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Abstract

We present a systematic approach to decompose and incrementally build the proof of correctness
of pipelined microprocessors� The central idea is to construct the abstraction function using comple�

tion functions� one per un�nished instruction� each of which specify the e�ect �on the observables� of
completing the instruction� In addition to avoiding term�size and case explosion as could happen for
deep and complex pipelines during �ushing and helping localize errors� our method can also handle
stages with iterative loops� The technique is illustrated on pipelined� as well as a superscalar pipelined
implementations of a subset of the DLX architecture�

Keywords� Processor veri�cation� Decomposition� Incremental veri�cation
Category� A

� Introduction

Modern microprocessors employ radical optimizations such as superscalar pipelining� speculative execu�
tion and out�of�order execution to enhance their throughput� These optimizations make microprocessor
veri�cation di�cult in practice� Most approaches to mechanical veri�cation of pipelined processors rely on
the following key techniques� First� given a pipelined implementation and a simpler ISA�level speci�cation�
they require a suitable abstraction mapping from an implementation state to a speci�cation state and
de�ne the correspondence between the two machines using a commute diagram� Second� they use symbolic
simulation to derive logical expressions corresponding to the two paths in the commute diagram which will
be then tested for equivalence� An automatic way to perform this equivalence testing is to use ground
decision procedures for equality with uninterpreted functions such as the ones in PVS� This strategy has
been used to verify several processors in PVS �CRSS���SM�	
� Some of the approaches to pipelined pro�
cessor veri�cation rely on the user providing the de�nition for the abstraction function� Burch and Dill
in �BD��
 observed that the e�ect of �ushing the pipeline� for example by pumping a sequence of NOPs�
can be used to automatically compute a suitable abstraction function� Burch and Dill used this �ushing
approach along with a validity checker �JDB�
�BDL�	
 to e�ectively automate the veri�cation of pipelined
implementations of several processors�

The pure �ushing approach has the drawback of generating an impractically large abstraction function
for deeper pipelines� Also� the number of examined cases explodes as the control part becomes complicated�
To overcome this drawback� Burch �Bur�	
 decomposed the veri�cation problem into three subproblems
and suggested an alternative method for constructing the abstraction function� This method required the
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user to add some extra control inputs to the implementation and set them appropriately while constructing
the abstraction function� Along with a validity checker which needed the user to help with many manually
derived case splits� he used these techniques in superscalar processor veri�cation� However� despite the
manual e�ort involved� the reduction obtained in the expression size and the number of cases explored as
well as how the method will scale is not clear�

In this paper� we propose a systematic methodology to modularize as well as decompose the proof
of correctness of microprocessors with complex pipeline architectures� Called the completion functions
method� our approach relies on the user expressing the abstraction function in terms of a set of completion
functions� one per un�nished instruction� Each completion function speci�es the desired e�ect �on the
observables� of completing the instruction� Notice that one is not obligated to state how such completion
would actually be attained� which� indeed� can be very complex� involving details such as squashing�
pipeline stalls� and even data dependent iterative loops� Moreover� we strongly believe that a typical
designer would have a very clear understanding of the completion functions� and would not �nd the task of
describing them and constructing the abstraction function onerous� Thus� in addition to actually gaining
from designers� insights� veri�cation based on the completion function method has a number of other
advantages� It results in a natural decomposition of proofs� Proofs builds up in a layered manner where
the designer actually debugs the last pipeline stage �rst through a veri�cation condition� and then uses
this veri�cation condition as a rewrite rule in debugging the penultimate stage� and so on� Because of
this layering� the proof strategy employed is fairly simple and almost generic in practice� Debugging is far
more e�ective than in other methods because errors can be localized to a stage� instead of having to wade
through monolithic proofs� The method is not explicitly targeted towards any single aspect of processor
design such as control� and can naturally handle loops in pipeline stages�

