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Abstract

Sensor systems are becoming ubiquitous throughout society, yet their design, construction and
operation are still more of an art than a science. In this paper, we define, develop, and apply
a formal semantics for sensor systems that provides a theoretical framework for an integrated
software architecture for modeling sensor-based control systems. Our goal is to develop a design
framework which allows the user to model, analyze and experiment with different versions of a
sensor system. This includes the ability to build and modify multisensor systems and to monitor
and debug both the output of the system and the affect of any modification in terms of robustness,
efficiency, and error measures. The notion of Instrumented Logical Sensor Systems (ILSS) that
are derived from this modeling and design methodology is introduced. The instrumented sensor
approach is based on a sensori-computational model which defines the components of the sensor
system in terms of their functionality, accuracy, robustness and efficiency. This approach provides
a uniform specification language to define sensor systems as a composition of smaller, predefined
components. From a software engineering standpoint, this addresses the issues of modularity,
reusability, and reliability for building complex systems. An example is given which compares
vision and sonar techniques for the recovery of wall pose.

Thiswork was supported in part by NSF grant CDA 9024721 and a gift from Hewlett Packard Corporation.



1 Introduction

In any closed-loop control system, sensors are used to provide the feedback information that rep-
resents the current status of the system and the environmental uncertainties. Building a sensor
system for a certain application is a process that includes the analysis of the system requirements,
amodel of the environment, the determination of system behavior under different conditions, and
the selection of suitable sensors. The next step in building the sensor system is to assemble the
hardware components and to devel op the necessary software modulesfor data fusion and interpre-
tation. Finally, the system is tested and the performance is analyzed. Once the system is built, it
is difficult to monitor the different components of the system for the purpose of testing, debugging
and analysis. Itis also hard to evaluate the system in terms of time complexity, space complexity,
robustness, and efficiency, since this requires quantitative measures for each of these measures.

In addition, designing and implementing real -time systems are becoming increasingly complex
because of many added features such as fancy graphical users interfaces (GUIs), visualization
capabilities and the use of many sensors of different types. Therefore, many software engineering
issues such as reusability and the use of COTS (Commercial Off-The Shelf) components[31], real-
time issues [34, 33, 23], sensor selection [11], reliability [26, 27, 35], and embedded testing [36]
are now getting more attention from system developers.

In a previous paper, we proposed to use formal semantics to define performance characteris-
tics of sensor systems [4]. In this paper, we address these and other problems related to sensor
system modeling and evaluation. We start by presenting a theoretical framework for modeling
and designing sensor systems based on a formal semantics in terms of a virtual sensing machine.
This framework defines an explicit tie between the specification, robustness and efficiency of the
sensor system by defining several quantitative measures that characterize certain aspects of the
system’s behavior. Figure 1 illustrates our proposed approach which provides static analysis (e.g.,
time/space complexity, error analysis) and dynamic handles that assist in monitoring and debug-
ging the system.

1.1 Sensor Modeling

Each sensor type has different characteristics and functional description. Thereforeit is desirable
to find a general model for these different types that allows modeling sensor systems that are
independent of the physical sensors used, and enables studying the performance and robustness
of such systems. There have been many attempts to provide “the” general model aong with its
mathematical basis and description. Some of these modeling techniques concern error analysis and
fault tolerance of multisensor systems[29, 3, 28, 24, 30, 6]. Other techniques are model-based and
require apriori knowledge of the scanned object and its environment [8, 13, 25]. These techniques
help fit data to a model, but do not provide the means to compare alternatives. Task-directed
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sensing is another approach to devise sensing strategies [15, 14, 2], but again, it does not provide
measures to evaluate the sensor system in terms of robustness and efficiency.

