
Decomposing the Proof of Correctness of Pipelined Microprocessors

Ravi Hosabettu�� Mandayam Srivas�� Ganesh Gopalakrishnan�

�Department of Computer Science �Computer Science Laboratory

University of Utah SRI International

Salt Lake City� UT ����� Menlo Park� CA �����

Contact email� hosabett	cs
utah
edu

January ��� ����

Abstract

We present a systematic approach to decompose and incrementally build the proof of correctness
of pipelined microprocessors� The central idea is to construct the abstraction function using comple�

tion functions� one per un�nished instruction� each of which specify the e�ect �on the observables� of
completing the instruction� In addition to avoiding term�size and case explosion as could happen for
deep and complex pipelines during �ushing and helping localize errors� our method can also handle
stages with iterative loops� The technique is illustrated on pipelined� as well as a superscalar pipelined
implementations of a subset of the DLX architecture�

Keywords� Processor veri�cation� Decomposition� Incremental veri�cation
Category� A

� Introduction

Modern microprocessors employ radical optimizations such as superscalar pipelining� speculative execu�
tion and out�of�order execution to enhance their throughput� These optimizations make microprocessor
veri�cation di�cult in practice� Most approaches to mechanical veri�cation of pipelined processors rely on
the following key techniques� First� given a pipelined implementation and a simpler ISA�level speci�cation�
they require a suitable abstraction mapping from an implementation state to a speci�cation state and
de�ne the correspondence between the two machines using a commute diagram� Second� they use symbolic
simulation to derive logical expressions corresponding to the two paths in the commute diagram which will
be then tested for equivalence� An automatic way to perform this equivalence testing is to use ground
decision procedures for equality with uninterpreted functions such as the ones in PVS� This strategy has
been used to verify several processors in PVS �CRSS���SM�	
� Some of the approaches to pipelined pro�
cessor veri�cation rely on the user providing the de�nition for the abstraction function� Burch and Dill
in �BD��
 observed that the e�ect of �ushing the pipeline� for example by pumping a sequence of NOPs�
can be used to automatically compute a suitable abstraction function� Burch and Dill used this �ushing
approach along with a validity checker �JDB�
�BDL�	
 to e�ectively automate the veri�cation of pipelined
implementations of several processors�

The pure �ushing approach has the drawback of generating an impractically large abstraction function
for deeper pipelines� Also� the number of examined cases explodes as the control part becomes complicated�
To overcome this drawback� Burch �Bur�	
 decomposed the veri�cation problem into three subproblems
and suggested an alternative method for constructing the abstraction function� This method required the

�



user to add some extra control inputs to the implementation and set them appropriately while constructing
the abstraction function� Along with a validity checker which needed the user to help with many manually
derived case splits� he used these techniques in superscalar processor veri�cation� However� despite the
manual e�ort involved� the reduction obtained in the expression size and the number of cases explored as
well as how the method will scale is not clear�

In this paper� we propose a systematic methodology to modularize as well as decompose the proof
of correctness of microprocessors with complex pipeline architectures� Called the completion functions
method� our approach relies on the user expressing the abstraction function in terms of a set of completion
functions� one per un�nished instruction� Each completion function speci�es the desired e�ect �on the
observables� of completing the instruction� Notice that one is not obligated to state how such completion
would actually be attained� which� indeed� can be very complex� involving details such as squashing�
pipeline stalls� and even data dependent iterative loops� Moreover� we strongly believe that a typical
designer would have a very clear understanding of the completion functions� and would not �nd the task of
describing them and constructing the abstraction function onerous� Thus� in addition to actually gaining
from designers� insights� veri�cation based on the completion function method has a number of other
advantages� It results in a natural decomposition of proofs� Proofs builds up in a layered manner where
the designer actually debugs the last pipeline stage �rst through a veri�cation condition� and then uses
this veri�cation condition as a rewrite rule in debugging the penultimate stage� and so on� Because of
this layering� the proof strategy employed is fairly simple and almost generic in practice� Debugging is far
more e�ective than in other methods because errors can be localized to a stage� instead of having to wade
through monolithic proofs� The method is not explicitly targeted towards any single aspect of processor
design such as control� and can naturally handle loops in pipeline stages�

��� Related work

Cyrluk has developed a technique called �Inverting the abstraction mapping� �Cyr�	
 for guiding theorem
provers during processor veri�cation� In addition to not decomposing proofs in our sense� this technique
also su�ers from large term sizes� Park and Dill have used the idea of aggregation functions in distributed
cache coherence protocol veri�cation �PD�	
� The completion functions are similar to aggregation functions
but our goal is the decomposition of the proof we can achieve using them� Additional comparisons with
past work are made in subsequent sections�

� Correctness Criteria for Processor Veri�cation

The completion functions approach aims to realize the correctness criterion expressed in Figure ��a� �used
in �SH��
�� in a manner that proofs based on it are modular and layered as pointed out earlier� Figure ��a�
expresses that n implementation transitions which start and end with �ushed states correspond to m tran�
sitions in the speci�cation machine where m is the number of instructions executed in the speci�cation
machine� I step is the implementation transition function and A step is the speci�cation transition func�
tion� projection would extract only those implementation state components visible to the speci�cation
i�e� the observables� This criterion is preferred because it corresponds to the intuition that a real pipelined
microprocessor starting at a �ushed state� running some program and terminating in a �ushed state is
emulated by a speci�cation machine whose starting and terminating states are in direct correspondence
through projection� One way to adapt this correctness criterion into an inductive argument would be to
�rst show that the processor meets the criterion in Figure ��b�� and then check that the abstraction func�
tion ABS satis�es the condition that in a �ushed state fs� ABS�fs� � projection�fs�� One also needs
to prove that the implementation machine will eventually reach a �ushed state if no more instructions are
inserted into the machine� This is to make sure that the correctness criterion in Figure ��a� is not vacuous�

�



(b)(a)

flushed

flushed

impl_state

impl_state

projection

projection

n I_step m A_step

impl_state
ABS

ABS

I_step A_step’

Figure �� Pipelined microprocessor correctness criteria

Intuitively� Figure ��b� says that if the implementation and the speci�cation machines start in a corre�
sponding pair of states� then after executing a transition� their new states correspond� impl state is an
arbitrary reachable state of the implementation machine� Figure ��b� uses a modi�ed transition function
A step� instead of A step since certain implementation transitions might correspond to executing zero� or
more than one instructions in the speci�cation machine� The case of zero instruction can arise if� e�g�� the
implementation machine stalls due to a load interlock� The case of more than one instruction can arise
if� e�g�� the the implementation machine has multiple pipelines� The number of instructions executed by
the speci�cation machine is provided by a function on implementation states �called the synchronization
function�� One of the crucial proof obligations is to show that this function does not always return zero�

The most di�cult task here is to de�ne an appropriate abstraction function and to prove that the
Figure ��b� commutes� One way to de�ne an abstraction function �BD��
 is to �ush the pipeline so that all
the un�nished instructions complete� and update the observables� and then apply a projection� Since most
machines allow for stalling the pipeline� i�e�� advancing the implementation machine without fetching a new
instruction� �ushing can be performed by a sequence of stall transitions of the implementation machine�
The number of stall transitions required depends on the depth of the pipeline� stall cycles due to interlocks
etc� This would generate the following veri�cation condition for proving that Figure ��b� commutes �where
flush is as discussed before��

Flush�VC� A�step�projection�flush�impl�state��� � projection�flush�I�step�impl�state���

It is practical to prove this veri�cation condition only for simple and shallow pipelines� For superscalar
processors with multiple pipelines and complex control logic� the logical expressions generated are too large
to manage and check equivalence on� Another drawback is that the number of stall transitions to �ush
the pipeline should be known� a priori� This� even if �nite� may be indeterminate if the control involves
data�dependent loops or if some part of the processor such as memory�cache interface is abstracted away
for managing the complexity of the system�

�



� The Completion Functions Approach

The completion functions approach is also based on using an abstraction function corresponding to �ushing
the entire pipeline� However� this function is not derived via �ushing in our basic approach�� Rather� we
construct the abstraction function as a composition of a sequence of completion functions which� as said
earlier� speci�es the desired e�ect �on the observables� of completing each un�nished instruction� These
completion functions must also leave all non�observable state components unchanged� The order in which
these functions are composed is determined by the program order of the un�nished instructions� The
conditions under which each function is composed with the rest� if any� is determined by whether the
un�nished instructions ahead of it could disrupt the �ow of instructions e�g�� by being a taken branch or by
raising an exception� Observe that one is not required to state how these conditions are actually realised
in the implementation� As we illustrate later� this de�nition of the abstraction function leads to a very
natural decomposition of the proof of the commute diagram and supports incremental veri�cation� Any
mistakes� either in specifying the completion functions or in constructing the abstraction function� might
lead to a false negative veri�cation result� but never a false positive�

Consider a very simple four stage pipeline with one observable state component regfile which is shown
in Figure �� The instructions �ow down the pipeline with every cycle in order with no stalls� hazards etc�
�This is unrealistically simple� but we explain how to handle these artifacts in subsequent sections�� There
can be three un�nished instructions in this pipeline at any time� held in the three sets of pipeline registers
labeled IF�ID� ID�EX� and EX�WB� The completion function corresponding to an un�nished instruction
held in a set of pipeline registers �such as ID�EX� would state how the di�erent values stored in that
set of registers �ID�EX in this example� are combined to complete that instruction� In our example� the
completion functions are C EX WB� C ID EX and C IF ID� Now the abstraction function� whose e�ect should
be to �ush the pipeline� can be expressed as a composition of these completion functions as follows �we
omit projection here as regfile is the only observable state component��

ABS�impl�state� � C�IF�ID�C�ID�EX�C�EX�WB�impl�state���

regfile

C_EX_WB

C_EX_WB

C_ID_EX

C_ID_EX

C_IF_ID

C_IF_ID

I_step A_step

impl_state

VC1 VC3VC2

VC4

IF/ID ID/EX EX/WB
Fetch
IF

Decode
ID

Execute
EX

Writeback
WB

Figure �� A simple four stage pipeline and decomposition of the proof under completion functions

This de�nition of the abstraction function leads to a decomposition of the proof of the commute diagram
for regfile as shown in Figure �� The decomposition shown generates the following series of veri�cation
conditions� the last one of which corresponds to the complete commute diagram�

VC�� regfile�I�step�impl�state�� � regfile�C�EX�WB�impl�state��

VC�� regfile�C�EX�WB�I�step�impl�state��� � regfile�C�ID�EX�C�EX�WB�impl�state���

�Later we discuss a hybrid scheme extension

�



VC�� regfile�C�ID�EX�C�EX�WB�I�step�impl�state���� �

regfile�C�IF�ID�C�ID�EX�C�EX�WB�impl�state����

VC	� regfile�C�IF�ID�C�ID�EX�C�EX�WB�I�step�impl�state����� �

regfile�A�step�C�IF�ID�C�ID�EX�C�EX�WB�impl�state�����

I step executes the instructions already in the pipeline as well as a newly fetched instruction� Given
this� VC� expresses the following fact� since regfile is updated in the last stage� we would expect that
after I step is executed� the contents of regfile would be the same as after completing the instruction
in the set EX�WB of pipeline registers�

Now consider the instruction in ID�EX� I step executes it partially as per the logic in stage EX� and
then moves the result to the set EX�WB of pipeline registers� C EX WB can now take over and complete
this instruction� This would result in the same contents of regfile as completing the instructions held
in sets EX�WB and ID�EX of pipeline registers in that order� This is captured by VC�� VC� and VC�
are similar� Note that our ultimate goal is to prove only VC�� with the proofs of VC� through VC�
acting as �helpers�� Each veri�cation condition in the above series can be proved using a standard strategy
which involves expanding the outermost function on the both sides of the equation and using the previously
proved veri�cation condition �if any� as a rewrite rule to simplify the expressions� followed by the necessary
case analysis� as well as reasoning about the terms introduced by function expansions� Since we expand
only the topmost functions on both sides� and because we use the previously proved veri�cation condition�
the sizes of the expressions produced during the proof and the required case analysis are kept in check�

As mentioned earlier� the completion functions approach also supports incremental and layered veri��
cation� When proving VC�� we are verifying the writeback stage of the pipeline against its speci�cation
C EX WB� When proving VC�� we are verifying one more stage of the pipeline� and so on� This makes it
is easier to locate errors� In �BD��
� if there is a bug in the pipeline� the validity checker would produce
a counterexample � a set of formulas potentially involving all the implementation variables � that implies
the negation of Flush VC� Such an output is not helpful in pinpointing the bug�

Another important advantage of the completion functions method is that it is applicable even when the
number of stall transitions to �ush the pipeline is indeterminate� which can happen if� e�g�� the pipeline con�
tains data dependent iterative loops� The completion functions� which state the desired e�ect of completing
an un�nished instruction� help us express the e�ect of �ushing directly� The proof that the implementation
eventually goes to a �ushed state can be done by using a measure function which returns the number of
cycles the implementation takes to �ush �this will be a data dependent expression� not a constant� and
showing that either the measure function decreases after every cycle or the implementation machine is
�ushed�

A disadvantage of the completion functions approach is that the user must explicitly specify the de��
nitions for these completion functions and then construct an abstraction function� In a later section� we
describe a hybrid approach to reduce the manual e�ort involved in this process�

� Application to DLX and Superscalar DLX Processors

In this section� we explain how to apply our methodology to verify two examples � a pipelined and a
superscalar pipelined implementation of a subset of the DLX processor �HP��
� We describe how to specify
the completion functions and construct an abstraction function� how to handle stalls� speculative fetching
and certain hazards� and illustrate the particular decomposition and the proof strategies that we used�
These are the same examples that were veri�ed by Burch and Dill using the �ushing approach in �BD��

and by Burch using his techniques in �Bur�	
 respectively� Our veri�cation is carried out in PVS�






��� DLX processor details

The speci�cation of this processor has four state components � the program counter pc� the register �le
regfile� the data memory dmem and the instruction memory imem� There are six types of instructions
supported� load� store� unconditional jump� conditional branch� alu
immediate and ��register alu in�
struction� The ALU is modeled using an uninterpreted function� The memory system and the register �le
are modeled as stores with read and write operations� The semantics of read and write operations are pro�
vided using the following two axioms� addr� � addr� IMPLIES read�write�store�addr��val���addr��

� val� and addr� �� addr� IMPLIES read�write�store�addr��val���addr�� � read�store�addr���
The speci�cation is provided in the form of a transition function A step�

The implementation is a �ve stage pipeline as shown in Figure �� There are four sets of pipeline
registers holding information about the partially executed instructions in �
 pipeline registers� The intended
functionality of each of the stages is also shown in the diagram� The implementation uses a simple �assume
not taken� prediction strategy for jump and branch instructions� Consequently� if a jump or branch is
indeed taken �br taken signal is asserted�� then the pipeline squashes the subsequent instruction and
corrects the pc� If the instruction following a load is dependent on it �st issue signal is asserted�� then
that instruction will be stalled for a cycle in the set IF�ID of pipeline registers� otherwise they �ow down
the pipeline with every cycle� No instructions are fetched in the cycle where stall input is asserted� The
implementation provides forwarding of data to the instruction decode unit �ID stage� where the operands
are read� The details of forwarding are not shown in the diagram� The implementation is also provided in
the form of a transition function I step� The detailed implementation� speci�cation as well as the proofs
can be found at �Hos��
�

bubble_id

instr_id

dest_mem

result_mem

load_flag

store_flag

mar

dest_wb

result_wb

Fetch a new
instruction.

Update pc.

Complete jump

and branch

instructions.

Read operands

for others if 
any.

Compute alu

result or the

target memory

address.

Store to or

load from

memory.

Write to the
register file.

