’1

se’n sd n

sd’n...
...

Fig� �� ECU and RAS supporting decoupled execution

RAS block modi�cations� As mentioned� with the ECU sup�
porting �out of phase� acknowledging� any datapath unit
not executing during a cycle should not generate an ac�
knowledge� The extra logic previously required for bypass
acknowledge generation by the RAS is therefore no longer
needed as illustrated in Figure ��b
�

Since the computation of a decoupled datapath unit may
span over several microengine cycles the RAS block must
be made insensitive to further events on the global and se�
quential request signals� This is achieved by using the set�
decoupled� sd� signal to block further events from propa�
gating through to the datapath unit� This means that once
the rising edge of the request has been propagated through
the RAS block� the following falling edge must not be prop�
agated �until the ECU initiates the resynchronization that
is
� This is achieved by a transistor connected to the sd

bit that cuts o� the p�stack of the RAS logic illustrated
in Figure ��b
 throughout the decoupled computation� To
support decoupling of an entire chain of datapath units an
extra bypass transistor connected to the sd bit in the n�
stack is needed to allow sequential requests to propagate
regardless of the state of the global request� This bypass is
necessary since the microengine might be in the middle of
executing another microinstruction and the global request
be in an unknown state at the time the sequence request
from one decoupled datapath unit propagates to another�
The transistors connected to the se� ss� and sreq full�ll their
usual functionality�

Since the sd bit must be latched on the positive edge of
the global request� as discussed earlier� a timing restriction
must be imposed on the arrival order of the global request
and sd signals� The global request must always arrive at
the RAS block before any change in the sd bit� Otherwise
a request may be generated to the datapath unit before the
global request arrives to the RAS if the se and sd bits are
set and the ss bit is not set� If a decoupled chain is exe�

cuted we may also run into the problem of the microengine
initiating the resynchronization with the chain before the
chain has completed� That is� the sequence request has not
propagated to� for example� the last datapath unit in the
chain� Setting sd low at such a time would mean cutting o�
the transistor allowing the sequence request to propagate
through the RAS regardless of the status of the global re�
quests� However� since we imposed the restriction that the
global request must arrive before any change in the sd bit�
the n�transistor connected to the global request will con�
duct and allow the sequence request to propagate through
the RAS block� Since the ECU is then blocked waiting for
the resynchronized chains acknowledges no further events
will be generated on the global request until all sequence
requests� and their subsequent acknowledges� of the chain
have �nished propagating� The imposed arrival order of
the global request and sd signals is trivially satis�ed since
the global request bu�er tree to latch the microinstruction
is longer than the bu�er tree to the datapath� and since
the sd bit must also propagate through a register before
arriving to its RAS block�

VI� System Timing

The following sections will discuss the most important
timing constraints that must be satis�ed for correct opera�
tion of the microengine� Timing inequalities that illustrates
these timing constraints will also be presented� Inequali�
ties for hiding e�g� input MUX delays in the concurrent
evaluation of the ECU and propagation of the global or
sequential requests through RAS blocks are not presented
but can easily be derived from the given inequalities� Un�
less wire delays are explicitly mentioned� they are assumed
to be negligent�

The following conventions and abbreviations are used in
the timing inequalities� If no subscript indicates otherwise�
the signal propagation through the component in question
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is referred to� The term buf stands for delay through bu�er�
ing of a multiple fanout signal� BDU stands for branch
detection unit� ECU for execution control unit� RAS for
request	acknowledge	sequence block� DPU for datapath
unit� clr for clear� SL for the sequence logic and BCL for
the branch clear part of the RAS in case of two phase� C
for C�element� SEL for select element� clear for the branch
clear signal� req and sreq for global and sequence request
signals� rtz for return to zero� DP� ADR� and MI for data�
path� next address� and microinstruction respectively� and
REG for register�

A� Two phase

Branch prediction� Since no execution should take place if
the branch prediction was incorrect� the branch clear signal
must arrive in time to set the select element to propagate
the event to the right output� Because the select element
requires no setup time� this timing property is satis�ed if
the following inequality holds�

��� ECU �DP reqbuf � SL � BDU � clearbuf �BCL

Where the delays of SL and BCL� and also DP reqbuf and
clearbuf are comparable� reducing the constraint in all prac�
tical aspects to only require the delay through the ECU to
be greater than through the BDU� This timing constraint
is trivially satis�ed in most designs since the number of ac�
knowledges to the ECU tends to be larger than the number
of conditional inputs to the BDU� If the timing constraint
is not met� a delay must be inserted on the global request�
The following inequality ensures latching of correct next
address value� i�e� that BDU propagation delay and next
address register setup times are met before the global re�
quest arrives at the next address register�

�	� ECU � ADR reqbuf � BDU � ADR REGenable

This timing inequality is also trivially satis�ed in most de�
signs since the delay of the ECU tends to be larger than the
BDU� and the next address request bu�er delay� which is
the same as the bu�er delay to the microinstruction regis�
ter array� is larger than the enabling	disabling time of the
next address registers�

Data latching� Inequality 
 ensures that the new microin�
struction has time to propagate to the datapath before the
next global request arrives to the datapath� This inequality
is trivially satis�ed for most designs� If not� a delay needs
to be inserted on the global request�

��� ECU �DP reqbuf � C �MI REG

If an assumption that data values are latched correctly by
datapath units operating in parallel mode when data de�
pendencies are present is made� it is left to the designer
to verify the correctness of the assumption� The designer
would then have to make sure the following timings are
satis�ed�

��� DP reqskewij
�DPU REGholdi � DPU REGj �MUXi

Inequality � ensures� assuming delay internal to a datapath
unit is unknown �zero
� no new values can propagate from
the outputs to the inputs of registers latching data in par�
allel� dp reqskew accounts for skew related to di�erence in
request arrival time at each RAS as well as to each DPU�s
input registers due to wire delay and signal bu�ering�

The assumption that data values arrive to a datapath unit
operating in sequential mode before the sequential request
is trivially satis�ed since it only means that the data wire
delays are smaller than the propagation delay of the se�
quence request�

�
� XORi � sreqwiredelay � RASsreqj � Datawiredelay

B� Four phase

Branch prediction� The following inequality ensures that
the synchronous branch clear signal arrives before the next
request to the microinstruction register array�

��� ECU �MI reqbuf � BDU � clearbuf �MI REGclr

This constraint is usually satis�ed depending on the dif�
ference in number of acknowledges to the ECU and condi�
tional signals to the BDU� If the timing constraint is not
satis�ed� a delay must be inserted on the global request�
As in the two phase case� the following inequality ensures
latching of correct next address value� i�e� that BDU prop�
agation delay and next address register enable times are
met before the global request arrives at the next address
register�

��� ECU � ADR reqbuf � BDU � ADR REGenable

As in the two phase case this timing inequality is also triv�
ially satis�ed in most designs�

Data latching� Inequality � ensures that the new microin�
struction has time to propagate to the datapath before the
next global request arrives to the datapath� This inequal�
ity is trivially satis�ed for most designs� If not� a delay
need to be inserted on the global request� Note that the
microinstruction is latched on the falling edge of the global
request�

��� 	 �DP reqbuf � RASrtz �DPUrtz �ECU � RAS req �

MI reqbuf �MI REG

As in the two phase case� if an assumption that data values
are latched correctly by datapath units operating in parallel
mode when data dependencies are present is made� it is left
to the designer to verify the correctness of the assumption�
The designer would then have to make sure inequality ��

is satis�ed�
As in two phase� the assumption that data values arrive
to a datapath unit operating in sequential mode before the
sequential request is trivially satis�ed since it only means
that the data wire delays are smaller than the propagation
delay of the sequence request�

��� sreqwiredelay �RASsreq � Datawiredelay

There are no extra inequalities needed to describe the op�
eration of decoupled execution of datapath units� as their
operation is the same as for non�decoupled datapath units�
the only di�erence being that the ECU does not wait for
their acknowledges�

VII� Design Example� CD�player Error Decoder

To estimate the e�ciency of the presented microengine
implementation style compared to a custom control imple�
mentation using the same datapath structure� a CD�Player
error decoder ���� was built as a design example� In addi�
tion to the microengine style� the decoder was therefore
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Fig� ��� CD�Player error decoder structure

also implemented using our high level synthesis framework
for asynchronous circuits� ACK ����� This framework takes
a high level description in either the HOP language ���� �il�
lustrated in �gure ��
 or Verilog��� a synthesizable sub�
set of Verilog extended to handle channels� as input and
targets customized interacting burstmode FSMs as control
structure� The datapath being created by ACK was used
in both implementations� The HOP design speci�cation of
the error decoder is a faithful translation of the Tangram
program presented in ���� which also enables comparisons
to the respective results obtained therein� Although the
microengine design was implemented by hand� careful at�
tention was given to ensure that the implementation cor�
respond to what would easily be achievable using an auto�
mated synthesis tool�

The error decoder circuit implements error�detection on
the audio information recorded on Compact Discs using a
syndrome computation algorithm� Figure �� illustrates the
structure of the microengine implementation and Figure ��
the behavioral HOP language speci�cation� The decoder
processes a sequence of either 
� or �� input words indi�
cated by the value on the t channel� The words are read in�
processed� and checked for errors in two sequential loops�
The status of the decoding is then reported to the environ�
ment via the s� e� and l channels� Further details of the
decoder can be found in �����

To reduce the control overhead thus improving the per�
formance of the design� several sequential chains are in�
troduced� This signi�cantly reduces the number of times
the DPU�s must be synchronized in order to fetch a new
microinstruction� also reducing the number of instructions
necessary� Since no DPU contains any precharged logic�
only those DPU�s that can actually end an execution cycle�
i�e� any DPU accessed last in a chain� need to acknowledge
their completion to the ECU� As can be seen in the �g�
ure� many RAS acknowledges can therefore be removed ��

Module

Event
Channel
Channel
Variable
Variable
Variable
Variable

Function

CD_PLAYER_ERROR_DECODER

start??
T?, S!
C?, E!, L!
syn
e, s
n
t, stat

: bit;
: bit;
: array [7:0] of bit;
: array [31:0] of bit;
: array [7:0] of bit;
: array [5:0] of bit;
: bit;

Horner (
InPort
InPort
OutPort

syno[7:0]
syno[15:8]
syno[23:16]
syno[31:24]

:= GFadd(si, syni[7:0]),
:= GFadd(si, Alpha(syni[7:0])),
:= GFadd(si, Alpha(Alpha(syni[7:0]))),
:= GFadd(si, Alpha(Alpha(Alpha(syni[7:0]))))

si
syni
syno

: array [7:0] of bit;
: array [31:0] of bit;
: array [31:0] of bit; )

{

}

Function GFadd (
InPort
OutPort

syno := si XOR syni

si, syni
syno

: array [7:0] of bit;
: array [7:0] of bit; )

{ }

Function Alpha (
InPort
OutPort

syno[7:5] := syni[6:4],

syni
syno

: array [7:0] of bit;
: array [7:0] of bit; )

{

}
syno[4:2] := syni[3:1] XOR syni[7],
syno[1,0] := syni[0,7]

Function Shuffle (
InPort
OutPort

(syno[7:0],syno[15:8],syno[23:16],syno[31:24]) :=

syni
syno

: array [31:0] of bit;
: array [31:0] of bit; )

{
}(syno[15:8],syno[31:24],syno[7:0],syno[23:16])

Behavior

<START> start?? -> <INPUT>

<INPUT> fork <F0>

:

: :
-> n := 32 ->

(t == 0) -> n := 27 ->T?t -> if
else

<join>
<join>

|| <F1> : syn := 0 -> <join>
join -> <SYNDROME>

<SYNDROME>
fork <F0>

:
: n := n - 1 -> <join>

|| <F1> : C?s -> syn := Horner(s,syn) -> <join>
join -> <SYNDROME>

(NOT(n[5] == 1)) ->if

;

->else <SHUFFLE> ;

<SHUFFLE> fork <F0>: :
-> n := 32 ->

(t == 0) -> n := 27 ->if
else

<join>
<join>

|| <F1> : e := syn[7:0] -> <join>
join -> <SYNDROME> ;
syn := Shuffle(syn)
syn := Shuffle(syn) -> <ERR_CHECK> ;

<ERR_CHECK>
fork <F0>

:
: n := n - 1 -> <join>

|| <F1> : syn := Horner(0,syn) -> <join>
join -> <ERR_CHECK>

(NOT((n[5] == 1) OR (syn[7:0] == syn[15:8]))) ->if

->else <IS_ERR> ;

<IS_ERR> : stat := n[5]
syn := Shuffle(syn) ->
stat := (stat OR (syn[7:0] == syn[15:8]))
syn := Shuffle(syn) ->
stat := (stat OR (syn[7:0] == syn[15:8])) -> <RESULT>

<RESULT> : S!stat, E!e, L!n -> <INPUT> ;

EndBehavior

//*  ’;’ or conditional test indicates ECU synchronization point
//*  ’->’ indicates chaining of current and next statement

;

;

;

Fig� ��� CD�Player error decoder HOP speci�cation

out of �

� reducing the complexity of the ECU� The pos�
sible sequential chains are easily identi�ed in the �gure by
the horizontal arrows connecting the corresponding RAS
blocks�

The microengine execution proceeds as follows� A start

signal from the environment causes the microengine to start
by �rst loading a new microinstruction� This microinstruc�
tion is propagated to the datapath which then reads in a
value from the t channel� initializes the n register accord�
ingly� and resets the syn register�

The SYNDROME loop� decoding the stream of n input
words is then entered� This loop executes two chains in
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Fig� �	� CD�Player error decoder SPICE waveforms

parallel� one that decrements the n�counter and one that
reads in a new word and processes it in the Horner pro�
cedure� The actions carried out by these chains can be
viewed as follows where � and jj indicates sequential and
parallel execution respectively�

�Dec�n�� n reg� jj �c chan� s reg � Horner� syn reg�

The completion of the two chains are then synchronized by
the ECU concurrently with the BDU testing the branch
condition� The loop will continue to be iterated until the
branch condition is false� that is� when n becomes negative�
The syn register is then reshu�ed to accommodate the in�
put to the ERR CHECK loop� This loop detects eventual
errors in the decoded sequence� The action sequence in this
loop is as follows�

�Dec�n�� n reg� jj �Horner� syn reg� stat or syneq�

The loop is iterated until n is negative or the two low end
bytes of syn di�er� in which case an error has been found�
The last computation action is then to set the status bit
according to the error calculation which is done by two in�
vocations of the following chain�
Shuffle� syn reg� stat or syneq� stat reg

The status information is then communicated to the envi�
ronment via the s� e� and l channels� containing the status
of the computation� the starting word of the sequence� and
the position of the eventual error�

Figure �� illustrates a post�layout SPICE simulation of
the initialization and �rst couple of cycles executed by the
microengine� The top panel shows the global request sig�
nal� the middle panel shows the bits of the latched mi�
croinstruction and the branch clear signal� and the bottom
panel shows the acknowledges of the datapath units� Note
that this implementation uses the optimization of latching
the microinstruction during the falling edge of the global re�
quest as discussed earlier� On startup� the microinstruction
is initially cleared� On the �rst cycle after a request from
the environment the microengine therefore only fetches the
next microinstruction to be executed� Since all RAS blocks
are in acknowledge bypass mode no datapath unit will ex�
ecute and the branch clear signal will be low� The �rst

microinstruction executes the fork�join statement in the
INPUT state of the HOP code in Figure �� and tests the
SYNDROME loop condition� The use of chained execution
can be observed by the sequentially occuring acknowledges
in Figure ���s bottom panel� This nicely illustrates how
the execution propagates through the threads of chained
datapath units� Note the parallel return to zero of the ac�
knowledge signals on the global requests falling edge� Since
the SYNDROME loop condition is initially true� the branch
clear signal goes low as illustrated by the single falling dot�
ted line in the middle panel of Figure ��� The next mi�
croinstruction implementing the SYNDROME state of the
HOP code is thus propagated to the datapath and executed
next� No more changes are visible in the microinstruction
bits since we continue to iterate over the SYNDROME loop
instruction until n becomes negative�

A� Results

The Tangram implementation described in ����� which
was targeted for low�power� used dual rail logic and a ���
micron technology and was reported to have an approxi�
mate worst case cycle time of �� microseconds� each cycle
decoding a sequence of 
� ��bit input words� and a core area
of ��� mm�� According to ��� a factor of ��� in performance
improvement and a ��� smaller area can be attributed to
single rail over double rail in an implementation of a sim�
ilar� but more complex� error decoder for the DCC player�
A single rail Tangram implementation of the CD player de�
coder could therefore be expected to have a cycle time of
about �
 microseconds and an area of ��� mm��

Using our design tool ACK to automatically generate
a customized hard�wired implementation targeting a ���
micron CMOS technology� the corresponding worst case
cycle time was in the order of 
�� microseconds using a four
phase handshake protocol and with an area of ��
 mm��
Using the same datapath� the microengine implementation
had a resulting cycle time of about ��� microseconds also
using a four phase protocol and an area of ��� mm��

We also implemented the CD player error decoder in a
��� micron technology � and performed post�layout SPICE
simulation of the same� The cycle time under worst case
transistor models and temperature was ���� microseconds�
Feature size scaling under constant �eld assumption �����
except for voltage� would result in gate delays in a ��� mi�
cron �V technology being approximately ��� times that of a
��� micron 
V technology while wire delays stay the same�
The corresponding cycle time for the microengine imple�
mentation of the decoder should therefore be in the order
of 
�� microseconds in a ��� micron technology� The gate
level delay analysis would thus be inside a ��� error mar�
gin of post�layout SPICE simulation� We assume that the
post�layout hard�wired implementation has similarly accu�
rate cycle time� The timing assumptions inherent to the
microengine control structure such as that the branch clear
arrives to the microinstruction register array before the
global request� and that the microinstruction arrives at the