Another approach to modeling sensor systems is to define sensori-computational systems asso-
ciated with each sensor to allow design, comparison, transformation, and reduction of any sensory
system [7]. In this approach the concept of information invariants is used to define some mea-
sure of information complexity. This approach provides a very strong computational theory which
allows comparing sensor systems, reducing one sensor system to another, and measuring the infor-
mation complexity required to perform a certain task. However, as stated by Donald, the measures
for information complexity are fundamentally different from performance measures. Also, this
approach does not permit one to judge which system is “simpler,” “better,” or “cheaper.”

To that end, we introduce the notion of an Instrumented Logical Sensor System (ILSS) which
represents our methodology for incorporating design tools and allows static and dynamic perfor-
mance analysis, on-line monitoring, and embedded testing. Figure 2 shows the components of our
framework. First (on the left), an Instrumented Logical Sensor Specification is defined, as well
as F, aset of functions which measure system properties of interest. This specification is derived
from a mathematical model, simulation results, or from descriptions of system components. Anal-
ysis of some aspects of the ILSS are possible (e.g., worst-case complexity of algorithms). Next
(the center of the figure), an implementation of the system is created; this can be done by hand or
automatically generated in acompile step (note that the original Logical Sensor Specifications[21]
could be compiled into Unix shell script or Function Equation Language (FEL), an applicative
language). Either way, the monitoring, embedded testing or taps are incorporated into the sys-
tem implementation. Finally (the right hand side), validation is achieved by analyzing the system
response and performance measures generated during system execution. In this way, there are
some semantic constraints on the values monitored which relate the system output measures to the
original question posed for the specification.

Currently, an ILSS library is under development as part of an interactive graphical program-
ming environment called “CWave” used to design and execute real-time control systems! Cur-
rently, we have a theoretical framework and validation strategy with a partial implementation
within CWAVE. CWave is a graphical program specification language that has been created to
design measurement systems and has been funded by HP. CWave has been applied to broad robot
systems (e.g., Lego robot warehouse demos) in our software engineering projects class here at
Utah. Finally, CWave is a specification language and can be linked to simulation tools, or executed
in an interpreted mode, or compiled for incorporation in embedded systems.

Lrefer to “http://easy.cs.utah.edu/cwavelindex.htm” for more information about the CWave project.
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Figure 2: The Instrumented Logical Sensor System Components.

2 Performance Semantics of Sensor Systems

The use of sensors in safety critical applications, such as transportation and medicine, requires
a high level of reliability. However, increased robustness and reliability of a multisensor system
requiresincreased cost through redundant components and more sensor readings and computation.
In contrast, increasing the efficiency of the system means | ess redundant components, fewer sensor
readings and less computation. Performance analysis is crucial to making an informed tradeoff
between design alternatives.

Performance analysis consists of a static analysis of a specification of the system and its pa-
rameters as well as a dynamic analysis of the system’s run-time behavior. The static analysis can
be based on some formal description of the syntax and semantics of the sensor system, while the
dynamic analysis requires on-line monitoring of some quantitative measures during run-time.

Our goal isto achieve strong performance analysis and provide information which allows the
user to make informed choices concerning system tradeoffs. This involves a sensor system model
which permits quantitative measures of time and space complexity, error, robustness, and effi-
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ciency, and which facilitates analysis, debugging and on-line monitoring.

Formal semantics of programming languages provides techniques to describe the meaning of
a language based on precise mathematical principles. These formal techniques should provide the
following: precise machine-independent concepts, unambiguous specification techniques, and a
rigorous theory to support reliable reasoning [12]. The main types of forma semantics are: de-
notational semantics which concerns designing denotations for constructs, operational semantics
which concerns the specification of an abstract machine together with the machine behavior when
running the program, and axiomatic semantics which concerns axioms and rules of inference for
reasoning about programs.

Our view is that performance semantics should allow us to compute measures of interest on
program structures. Denotational semantics is the closest to our view since, according to [1], to
specify the semantics of a language denotationally means to specify a group of functions which
assigns mathematical objectsto the program and to parts of programs (modules) in such away that
the semantics of a module depends only on the semantics of the submodules. Thus, given a set of
programs, P, from a language, and an operating context, C, the semanticsis a set of functions

F=1f}

where
fZ,PXC—>§R

where R is the measurement domain.