IF ID EX MEM WB
IF/ID ID/EX MEM/WBEX/MEM

bubble_ex

opcode_ex

operand_a

dest_ex

operand_b

offset_ex

pc dmem regfile

Figure �� Pipelined implementation

��� Specifying the completion functions

There can be four partially executed instructions in this processor at any time� one each in the four sets
of pipeline registers shown� We associate a completion function with each such instruction� We need to
identify how a partially executed instruction is stored in a particular set of pipeline registers � once this is
done� the completion function for that un�nished instruction can be easily derived from the speci�cation�

Consider the set IF�ID of pipeline registers� The intended functionality of the IF stage is to fetch an
instruction �place it in instr id� and increment the pc� The bubble id register indicates whether the
instruction is valid or not� �It might be invalid� for example� if it is being squashed due to a taken branch��
So in order to complete the execution of this instruction� the completion function should do nothing if the
instruction is not valid� otherwise it should update the pc with the target address if it is a jump or a taken
branch instruction� update the dmem if it is a store instruction and update the regfile if it is a load�

	



alu
immediate or alu instruction according to the semantics of the instruction� The details of how these
are done is in the speci�cation� This function is not obtained by tracing the implementation instead� the
user directly provides the intended e�ect� Also note that we are not concerned with load interlock or data
forwarding while specifying the completion function� We call this function C IF ID�

Consider the set ID�EX of pipeline registers� The ID stage completes the execution of jump and branch

instructions� so this instruction would a�ect only dmem and regfile� The bubble ex indicates whether the
instruction is valid or not� operand a and operand b are the two operands read by the ID stage� opcode ex

and dest ex determine the opcode and the destination register of the instruction and offset ex is used
to calculate the memory address for load and store instructions� The completion function should state
how these information can be combined to complete the instruction� which again can be gleaned from the
speci�cation� We call this function C ID EX� Similarly the completion functions for the other two sets of
pipeline registers � C EX MEM and C MEM WB � are speci�ed�

The completion functions for the un�nished instructions in the initial sets of pipeline registers are
very close to the speci�cation and it is very easy to derive them� �For example� C IF ID is almost the
same as the speci�cation�� However for the un�nished instructions in the later sets of pipeline registers�
it is more involved to derive them as the user needs to understand how the information about un�nished
instructions are stored in the various pipeline registers but the functions themselves are much simpler�
Also the completion functions are independent of how the various stages are implemented and just depend
on their functionality�

��� The decomposition and the proof details

Since the instructions �ow down the pipeline in order� the abstraction function is de�ned the composition
of these completion functions followed by projection as shown below�

ABS�impl�state� � projection�C�IF�ID�C�ID�EX�C�EX�MEM�C�MEM�WB�impl�state�����

The synchronization function� for this example� returns zero if there is a load interlock �st issue is
true� or stall input is asserted or jump�branch is taken �br taken is true� otherwise it returns one� The
modi�ed speci�cation transition function is A step�� The proof that this function is not always zero was
straightforward and we skip the details here� This is also needed in the approach of �BD��
�

����� The decomposition

The decomposition we used for regfile for this example is shown in Figure �� The justi�cation for the �rst
three veri�cation conditions is similar as in Section �� There are two veri�cation conditions corresponding
to the instruction in set IF�ID of pipeline registers� If st issue is true� then that instruction is not issued�
so C ID EX ought to have no e�ect in the lower path in the commute diagram� VC� r requires us to prove
this under condition P� � st issue� VC
 r is for the case when the instruction is issued� so it should be
proved under condition P� � NOT st issue� VC	 r is the veri�cation condition corresponding to the �nal
commute diagram for regfile�

The decomposition for dmem is similar except that the �rst veri�cation condition VC� d is slightly
di�erent� Since dmem is not updated in the last stage� VC� d for dmem states that dmem is not a�ected by
C MEM WB i�e� dmem�C MEM WB�impl state�� � dmem�impl state�� The rest of the veri�cation conditions
are exactly identical to that of regfile�

The commute diagram for pc was decomposed into only three veri�cation conditions� We �rst one�
VC� p� stated that pc�C ID EX�C EX MEM�C MEM WB�impl state���� � pc�impl state� since completing
the instructions in the last three sets of pipeline registers will not a�ect the pc� In addition� completing
the instruction in set IF�ID of pipeline registers will not a�ect the pc too� if that instruction is not stalled