��� Related work

Cyrluk has developed a technique called �Inverting the abstraction mapping� �Cyr�	
 for guiding theorem
provers during processor veri�cation� In addition to not decomposing proofs in our sense� this technique
also su�ers from large term sizes� Park and Dill have used the idea of aggregation functions in distributed
cache coherence protocol veri�cation �PD�	
� The completion functions are similar to aggregation functions
but our goal is the decomposition of the proof we can achieve using them� Additional comparisons with
past work are made in subsequent sections�

� Correctness Criteria for Processor Veri�cation

The completion functions approach aims to realize the correctness criterion expressed in Figure ��a� �used
in �SH��
�� in a manner that proofs based on it are modular and layered as pointed out earlier� Figure ��a�
expresses that n implementation transitions which start and end with �ushed states correspond to m tran�
sitions in the speci�cation machine where m is the number of instructions executed in the speci�cation
machine� I step is the implementation transition function and A step is the speci�cation transition func�
tion� projection would extract only those implementation state components visible to the speci�cation
i�e� the observables� This criterion is preferred because it corresponds to the intuition that a real pipelined
microprocessor starting at a �ushed state� running some program and terminating in a �ushed state is
emulated by a speci�cation machine whose starting and terminating states are in direct correspondence
through projection� One way to adapt this correctness criterion into an inductive argument would be to
�rst show that the processor meets the criterion in Figure ��b�� and then check that the abstraction func�
tion ABS satis�es the condition that in a �ushed state fs� ABS�fs� � projection�fs�� One also needs
to prove that the implementation machine will eventually reach a �ushed state if no more instructions are
inserted into the machine� This is to make sure that the correctness criterion in Figure ��a� is not vacuous�
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Figure �� Pipelined microprocessor correctness criteria

Intuitively� Figure ��b� says that if the implementation and the speci�cation machines start in a corre�
sponding pair of states� then after executing a transition� their new states correspond� impl state is an
arbitrary reachable state of the implementation machine� Figure ��b� uses a modi�ed transition function
A step� instead of A step since certain implementation transitions might correspond to executing zero� or
more than one instructions in the speci�cation machine� The case of zero instruction can arise if� e�g�� the
implementation machine stalls due to a load interlock� The case of more than one instruction can arise
if� e�g�� the the implementation machine has multiple pipelines� The number of instructions executed by
the speci�cation machine is provided by a function on implementation states �called the synchronization
function�� One of the crucial proof obligations is to show that this function does not always return zero�

The most di�cult task here is to de�ne an appropriate abstraction function and to prove that the
Figure ��b� commutes� One way to de�ne an abstraction function �BD��
 is to �ush the pipeline so that all
the un�nished instructions complete� and update the observables� and then apply a projection� Since most
machines allow for stalling the pipeline� i�e�� advancing the implementation machine without fetching a new
instruction� �ushing can be performed by a sequence of stall transitions of the implementation machine�
The number of stall transitions required depends on the depth of the pipeline� stall cycles due to interlocks
etc� This would generate the following veri�cation condition for proving that Figure ��b� commutes �where
flush is as discussed before��

Flush�VC� A�step�projection�flush�impl�state��� � projection�flush�I�step�impl�state���

It is practical to prove this veri�cation condition only for simple and shallow pipelines� For superscalar
processors with multiple pipelines and complex control logic� the logical expressions generated are too large
to manage and check equivalence on� Another drawback is that the number of stall transitions to �ush
the pipeline should be known� a priori� This� even if �nite� may be indeterminate if the control involves
data�dependent loops or if some part of the processor such as memory�cache interface is abstracted away
for managing the complexity of the system�
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� The Completion Functions Approach