�Our updated VLSI tools no longer feature a ��	 micron library
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Fig� ��� CD�Player error decoder area breakdown� The large digits
add up to the total area of the respective designs�

datapath before the global request were� as we expected�
trivially satis�ed by the natural delays of the components
involved� No delays needed to be inserted to ensure correct
operation�

The area breakdown for the customized and microengine
implementations is illustrated in Figure �
� As illustrated�
the area for the microengine control units is very small�
and the major part of the area is spent on memory� The
ability of our microengine to chain actions is therefore im�
portant not only for performance but also for saving area
since it reduces the number of microinstructions needed�
The CD player error decoder for example requires only �

��bit wide microinstructions� Techniques such as code
compression and bit�sharing may also be used to reduce
the size of the memory but may introduce delay overhead
or restrict reprogrammability� Chaining actions also gives
additional time for the microinstruction prefetch to com�
plete� potentially allowing use of slower� more area e�cient
memory� The area for the burstmode controllers is sur�
prisingly large� and serves to illustrate how hard it is to
estimate the implementation complexity of �nite state ma�
chine controllers� even for moderately sized designs�

The designs were synthesized to a gate level representa�
tion and performance measured via timing analysis using
worst case gate delay and wire load models in SynopsysTM

Design Analyzer tool� Bundled data delays were obtained
via three�point best	typical	worst case gate level timing
analysis using this tool and is to our experience very accu�
rate allowing use of relatively small safety margins� Post�
layout area numbers and SPICE models were obtained us�
ing the CascadeTM Epoch layout tool� It should be noted
that both designs were implemented without using any ex�
plicit timing based optimizations� Better results are to
be expected for both designs when timing optimizations
are applied to hide control overhead� In the context of
what automated synthesis tools can achieve� also consider�
ing the control structure was implemented with standard
gates� these results about the microengines performance
are encouraging� One of the reasons the microengine ap�
proach is able to perform so well compared to the custom
control approach is due to the ability to naturally and e��
ciently chain the actions of an arbitrary number of datap�
ath units while still being able to perform a parallel return

to zero� An initial performance concern about the micro�
engine control structure was the presumed high capacitance
load on the global request wire� The resulting implementa�
tions however� showed that while the global request in the
microengine had a capacitance of ��
nF� some acknowledge
wires to the burstmode controllers in the customized con�
trol implementation that were on the critical path actually
had even higher loads� the worst being �nF�

VIII� Conclusions

An asynchronous microengine architecture for pro�
grammable control has been presented� We believe that
for many types of designs� this structure can provide per�
formance close to that of designs with customized con�
trol while still o�ering the �exibility and ease of design
that programmable control and a modular datapath pro�
vides� A powerful feature of the architecture is the per�
microinstruction programmability of its datapath into clus�
ters of independently executing serial chains� The problem
of having to wait for the longest datapath chain to complete
is solved in an approach by allowing run�time formation of
decoupled clusters of datapath units� In this approach� the
microengine can thus continue to fetch and execute new
microinstructions without having to wait for the comple�
tion of the decoupled clusters� reducing overhead related to
datapath computation� The ability to form decoupled se�
ries	parallel clusters allows a richer set of schedulings and
thereby promises to increase the e�ciency of a microengine
implementation signi�cantly�

Timing assumptions that are considered safe have been
used to reduce various control overhead� These timing
assumptions could potentially be incorporated into auto�
mated microengine generator tools� thus avoiding case by
case validation� Examples of hiding control latency is to
let branch calculation� propagation of data signals through
input MUXes� and meeting register setup constraints be
performed concurrently with completion synchronization�
and also pipeline the datapath execution with branch pre�
diction and fetching of the next instruction� Using an ap�
proach where requests are always acknowledged even for
datapath units not executing� thus returning all control
signals to the same state at the end of each execution cy�
cle� facilitates e�cient logic control structures for both two
and four phase implementations�

We are currently working on generating more examples
to facilitate a comparison on a broader base of designs�
We intend to automate the microengine synthesis proce�
dure� and incorporate it in the ACK synthesis framework
allowing descriptions entered in Verilog�� to be realized
as both hard�wired and microengine implementations�
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