
Java Operating Systems: Design and Implementation

Godmar Back Patrick Tullmann Leigh Stoller Wilson C. Hsieh Jay Lepreau
Department of Computer Science

University of Utah

Technical Report UUCS-98-015
August, 1998

Abstract

Language-based extensible systems such as Java use
type safety to provide memory safety in a single address
space. Memory safety alone, however, is not sufficient to
protect different applications from each other. Such sys-
tems must support a process modelthat enables the control
and management of computational resources. In particular,
language-based extensible systems must support resource
control mechanisms analogous to those in standard operat-
ing systems. They must support the separation of processes
and limit their use of resources, but still support safe and
efficient interprocess communication.

We demonstrate how this challenge can be addressed in
Java operating systems. First, we describe the technical is-
sues that arise when implementing a process model in Java.
In particular, we lay out the design choices for managing
resources. Second, we describe the solutions that we are
exploring in two complementary projects, Alta and GVM.
GVM is similar to a traditional monolithic kernel, whereas
Alta closely models the Fluke operating system. Features
of our prototypes include flexible control of processor time
using CPU inheritance scheduling, per-process memory
controls, fair allocation of network bandwidth, and exe-
cution directly on hardware using the OSKit. Finally, we
compare our prototypes with other language-based operat-
ing systems and explore the tradeoffs between the various
designs.

1 Introduction
Language-based extensible systems in the form of Java

virtual machines are used to implement execution environ-
ments for applets in browsers, servlets in servers, and mo-
bile agents. All of these environments share the property
that they run multiple applications at the same time. For

This research was supported in part by the Defense Advanced Re-
search Projects Agency, monitored by the Department of the Army under
contract number DABT63–94–C–0058, and the Air Force Research Lab-
oratory, Rome Research Site, USAF, under agreement number F30602–
96–2–0269.

Contact information: fgback,tullmann,stoller,wilson,lepreaug@-
cs.utah.edu. Dept. of Computer Science, 50 S Central Campus
Drive, Room 3190, University of Utah, SLC, UT 84112-9205.
http://www.cs.utah.edu/projects/flux/java/index.html

example, a user may load applets from different Web sites
into a browser; a server may run servlets from different
sources; and an agent server may run agents from across
the Internet. Given the necessity of supporting multiple
applications, a language-based extensible system must be
able to isolate applications from one another because they
may be buggy or even malicious.

Conventional operating systems provide the abstraction
of a process, which encapsulates the execution of a pro-
gram. A process modeldefines what a process is and what
it may do. The following features are necessary in any pro-
cess model for safe, extensible systems:

� Protection. A process must not be able to manipulate
or destroy another process’s data in an uncontrolled
manner. For example, an unprivileged process must
not be able to deliberately (or accidentally) interfere
with another process’s forward progress.

� Resource Management. Resources allocated to a pro-
cess must be separable from those allocated to other
processes. An unprivileged or untrusted process must
not be able to starve other processes by denying them
resources.

� Communication. Since applications may consist of
multiple cooperating processes, processes must be
able to communicate with each other. The communi-
cation channels must be safe and should be efficient.

These requirements on processes form one of the pri-
mary tradeoffs in building operating systems, as illustrated
in Figure 1. On the right-hand side, processes can be pro-
tected from each other most easily if they are on com-
pletely separate machines. In addition, managing com-
putational resources is much simpler, since the resources
are completely separate. Unfortunately, communication is
more expensive between processes on different machines.
On the left-hand side, communication is much cheaper,
since processes can share memory directly. As a result,
though, protection and accurate resource accounting be-
come more difficult.

Operating systems research has spanned the entire range
of these systems, with a primary focus on systems in the
middle. Research in distributed systems and networking

1