The completion functions approach is also based on using an abstraction function corresponding to �ushing
the entire pipeline� However� this function is not derived via �ushing in our basic approach�� Rather� we
construct the abstraction function as a composition of a sequence of completion functions which� as said
earlier� speci�es the desired e�ect �on the observables� of completing each un�nished instruction� These
completion functions must also leave all non�observable state components unchanged� The order in which
these functions are composed is determined by the program order of the un�nished instructions� The
conditions under which each function is composed with the rest� if any� is determined by whether the
un�nished instructions ahead of it could disrupt the �ow of instructions e�g�� by being a taken branch or by
raising an exception� Observe that one is not required to state how these conditions are actually realised
in the implementation� As we illustrate later� this de�nition of the abstraction function leads to a very
natural decomposition of the proof of the commute diagram and supports incremental veri�cation� Any
mistakes� either in specifying the completion functions or in constructing the abstraction function� might
lead to a false negative veri�cation result� but never a false positive�

Consider a very simple four stage pipeline with one observable state component regfile which is shown
in Figure �� The instructions �ow down the pipeline with every cycle in order with no stalls� hazards etc�
�This is unrealistically simple� but we explain how to handle these artifacts in subsequent sections�� There
can be three un�nished instructions in this pipeline at any time� held in the three sets of pipeline registers
labeled IF�ID� ID�EX� and EX�WB� The completion function corresponding to an un�nished instruction
held in a set of pipeline registers �such as ID�EX� would state how the di�erent values stored in that
set of registers �ID�EX in this example� are combined to complete that instruction� In our example� the
completion functions are C EX WB� C ID EX and C IF ID� Now the abstraction function� whose e�ect should
be to �ush the pipeline� can be expressed as a composition of these completion functions as follows �we
omit projection here as regfile is the only observable state component��

ABS�impl�state� � C�IF�ID�C�ID�EX�C�EX�WB�impl�state���

regfile

C_EX_WB
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Figure �� A simple four stage pipeline and decomposition of the proof under completion functions

This de�nition of the abstraction function leads to a decomposition of the proof of the commute diagram
for regfile as shown in Figure �� The decomposition shown generates the following series of veri�cation
conditions� the last one of which corresponds to the complete commute diagram�

VC�� regfile�I�step�impl�state�� � regfile�C�EX�WB�impl�state��

VC�� regfile�C�EX�WB�I�step�impl�state��� � regfile�C�ID�EX�C�EX�WB�impl�state���

�Later we discuss a hybrid scheme extension
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VC�� regfile�C�ID�EX�C�EX�WB�I�step�impl�state���� �

regfile�C�IF�ID�C�ID�EX�C�EX�WB�impl�state����

VC	� regfile�C�IF�ID�C�ID�EX�C�EX�WB�I�step�impl�state����� �

regfile�A�step�C�IF�ID�C�ID�EX�C�EX�WB�impl�state�����

I step executes the instructions already in the pipeline as well as a newly fetched instruction� Given
this� VC� expresses the following fact� since regfile is updated in the last stage� we would expect that
after I step is executed� the contents of regfile would be the same as after completing the instruction
in the set EX�WB of pipeline registers�

Now consider the instruction in ID�EX� I step executes it partially as per the logic in stage EX� and
then moves the result to the set EX�WB of pipeline registers� C EX WB can now take over and complete
this instruction� This would result in the same contents of regfile as completing the instructions held
in sets EX�WB and ID�EX of pipeline registers in that order� This is captured by VC�� VC� and VC�
are similar� Note that our ultimate goal is to prove only VC�� with the proofs of VC� through VC�
acting as �helpers�� Each veri�cation condition in the above series can be proved using a standard strategy
which involves expanding the outermost function on the both sides of the equation and using the previously
proved veri�cation condition �if any� as a rewrite rule to simplify the expressions� followed by the necessary
case analysis� as well as reasoning about the terms introduced by function expansions� Since we expand
only the topmost functions on both sides� and because we use the previously proved veri�cation condition�
the sizes of the expressions produced during the proof and the required case analysis are kept in check�

As mentioned earlier� the completion functions approach also supports incremental and layered veri��
cation� When proving VC�� we are verifying the writeback stage of the pipeline against its speci�cation
C EX WB� When proving VC�� we are verifying one more stage of the pipeline� and so on� This makes it
is easier to locate errors� In �BD��
� if there is a bug in the pipeline� the validity checker would produce
a counterexample � a set of formulas potentially involving all the implementation variables � that implies
the negation of Flush VC� Such an output is not helpful in pinpointing the bug�

Another important advantage of the completion functions method is that it is applicable even when the
number of stall transitions to �ush the pipeline is indeterminate� which can happen if� e�g�� the pipeline con�
tains data dependent iterative loops� The completion functions� which state the desired e�ect of completing
an un�nished instruction� help us express the e�ect of �ushing directly� The proof that the implementation
eventually goes to a �ushed state can be done by using a measure function which returns the number of
cycles the implementation takes to �ush �this will be a data dependent expression� not a constant� and
showing that either the measure function decreases after every cycle or the implementation machine is
�ushed�

A disadvantage of the completion functions approach is that the user must explicitly specify the de��
nitions for these completion functions and then construct an abstraction function� In a later section� we
describe a hybrid approach to reduce the manual e�ort involved in this process�

� Application to DLX and Superscalar DLX Processors

In this section� we explain how to apply our methodology to verify two examples � a pipelined and a
superscalar pipelined implementation of a subset of the DLX processor �HP��
� We describe how to specify
the completion functions and construct an abstraction function� how to handle stalls� speculative fetching
and certain hazards� and illustrate the particular decomposition and the proof strategies that we used�
These are the same examples that were veri�ed by Burch and Dill using the �ushing approach in �BD��

and by Burch using his techniques in �Bur�	
 respectively� Our veri�cation is carried out in PVS�






��� DLX processor details

The speci�cation of this processor has four state components � the program counter pc� the register �le
regfile� the data memory dmem and the instruction memory imem� There are six types of instructions
supported� load� store� unconditional jump� conditional branch� alu
immediate and ��register alu in�
struction� The ALU is modeled using an uninterpreted function� The memory system and the register �le
are modeled as stores with read and write operations� The semantics of read and write operations are pro�
vided using the following two axioms� addr� � addr� IMPLIES read�write�store�addr��val���addr��

� val� and addr� �� addr� IMPLIES read�write�store�addr��val���addr�� � read�store�addr���
The speci�cation is provided in the form of a transition function A step�

The implementation is a �ve stage pipeline as shown in Figure �� There are four sets of pipeline
registers holding information about the partially executed instructions in �
 pipeline registers� The intended
functionality of each of the stages is also shown in the diagram� The implementation uses a simple �assume
not taken� prediction strategy for jump and branch instructions� Consequently� if a jump or branch is
indeed taken �br taken signal is asserted�� then the pipeline squashes the subsequent instruction and
corrects the pc� If the instruction following a load is dependent on it �st issue signal is asserted�� then
that instruction will be stalled for a cycle in the set IF�ID of pipeline registers� otherwise they �ow down
the pipeline with every cycle� No instructions are fetched in the cycle where stall input is asserted� The
implementation provides forwarding of data to the instruction decode unit �ID stage� where the operands
are read� The details of forwarding are not shown in the diagram� The implementation is also provided in
the form of a transition function I step� The detailed implementation� speci�cation as well as the proofs
can be found at �Hos��
�
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Figure �� Pipelined implementation

��� Specifying the completion functions

There can be four partially executed instructions in this processor at any time� one each in the four sets
of pipeline registers shown� We associate a completion function with each such instruction� We need to
identify how a partially executed instruction is stored in a particular set of pipeline registers � once this is
done� the completion function for that un�nished instruction can be easily derived from the speci�cation�

Consider the set IF�ID of pipeline registers� The intended functionality of the IF stage is to fetch an
instruction �place it in instr id� and increment the pc� The bubble id register indicates whether the
instruction is valid or not� �It might be invalid� for example� if it is being squashed due to a taken branch��
So in order to complete the execution of this instruction� the completion function should do nothing if the
instruction is not valid� otherwise it should update the pc with the target address if it is a jump or a taken
branch instruction� update the dmem if it is a store instruction and update the regfile if it is a load�

	



alu
immediate or alu instruction according to the semantics of the instruction� The details of how these
are done is in the speci�cation� This function is not obtained by tracing the implementation instead� the
user directly provides the intended e�ect� Also note that we are not concerned with load interlock or data
forwarding while specifying the completion function� We call this function C IF ID�

Consider the set ID�EX of pipeline registers� The ID stage completes the execution of jump and branch

instructions� so this instruction would a�ect only dmem and regfile� The bubble ex indicates whether the
instruction is valid or not� operand a and operand b are the two operands read by the ID stage� opcode ex

and dest ex determine the opcode and the destination register of the instruction and offset ex is used
to calculate the memory address for load and store instructions� The completion function should state
how these information can be combined to complete the instruction� which again can be gleaned from the
speci�cation� We call this function C ID EX� Similarly the completion functions for the other two sets of
pipeline registers � C EX MEM and C MEM WB � are speci�ed�

The completion functions for the un�nished instructions in the initial sets of pipeline registers are
very close to the speci�cation and it is very easy to derive them� �For example� C IF ID is almost the
same as the speci�cation�� However for the un�nished instructions in the later sets of pipeline registers�
it is more involved to derive them as the user needs to understand how the information about un�nished
instructions are stored in the various pipeline registers but the functions themselves are much simpler�
Also the completion functions are independent of how the various stages are implemented and just depend
on their functionality�

��� The decomposition and the proof details

Since the instructions �ow down the pipeline in order� the abstraction function is de�ned the composition
of these completion functions followed by projection as shown below�

ABS�impl�state� � projection�C�IF�ID�C�ID�EX�C�EX�MEM�C�MEM�WB�impl�state�����

The synchronization function� for this example� returns zero if there is a load interlock �st issue is
true� or stall input is asserted or jump�branch is taken �br taken is true� otherwise it returns one� The
modi�ed speci�cation transition function is A step�� The proof that this function is not always zero was
straightforward and we skip the details here� This is also needed in the approach of �BD��
�

����� The decomposition

The decomposition we used for regfile for this example is shown in Figure �� The justi�cation for the �rst
three veri�cation conditions is similar as in Section �� There are two veri�cation conditions corresponding
to the instruction in set IF�ID of pipeline registers� If st issue is true� then that instruction is not issued�
so C ID EX ought to have no e�ect in the lower path in the commute diagram� VC� r requires us to prove
this under condition P� � st issue� VC
 r is for the case when the instruction is issued� so it should be
proved under condition P� � NOT st issue� VC	 r is the veri�cation condition corresponding to the �nal
commute diagram for regfile�

The decomposition for dmem is similar except that the �rst veri�cation condition VC� d is slightly
di�erent� Since dmem is not updated in the last stage� VC� d for dmem states that dmem is not a�ected by
C MEM WB i�e� dmem�C MEM WB�impl state�� � dmem�impl state�� The rest of the veri�cation conditions
are exactly identical to that of regfile�

The commute diagram for pc was decomposed into only three veri�cation conditions� We �rst one�
VC� p� stated that pc�C ID EX�C EX MEM�C MEM WB�impl state���� � pc�impl state� since completing
the instructions in the last three sets of pipeline registers will not a�ect the pc� In addition� completing
the instruction in set IF�ID of pipeline registers will not a�ect the pc too� if that instruction is not stalled
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Figure �� The decomposition of the commute diagram for regfile

and is not a jump�taken branch� This is captured by VC� p� The third one� VC� p� was the veri�cation
condition corresponding to the �nal commute diagram for pc�

The decomposition we used for imem had two veri�cation conditions� VC� i which stated that complet�
ing the four instructions in the pipeline has no e�ect on imem and the second one� VC� i was corresponding
to the �nal commute diagram for imem�

����� The proof

We need a rewrite rule for each register of a particular set of pipeline registers that states that it is una�ected
by the completion functions of the un�nished instructions ahead of it� For example� for bubble ex� the
rewrite rule is bubble ex�C EX MEM�C MEM WB�impl state��� � bubble ex�impl state�� All these rules
can be generated and proved automatically� We then de�ned a strategy which would setup these� and
the de�nitions and the axioms from the implementation and the speci�cation as rewrite rules� We avoid
setting up as rewrite rules those de�nitions on which we do case analysis � st issue and br taken and
those corresponding to the feedback logic�

The correctness of the feedback logic is captured succinctly in the form of following two lemmas� one
each for the two operands that it reads� If there is a valid instruction in set IF�ID of pipeline registers
and it is not stalled� then the value read in the ID stage by the feedback logic is the same as the value
read from regfile after the three instructions ahead of it are completed� Their proofs are done by using
the strategy above to setup all the rewrite rules� setting up the de�nitions in the lemmas being proved as
rewrite rules� followed by an assert to do the rewrites and simpli�cations� followed by �apply �then


�repeat �lift
if�� �bddsimp� �ground��� to do the case analysis�
The proof strategy for proving all the veri�cation conditions of regfile and dmem is similar � use the

strategy described above to setup the rewrite rules� set up the previously proved veri�cation conditions and
the lemmas about feedback logic as rewrite rules� expand the outermost function on both sides� assert
to do the rewrites and simpli�cations� then do case analysis with �apply �then
 �repeat �lift
if��

�bddsimp� �ground���� Minor di�erences were that some �nished without the need for case analysis �like
VC� r and VC� d� and some needed the outermost function to be expanded on only one of the sides �like
VC� r and VC� d�� VC	 r and VC	 d were slightly more involved in that the various cases introduced by
expanding A step� were considered in the following order � st issue� stall input� br taken � followed
by a similar strategy as described before�

The proofs of the veri�cation conditions for pc were again similar except that we do additional case
analysis after expanding br taken condition� Finally� the proofs of veri�cation conditions for imem were
trivial since the instruction memory does not change�
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We needed an invariant in this example� that dest ex is zero reg whenever bubble ex is true or
opcode ex is a store or a jump or a branch instruction� Making dest ex equal to zero reg was to ensure
that the regfile was not updated under these conditions� The proof that the invariant is closed under
I step was however trivial�

We make two observations here� The proof of a particular veri�cation condition� say for regfile� may
use the previous veri�cation conditions of all other speci�cation state components� hence these need to be
proved in that order� The particular order in which we did the proof was VC� r� VC� d� VC� r� VC� d�
VC� r� VC� d� the two lemmas for feedback logic� VC� r� VC� d� VC
 r� VC
 d� VC� i� VC� p� VC� p�
VC	 r� VC	 d� VC� p and VC� i� The second observation is that this is the particular decomposition that
we chose� We could have avoided proving� say VC� r� and proved that goal when it arises within� say
VC	 r� if the prover can handle the term sizes�

Finally we prove that the implementation machine eventually goes to a �ushed state if it is stalled
su�ciently long and then check in that �ushed state fs� ABS�fs� � projection�fs�� For this example�
this proof was done by observing that bubble id will be true after two stall transitions �hence no instruction
in set IF�ID of pipeline registers� and that this �no�instruction��ness propagates down the pipeline with
every stall transition�

��� Superscalar DLX processor

The superscalar DLX processor is a dual issue version of the DLX processor� Both the pipelines have similar
structure as Figure � except that the second pipeline only executes alu
immediate and alu instructions�
In addition� there is one instruction bu�er location�

Specifying the completion functions for the various un�nished instructions was similar� A main di�er�
ence was how the completion functions of the un�nished instructions in the sets IF�ID of pipeline registers
and the instruction bu�er �say the instructions are i� j� k and completion functions are C i� C j and
C k respectively� are composed to handle the speculative fetching of instructions� These un�nished in�
structions could be potential branches since the branch instructions are executed in the ID stage of the
�rst pipeline� So while constructing the abstraction function� we compose C j �with C i����rest of the

completion functions in order����� only if instruction i is not a taken branch and then compose C k

only if instruction j is not a taken branch too� We used a similar idea in constructing the synchronization
function too� The speci�cation machine would not execute any new instructions if any of the instructions
i� j� k mentioned above is a taken branch� It is very easy and natural to express these conditions using
completion functions since we are not concerned with when exactly the branches are taken in the imple�
mentation machine� However� if using the pure �ushing approach� even the synchronization function will
have to be much more complicated having to cycle the implementation machine for many cycles �Bur�	
�

Another di�erence between the two processors was the complex issue logic here which could issue zero
to two instructions per cycle� We had eight veri�cation conditions on how di�erent instructions get issued
or stalled�move around� �This again is the particular decomposition that we chose� we can reduce this by
choosing a coarser decomposition�� The complete PVS speci�cation and proofs can be found at �Hos��
�
The proofs of all the veri�cation conditions again used very similar strategies� The synchronization function
had many more cases in this example and the previously proved veri�cation conditions were used many
times over�

��� Hybrid approach to reduce the manual e�ort

In some cases� it is possible to derive the de�nitions of some of the completion functions automatically
from the implementation to reduce the manual e�ort� We illustrate this on the DLX example�

The implementation is provided in the form of a typical transition function giving the �new� value for
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each state component� Since the implementation modi�es the regfile in the writeback stage� we take
C MEM WB to be new regfile� This is a function of dest wb and result wb� To determine how C EX MEM

updates the register �le� we perform a step of symbolic simulation of the non�observables i�e� replace
dest wb and result wb in above function with their �new�� counterparts� Since the MEM stage updates
dmem� C EX MEM will have another component modifying dmem which we simply take as new dmem� Similarly
we derive C ID EX from C EX MEM through symbolic simulation� For the set IF�ID of pipeline registers� this
gets complicated on two counts � the instruction there could get stalled due to a load interlock and the
forwarding logic that appears in the ID stage� So we let the user specify this function directly� We have
done a complete proof using these completion functions� The details of the proof are similar� An important
di�erence here is that this eliminated the invariant that was needed earlier�

While reducing the manual e�ort� this way of deriving the completion functions from the implementation
has the disadvantage that we are verifying the implementation against itself� This contradicts our view of
these as desired speci�cations and negates our goal of incremental veri�cation� In the example above� a bug
in the writeback stage would go undetected and appear in the completion functions that are being built
up� �In fact� VC� r for regfile is true by the construction of C MEM WB and hence need not be proved � we
believe� we can formalize this under suitable assumptions on the implementation�� All bugs will eventually
be caught however� since the �nal commute diagram uses the �correct� speci�cation provided by the user
instead of being generated from the implementation� To combine the advantages of both� we could use
a hybrid approach where we use explicitly provided and symbolically generated completion functions in
combination� For example� we could derive it for the last stage� specify it for the penultimate stage and
then derive it for the stage before it �from the speci�cation for the penultimate stage� and so on�

� Conclusions

We have presented a systematic approach to modularize and decompose the proof of correctness of pipelined
microprocessors� This relied on the user expressing the cumulative e�ect of �ushing in terms of a set of
completion functions� one per un�nished instruction� This resulted in a natural decomposition of the proof
and allowed the veri�cation to proceed incrementally� While this method increased the manual e�ort on the
part of the user� we found specifying the completion functions and constructing the abstraction function
was quite easy and believe that a typical designer would have an understanding of these� We also believe
that our approach can verify deeper and complex pipelines than is possible with other automated methods�

Our future plan is to see how our approach can be applied� or can be adapted� to verify more complex
pipeline control that use out�of�order completion of instructions� Our initial attempts at verifying such a
processor appear encouraging� The particular processor we are attempting to verify allows out�of�order
completion of instructions but has a complex issue logic that allows such a possibility only if that instruction
does not cause any WAW hazards� The crucial idea here is that we can reorder the completion functions
of the un�nished instructions to match the program order �the order used by the abstraction function�
using this property of the issue logic� Other plans include testing the e�cacy of our approach for verifying
pipelines with data dependent iterative loops and asynchronous memory interface�
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