The static semantics defines structural measures over the syntax of p € P. Thisincludes stan-
dard measures such as maximum depth of the program graph, branching measures, data structure
properties, storage estimates and standard computational complexity measures. Note that these
can be determined without referenceto C (i.e,, f : P — R). This can be extended to include
functions of the operational context C, including sensor models, accuracy, precision, redundancy
and replacement, as well as operating system effects, communication strategies and protocols, and
processor properties.

The dynamic semantics include validity measures and operational characteristics. Validity
measures permit the comparison of behavior models to actual run-time performance (monitors),
while operational characteristics are simply measures of run-time values (taps). The values of a
tap or monitor are represented as asequence X = (z, : n € N); x,, isthe n'* value produced by
the tap or monitor

X:N =S

where S'is the structure produced by the tap or monitor.
The selection of functions in F depends directly on the user’s needs and are defined so as to
answer specific questions. Standard questions include actual running times, space requirements,



bottlenecks, etc., and a complex application can be investigated in a top down manner — the user
may define new measurement functions on lower level modules once information is gained at a
higher level. This forces the user to identify crucial parameters and to measure their impact. For
example, a computer vision application may be data dependent, say on the number of segmented
objects or their distribution in the image. Thus, the user is coerced into a better understanding
of the significant value regimes of these parameters and may develop monitors to ensure that the
application stays within agiven range, or that it dynamically switches algorithmswhen a particul ar
parameter value occurs (e.g., more than 1000 segmented objects occur in the image). The main
point is that the user can construct executable versions of the f; € F to ensure the validity of the
controller asit runs.

Although computational complexity provides insight for worst case analysis, and for appro-
priate population distribution models, average case analysis can be performed, we propose here
what might be termed empirical case analysiswhich allowsthe user to gaininsight into the system
without requiring a detailed analytical model of the entire application and its context. Very few
users exploit formal complexity analysis methods; we believe that empirical case anaysisisavery
useful tool.

2.1 SimpleExample: TimeVs. Robustness Using Sonar Readings

Suppose that we want to determine how many sonar readings to use to get a robust range estimate,
but would like to trade off against the time taken to sample. This simple example demonstrates
the motivation of the proposed approach and how it can be used to select between alternatives.
In this example we have a “classical” tradeoff between speed (time to accomplish a certain task)
and robustness (a combination of accuracy and repeatability). Assume that the sonar has been
calibrated to eliminate any environmental effects (e.g., wall type, audio noises, etc.). The variables
in this case are the accuracy of the physical sonar sensor and the number of readings taken for the
same position.

Assuming thetimeto take onereadingist, the error standard deviation is o, and the probability
of abad reading is Pr;, taking one reading yields minimum time and worst accuracy. By adding
afilter (e.g., averaging) and taking multiple readings, accuracy increases and time also increases.
Therefore, we need quantitative measures to decide how many readings are needed to achieve the
required accuracy (measured in terms of the standard deviation of the error) within atime limit.

Using the formalism presented earlier, the semantics of this problem can be defined using the
set of functions F = {time, error, repeatability}. In the case of using a single reading these
functions can be written as:

time(single) =t



g

error(single) = ———
(1 — Prb)
repeatability(single) =1 — Pry,

Now, if we take the average of » readings, the semantics can be written as:
time(average) = nt + 7,

g

n#* (1 — Pry)

error(average) =

repeatability(average) =1 — Pry

where 7, isthe time to calculate the average of » readings, and ; = 0.

In this simple example we were able to get estimates of the required measures using mathemat-
ical models. However, we did not consider the changes in the environment and how it affects these
measures. In this case, the set of functions F are mappings from the cross product of the program
‘P and the operating context C' to the measurement domain &, that is

fZ,PXC—>§R

To solve this problem, we either have to model the environmental effects and include it in our
model, or we may need to conduct simulations if amathematical model is not possible. Simulation
isavery useful tool to approximatereality, however, in some cases even simulation is not enough to
capture al the variablesin themodel, and real experimentswith statistical analysis may be required
to get more accurate results. Thus, the formal functions can be operationalized as monitors or taps
in the actual system.

