
Decomposing the Proof of Correctness of Pipelined Microprocessors

Ravi Hosabettu�� Mandayam Srivas�� Ganesh Gopalakrishnan�

�Department of Computer Science �Computer Science Laboratory

University of Utah SRI International

Salt Lake City� UT ����� Menlo Park� CA �����

Contact email� hosabett	cs
utah
edu

January ��� ����

Abstract

We present a systematic approach to decompose and incrementally build the proof of correctness
of pipelined microprocessors� The central idea is to construct the abstraction function using comple�

tion functions� one per un�nished instruction� each of which specify the e�ect �on the observables� of
completing the instruction� In addition to avoiding term�size and case explosion as could happen for
deep and complex pipelines during �ushing and helping localize errors� our method can also handle
stages with iterative loops� The technique is illustrated on pipelined� as well as a superscalar pipelined
implementations of a subset of the DLX architecture�

Keywords� Processor veri�cation� Decomposition� Incremental veri�cation
Category� A

� Introduction

Modern microprocessors employ radical optimizations such as superscalar pipelining� speculative execu�
tion and out�of�order execution to enhance their throughput� These optimizations make microprocessor
veri�cation di�cult in practice� Most approaches to mechanical veri�cation of pipelined processors rely on
the following key techniques� First� given a pipelined implementation and a simpler ISA�level speci�cation�
they require a suitable abstraction mapping from an implementation state to a speci�cation state and
de�ne the correspondence between the two machines using a commute diagram� Second� they use symbolic
simulation to derive logical expressions corresponding to the two paths in the commute diagram which will
be then tested for equivalence� An automatic way to perform this equivalence testing is to use ground
decision procedures for equality with uninterpreted functions such as the ones in PVS� This strategy has
been used to verify several processors in PVS �CRSS���SM�	
� Some of the approaches to pipelined pro�
cessor veri�cation rely on the user providing the de�nition for the abstraction function� Burch and Dill
in �BD��
 observed that the e�ect of �ushing the pipeline� for example by pumping a sequence of NOPs�
can be used to automatically compute a suitable abstraction function� Burch and Dill used this �ushing
approach along with a validity checker �JDB�
�BDL�	
 to e�ectively automate the veri�cation of pipelined
implementations of several processors�

The pure �ushing approach has the drawback of generating an impractically large abstraction function
for deeper pipelines� Also� the number of examined cases explodes as the control part becomes complicated�
To overcome this drawback� Burch �Bur�	
 decomposed the veri�cation problem into three subproblems
and suggested an alternative method for constructing the abstraction function� This method required the

�


