I nter face and Execution Modelsin the Fluke Kernel

Bryan Ford Mike Hibler Jay Lepreau Roland McGrath Patrick Tullmann

Department of Computer Science
University of Utah

Technica Report UUCS-98-013
August, 1998

Abstract

We have defined and implemented anew kernel API that
makes every exported operation either fully interruptible
and restartable, thereby appearing atomic to the user. To
achieveinterruptibility, all possiblestatesin which athread
may become blocked for a“long” time are completely rep-
resentable as valid kernel API calls, without needing to re-
tain any kernel interna state.

ThisAPI providesimportant functionality. Sinceall ker-
nel operations appear atomic, services such as transparent
checkpointing and process migration that need access to
the complete and consistent state of a process can be im-
plemented by ordinary user-mode processes. Atomic op-
erations also enable applications to providereliability in a
more straightforward manner.

This API aso alows novel kernel implementation tech-
niques and eval uation of existing techniques, which we ex-
plore in this paper. Our new kernel’s single source im-
plements either the “process’ or the “interrupt” execution
model on both uni- and multiprocessors, depending only
on a configuration option affecting asmall amount of code.
Our kernel structure avoids the major complexities of tra-
ditional implementationsof theinterrupt model, neither re-
quiring ad hoc saving of state, nor limiting the operations
(such as demand-paged memory) that can be handled by
the kernel. Finally, our interrupt model configuration can
support the process model for selected components, with
the attendant flexibility benefits.

We report preliminary measurements comparing fully,
partially and non-preemptible configurations of both pro-
cess and interrupt model implementations. We find that
the interrupt model has a modest speed edge in some
benchmarks, maximum latency varies nearly three orders

This research was supported in part by the Defense Advanced Re-
search Projects Agency, monitored by the Department of the Army under
contract number DABT63-94-C-0058, and the Air Force Research Lab-
oratory, Rome Research Site, USAF, under agreement number F30602—
96-2-0269.

Contact information: lepreau@cs.utah.edu. Dept. of Computer Sci-
ence, 50 S. Central Campus Drive, Rm. 3190, University of Utah, SLC,
UT 84112-9205. http://www.cs.utah.edu/projects/flux/.

of magnitude, average latency varies by afactor of six, and
memory use favorsthe interrupt model as expected, but not
by alarge amount. We find that the overhead for restarting
the most costly kernel operation ranges from 2—-8%.

1 Introduction

This paper attempts to bring to light an important and
useful control-flow property of OS kernel interface seman-
tics that has been neglected in prevailing systems, and to
distinguish this interface property from the control-flow
properties of an OS kernel implementation An essential
issue of operating system design and implementation is
when and how one thread can block and relinquish con-
trol to another, and how the state of a thread suspended
by blocking or preemption is represented in the system.
This crucially affects both the kernel interface that repre-
sents these states to user code, and the fundamental inter-
nal organization of the kernel implementation. A central
aspect of this internal structure is the execution model in
which the kernel handles processor traps, hardware inter-
rupts, and system calls. In the process modelwhich is
used by traditional monoalithic kernelssuch asBSD, Linux,
and Windows NT, each thread of control in the system has
its own kernel stack. In the interrupt mode) used by sys-
tems such as V [7], QNX [14], and Aegis [12], the ker-
nel uses only one kernel stack per processor—for typi-
cal uniprocessor kernels, just one kernel stack, period. A
thread in a process-model kernel retains its kernel stack
state when it sleeps, whereas in an interrupt-model kernel
threads must manually save any important kernel state be-
fore sleeping. This saved kernel state is often known as a
continuation[10Q], since it allows the thread to “continue’
whereit left off.

In this paper we draw attention to the distinction be-
tween an interrupt-model kernel implementatigrwhich is
a kernel that uses only one kernel stack per processor by
manually saving implicit kernel state for sleeping threads,
and an “atomic” kernel AP] which is an API designed so
that sleeping threads needno such implicit kernel state at
al. These two kernel properties are related but fall on or-