3 Sensor System Specification

The ILSS approach is based on Logical Sensor Systems (L SS) introduced by Henderson and Shil-
crat [21]. LSSis amethodology to specify any sensor in such away that hides its physical nature.
The main goal behind LSS was to develop a coherent and efficient presentation of the information
provided by many sensors of different types. This representation provides a means for recovery
from sensor failure and also facilitates reconfiguration of the sensor system when adding or replac-
ing sensors [20].

We definethe ILSS as an extension to the LSS and it is comprised of the following components
(see Figure 3):

1. ILSName: uniquely identifies a module.



2. Characteristic Output Vector (COV): strongly typed output structure. We have one output
vector (C'OV,,;) and zero or more input vectors (C'OV;,).

3. Commands:. input commands to the module (C' ommands;,) and output commands to other
modules (C'ommands, ).

4. Sdect Function: sdlector which detects the failure of an alternate and switches to another
alternate (if possible).

5. Alternate Subnets: alternative ways of producingthe C'OV,,,. It isthese implementations of
one or more algorithms that carry the main functions of the module.

Control Command Interpreter (CCl): interpreter of the commands to the module.
Embedded Tests: self testing routines which increase robustness and facilitate debugging.

Monitors: modules that check the validity of the resulting COV's.

© © N o

Taps: hooks on the output lines to view different COV values.

These components identify the system behavior and provide mechanisms for on-line monitor-
ing and debugging. In addition, they give handles for measuring the run-time performance of the
system.

Monitors are validity check stations that filter the output and alert the user to any undesired
results. Each monitor is equipped with a set of rules (or constraints) that governs the behavior of
the COV under different situations.

Embedded testing is used for on-line checking and debugging proposes. Weller proposed a
sensor processing model with the ability to detect measurement errors and to recover from these
errors[36]. This method is based on providing each system module with verification tests to verify
certain characteristics in the measured dataand to verify theinternal and output data resulting from
the sensor module algorithm. The recovery strategy is based on rules that are local to the different
sensor modules. We use a similar approach in our framework called local embedded testing in
which each module is equipped with a set of tests based on the semantic definition of that module.
These tests generate input data to check different aspects of the module, then examine the output
of the module using a set of constraints and rules defined by the semantics. Also these tests can
take input data from other modules if we want to check the operation for a group of modules.

Figure 4 illustrates the idea of local embedded testing. Local embedded testing increases the
robustness of the system and provides the user with possible locations to tap into when thereis a
problem with the system.
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3.1 Construction Operators

In our proposed framework, a sensor system is composed of several ILSS modules connected
together in a certain structure. We define operations for composing IL SS modules, and then define
the semantics of these operationsin terms of the performance parameters. Some of these operations
are (see Figure 5):

e Serial(ILSS1,1LS5S2): two logical modules are connected in series. Here COV3 =
COV2.

o Select(ILSS1,1LSS2): COV3isequd toether COV1or COV2.
o Combine(1LSS1,ILSS2): COV3isthe concatenation of COV'1 and COV2.

For these simple constructs, the semantics is defined as a set of functions that propagate the
required performance measures. Several techniques can be used for propagation. Best case analy-
Sis, worst case analysis, average, etc. Selecting among these depends on the application, hence it
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should be user defined. As an example, the time of the resulting logical system using worst case
analysis can be calculated as follows:

o time(Serial(ILSS1,I1LSS2)) = time(ILSS1)+ time(ILSS2)
o time(Select(ILSS1,ILSS2) = max(time(ILSS1),time(1LS552))
o time(Combine(ILSS1, I1LSS2) = max(time(ILSS1), time(ILS52))

Hence, the semantic functions of the composite system are defined in terms of the semantic
functions of the subcomponents, Similarly, functions that define the propagation of other perfor-
mance measures can be defined in the same way.

For error propagation, we use a simple approach which does not require carrying a lot of
information through the system. This approach is based on the uncertainty propagation described
in [22, 9]. Assume that we have a certain module with » inputs X = (a1, 22,...,2,) and m
outputs Y = (y1,y2,...,ym) Suchthat Y = f(X), and assume that the error variance associated
with the input vector is Ay = (A, Asy, ..., Ay,) (Se€ Figure 6), then the error variance for the
output vector is calculated using the equation:

Y v\’
v = () (5%
where 5% is the partial derivative of Y with respect to X evaluated at the measured value of the
input vector X. If al theelementsin X areindependent variables, then this equation can be written
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Figure 5: Some operations used for propagating the performance measures.
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Figure 6: A simple approach for error propagation.

Our overall goal isto provide atightly coupled mechanism to map high-level performance mea-
sures onto an appropriate set of monitors, tests and taps so as to provide the required information.

4 Implementation

The ultimate goal of this project isto utilize the proposed theoretical framework in a usable model-
ing and prototyping environment with toolsfor analysis, debugging, and monitoring sensor systems
with emphasis on robot control applications. Thus, we are developing an ILSS library within a vi-
sual programming system called CWave targeted toward the development of control systems for
measurement devices and hardware simulations. CWave is devel oped by the Component Software
Project (CSP) research group in the Department of Computer Science at the University of Utah in
cooperation with the CSP group at Hewlett Packard Research Labs in Palo Alto, California.

CWave is based on a reusabl e software components methodol ogy where any system can beim-
plemented by visually wiring together predefined and/or user created components and defining the
dataflow between these components. The CWave design environment includes several important
features that make it suitable to use as a framework for implementing ILSS components. Some of
these features are:

e Open architecture with ease of extensibility.
¢ Drag-and-drop interface for selecting components.
e Several execution modes including single step, slow, and fast execution.

¢ On-line modification of component properties.
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e The ability to add code interactively using one of several scripting languages including Vi-
sual Basic and Java Script. This is particularly useful to add monitors and/or taps on the

fly.
e Parallel execution using visual threads.

¢ On-line context sensitive help.

Figure 7 shows the CWave design environment with some of its features.
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Figure 7: CWave design environment.

An object-oriented approach is used to develop the ILSS components using Visual C++ for
implementation. Each component is an object that possesses some basic features common to all
components plus some additional features that are specific to each ILSS type. The following are
some of the basic functions supported by all components:
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Initialize: performs some initialization steps when the component is created.

Calibrate: starts acalibration routine.

Sense: generates the COV corresponding to the current input and the component status.

Reset: resets al the dynamic parameters of the component to their initial state.

Test: performsone or more of the component’s embedded tests.

Select: selects one of the alternate subnets. This allowsfor dynamic reconfiguration of the system.

Monitor: observes the COV and validate its behavior against some predefined characteristic cri-
teria.

Tap: displaysthe value of the required variables.

We used severa design patterns in designing and implementing the components. Design pat-
terns provide reliable and flexible object-oriented designs that can accommodate rapid modifi-
cations and extensions [10]. For example, the decorator pattern is used to dynamically attach
additional functionality to the object. This is particularly useful in our case where the user can
dynamically choose the performance measures to be propagated and the values to be monitored
while the system is running. Note that monitors, tests, and taps can be exploited to analyze CWave
(or any implementation language) modul e performance independently of the sensor aspects of the
system. Thisis rendered more efficient and transparent to the user by incorporating them directly
as language features.

5 Example: Wall Pose Estimation

The following example illustrates the use of the proposed framework to model and analyze two a-
ternatives for determining flat wall position and orientation: one using vision and one using sonar
sensors [5, 16, 18, 19]. The sonar sensors are mounted on a LABMATE mobile robot designed by
Transitions Research Corporation. The LABMATE was used for several experiments in the De-
partment of Computer Science at the University of Utah. It was also entered in the 1994 and 1996
AAAI Robot Competition [32] and it won sixth and third place, respectively. For that purpose, the
LABMATE was equipped with 24 sonar sensors, eight infrared sensors, a camera and a speaker. 2
Figure 8 shows the LABMATE with its equipment.

2The LABMATE preparations, the sensory equipments, and the software and hardware controllers were done by
L. Schenkat and L. Veigel at the Department of Computer Science, University of Utah.
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Figure 8: The LABMATE robot with its equipment.

In this example, we consider two different logical sensors to determine wall pose and find the
corresponding errors and time complexity for each. Thefirst ILSS uses a camera and known target
size and location. The second ILSS deals with the sonar sensor as a wedge sensor (i.e., it returns
awedge centered at the sonar sensor and spread by an angle 26.) Figure 9 shows the two logical
sensors. (See[18] for an overview of the sonar pose recovery technique, and [17] for target-based
calibration.)

In this figure, image is the 128x128 black and white image acquired by the Camera, and r,
and r, are the two sonar readings generated from Sonarl and Sonar2, respectively. Target Points
extracts three reference points from the image, while Vision Line produces two points on the line
of intersection of the wall with the x-z plane of the camera system. Wedge_Sonar_Line takesthe
two range values v, and r,, and the spread angle of the sonar beam ¢, and returns two 2D points
on the line representing the wall.

5.1 System Modeling and Specification

As shown in Figure 9, ILSS1 is composed of three modules, a Camera module, a Target Points
module and a Vision Linemodule. On the other hand, L SS2 has three modul es, two Sonar modules
and a Wedge_Sonar _Line module followed by a C'ombine operator.

Each ILSSisdefined in termsof aset of componentsthat characterize the module. The dataand
the corresponding performance measures start from the C'amera or Sonar module and propagate
upward until they reach the COV of the main ILSS. On the other hand, the commands start from
themain ILSS and propagate downward until they reach the C'amera or Sonar module. The COV
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Figure 9: Two Instrumented Logical Sensors for determining wall position.
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is composed of two parts. data and performance measures. For example, C'OV,,; for Sonarl is

({rlv 0}7 {tv Af’lv Aé’})

where ¢ is the time taken to execute the module and A,; and A, are the error variances for r; and
6, respectively. In this example, each module has only one alternate subnet, therefore, the select
functionistrivial.

5.2 Performance Semantic Equations

Using worst case analysis, the performance semantic equations of the time and error for ILSS1
and ILSS2 can be written as:

time(ILSS1) = time(Serial(Camera, Target Points, VisionLine))

error(ILSS1) = error(Serial(Camera, Target Points, VisionLine))
time(1LSS2) = time(serial(combine(Sonarl, Sonar2), Wedge_sonar _line))
error(ILSS2) = error(serial(combine(Sonarl, Sonar2), Wedge_sonar _line))

Now, we need to calculate the time and error for the subcomponents. Assume that ¢,,,,4,1,
tsonarQa tcameraa tTargetPointsa tVisionLine and twedge_sonar_line are the time for the S‘chomponenta
and A1, Ao, Ay, Ay, Ay, and Ay are the error measures for rq, rs, yi, y., v and 0, respectively.
The time for LSS1 and LSS2 can be easily calculated using the propagation operations discussed
earlier asfollows:

tlme([[/551) = tcamera + tTargetPoints + tVisionLine

tlme([LSSQ) — max(tsonarla tsonar?) + twedge_sonar_line

Propagating the error requires more elaborate analysis for each component. For ILSS1, we
start with the error in the physical sensor which is the camerain this case. The camera generates
two-dimensional arrays of intensity values, P(x,y), where P isan m x n matrix. The error we
are concerned abound in this example is the error in position (x, y) of a point on the CCD array
(which corresponds to rows and columns in the image.) This error is affected by the resolution of
the camera and the distance between the CCD elements. Let’s assume that the error is Gaussian
with mean 0 and variance (A, A,) at any point («, y). This can be written as:

error(Camera) = {(Azy Ay)mxn}

18



This error trandates directly into the second component, 7T'arget_Points, which extracts the y
value for three different points in the image; v;, v., and y,.. Assuming that the variance in the y
direction (A,) isthe same at any pixel, the error at this stage will be:

error(Target_Points) = {A,, Ay, Ay}

The last component in ILSS1, Vision_Line performs severa operations on these three values
to generate the two points of the line representing the wall. First, the corresponding =~ value is
calculated for the three points using the equation:

Yo
257

where Y, is the height of the physical point and is a known constant in our example. The error
associated with z; can be calculated as follows:

1=1l.er

< 3 &

By calculating the derivative in the above equation we get:

Y\’ Y2
A= ( 0) Ay = _OAy

y? y!

which shows how A, depends on the value of y;. Second, the angle between the robot and the wall
() is calculated with the function:
. | (Zl — Zr )
o = Sin 7D0

where D, isthe known distance between the two physical points p, and p,.. Therefore,

da\’ da '\’
Aoz — (8—21) Azl —I' (827») Azr

2 2

1 -1
— D S AZl —I_ D S AZ

- (352)° - (352)°

After simplifying the last equation we get:




Finally, we calculate two points on the line representing the wall as shown in Figure 10. Take
thefirst point p, at (0, z.) and the second point p, at one unit distance from p; along thewall which

gives the point (cos a, z. + sin a):
=0, 2=z

Tg = COSQ,  Zog = Z.+ SN«
From these equations, the error for the two points will be:
A, =0, A, =A,

Ay, = sin‘a Ay, A, =A., + cos*a A,

(cosa,z.+sna) PR

(O,ZC)IO 1 e
—~a

Figure 10: The two points on the line representing the wall

Now, we can writethe error of ILSS1 as:
error(ILSS1) = {A;, A, Awy, AL}

Notice that we can write the error in terms of A, Yo, Do, y1, y., and y,.. For example, let’'s assume
that A, = 1lmm? Yy = 500mm, Dy = 300mm, and y; = y. = y, = 10mm (a is zero in this
case), then the error will be:

error(1LSS1) = {0,25mm?,0, 25mm?}

Now we analyze ILSS2 inasimilar manner. At thefirst level, we have the physical sonar sensor
where the error can be determined either from the manufacturer specs, or from experimental data.
In this example we will use the error analysis done by Schenkat and Veigel [32] in which thereis
a Gaussian error with mean i and variance 0. From this analysis, the variance is a function of
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the returned distance r. To simplify the problem let’s assume that the variance in both sensors is
A, = 4.0mm?. Therefore we can write the error in the sonars as:

error(Sonar) = {A,}

In the Wedge_Sonar_Line module, there are five possible cases for that line depending on the
values of r; and r, [18]. In any case, the two points on the line can be written as:

T4 =Tycosay, zZp =Tisinag

XTg = T2COS g, Zg = Ty SIN

where the values of o1 and o, are between —6 to 6 (see Figure 11).

Figure 11: The general case for the points returned by the wedge_sonar_line.

Considering the worst case error, we can Set oy = a, = . Assuming that the error in 6 is zero,
then the error in the calculated pointsis:

6:1%
Ao, = ( ar )
aZi
A = (ar ) )

Ay = cos® 0 A,, A, = sin? 0 A,

2
A,
2
A

which resultsin:
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Ay, = cos® 0 A,, A, = sin? 0 A,
Finally, the error functionfor 7/ L.552 is:

error(ILSS2) = {A;, AL, Auy, AL}

Asan example, if A, = 4.0mm?, and § = 11° (approximately correct for the Polaroid sensor), we
get:
error(1LS52) = {3.85mm?,0.15mm?, 3.85mm?*, 0.15mm*}

This exampleillustrates the importance and usefulness of the ILSS library since all these anal-
yses can be performed once and put in the library for reuse and the user does not have to go through
these details again. For example, if a different sonar sensor is used, then the same error analysis
can be used by supplying the sensor’s error variance. In addition, given that the error range has
been determined, redundancy can be added using different sensor pairs to sense the same wall and
amonitor can be added to detect error discrepancies.

5.3 Experimental Results

We do not have a very good model of our camera, and therefore actual experiments were required
to compare the pose error for the two proposed techniques. The two instrumented logical sensors
were used with the LABMATE to find the location of walls using real data. The goal of the
experiment was to use the framework to obtain measures to help choose between a vision based
wall pose technique and a sonar based wall pose estimator.

First, we calibrated the range of our visual target (a horizontal line at a known height, Y; with
vertical stripes regularly spaced 34.2mm apart) with its y-location in the image. This was done by
aligning the z-axis of the mobilerobot camerato be normal to the wall; the mobile robot was then
backed away from the wall a known distance and the image row number of the horizontal target
line recorded. Figure 12 shows the results of this step. (Note that we digitized a 128x128 image;
greater resolution would produce more accurate results.)

Once the target range calibration was done, the robot was placed in eight different poses with
respect to the wall and the visual target acquired. Each image was constrained to have at least two
vertical stripes and neither of them could be centered on the middle column of the image. The test
images are shown in Figure 13.

Sonar data was also taken at each pose. The actual pose of the mobile robot with respect to
the wall was independently measured by hand. Table 1 gives the hand measured, sonar and image
calculated results.

The error values of the sonar and vision results with respect to the handmeasured data are
plotted in Figures 14 and 15.
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Figure 13: Visual target test images
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Test No. || Measured p | Measured ¢ || Sonar p | Sonar ¢ || Vision p | Vision
1 919 -21 915.6 -20.6 888 | -29.66
2 706 -27 715.4 -22.7 667 | -35.51
3 930 20 924.0 23.2 783 23.99
4 1,242 0| 1,226.3 4.6 1,128 10.27
5 764 32 778.5 46.1 593 43.62
6 1,164 -11 || 1,164.9 -13.7 1,084 | -13.33
7 1,283 6| 1,277.4 3.7 979 -6.53
8 1,319 -10 || 1,300.8 -9.8 1,084 | -13.33

Table 1. Pose results from measured data, sonar, and vision techniques.
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Figure 14: Error in p for sonar (dashed line) and vision
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Figure 15: Error in 6 for sonar (dashed line) and vision

These results alow the user to decide whether to use one technique or the other given the global
context. For example, our application was atennisball pickup competition in which we were using
vision to track tennis balls anyway, and we needed to locate a delivery location aong the wall; if
we can get by with pose error of lessthan 0.3m rangeand 15° angle, then ILSS1 will suffice. If less
error wererequired, then acostly sonar system with hardware and software would need to be added
to the robot, or else the use of higher resolution imagery could be explored. However, decisions
made with respect to all these considerations would now be defensible and well documented. (For
another detailed example comparing two aternative sonar sensor techniques to obtain wall pose,
see[19].)

Note that, to keep things smple, we did not consider the error in the sonar location and orien-
tation. However, these errors can be incorporated into the model in the same manner.

6 Conclusions

In this paper we presented atheoretical framework for sensor modeling and design based on defin-
ing the performance semantics of the system. We introduced the notion of instrumented sensor
systems, which is amodeling and design methodology that facilitates interactive, on-line monitor-
ing for different components of the sensor system. It also provides debugging tools and analysis
measures for the sensor system. The instrumented sensor approach can be viewed as an abstract
sensing machine which defines the semantics of sensor systems. This provides a strong compu-
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tational and operationa engine that can be used to define and propagate several quantitative mea-
sures to evaluate and compare design aternatives. The implementation of this framework within
the CWave system was described and examples were presented.

Currently, we are working on building an ILSS library with several design tools which will
assist in rapid prototyping of sensor systems and will provide an invaluable design tools for moni-
toring, analyzing and debugging robotic sensor systems.
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