�



C_MEM_WB C_EX_MEM C_ID_EX C_IF_ID

C_IF_IDC_ID_EXC_EX_MEMC_MEM_WB

I_step A_step’P2P1

impl_state

VC4_r VC5_r

VC6_r

VC2_r VC3_rVC1_r

Figure �� The decomposition of the commute diagram for regfile

and is not a jump�taken branch� This is captured by VC� p� The third one� VC� p� was the veri�cation
condition corresponding to the �nal commute diagram for pc�

The decomposition we used for imem had two veri�cation conditions� VC� i which stated that complet�
ing the four instructions in the pipeline has no e�ect on imem and the second one� VC� i was corresponding
to the �nal commute diagram for imem�

����� The proof

We need a rewrite rule for each register of a particular set of pipeline registers that states that it is una�ected
by the completion functions of the un�nished instructions ahead of it� For example� for bubble ex� the
rewrite rule is bubble ex�C EX MEM�C MEM WB�impl state��� � bubble ex�impl state�� All these rules
can be generated and proved automatically� We then de�ned a strategy which would setup these� and
the de�nitions and the axioms from the implementation and the speci�cation as rewrite rules� We avoid
setting up as rewrite rules those de�nitions on which we do case analysis � st issue and br taken and
those corresponding to the feedback logic�

The correctness of the feedback logic is captured succinctly in the form of following two lemmas� one
each for the two operands that it reads� If there is a valid instruction in set IF�ID of pipeline registers
and it is not stalled� then the value read in the ID stage by the feedback logic is the same as the value
read from regfile after the three instructions ahead of it are completed� Their proofs are done by using
the strategy above to setup all the rewrite rules� setting up the de�nitions in the lemmas being proved as
rewrite rules� followed by an assert to do the rewrites and simpli�cations� followed by �apply �then


�repeat �lift
if�� �bddsimp� �ground��� to do the case analysis�
The proof strategy for proving all the veri�cation conditions of regfile and dmem is similar � use the

strategy described above to setup the rewrite rules� set up the previously proved veri�cation conditions and
the lemmas about feedback logic as rewrite rules� expand the outermost function on both sides� assert
to do the rewrites and simpli�cations� then do case analysis with �apply �then
 �repeat �lift
if��

�bddsimp� �ground���� Minor di�erences were that some �nished without the need for case analysis �like
VC� r and VC� d� and some needed the outermost function to be expanded on only one of the sides �like
VC� r and VC� d�� VC	 r and VC	 d were slightly more involved in that the various cases introduced by
expanding A step� were considered in the following order � st issue� stall input� br taken � followed
by a similar strategy as described before�

The proofs of the veri�cation conditions for pc were again similar except that we do additional case
analysis after expanding br taken condition� Finally� the proofs of veri�cation conditions for imem were
trivial since the instruction memory does not change�

�



We needed an invariant in this example� that dest ex is zero reg whenever bubble ex is true or
opcode ex is a store or a jump or a branch instruction� Making dest ex equal to zero reg was to ensure
that the regfile was not updated under these conditions� The proof that the invariant is closed under
I step was however trivial�

We make two observations here� The proof of a particular veri�cation condition� say for regfile� may
use the previous veri�cation conditions of all other speci�cation state components� hence these need to be
proved in that order� The particular order in which we did the proof was VC� r� VC� d� VC� r� VC� d�
VC� r� VC� d� the two lemmas for feedback logic� VC� r� VC� d� VC
 r� VC
 d� VC� i� VC� p� VC� p�
VC	 r� VC	 d� VC� p and VC� i� The second observation is that this is the particular decomposition that
we chose� We could have avoided proving� say VC� r� and proved that goal when it arises within� say
VC	 r� if the prover can handle the term sizes�

Finally we prove that the implementation machine eventually goes to a �ushed state if it is stalled
su�ciently long and then check in that �ushed state fs� ABS�fs� � projection�fs�� For this example�
this proof was done by observing that bubble id will be true after two stall transitions �hence no instruction
in set IF�ID of pipeline registers� and that this �no�instruction��ness propagates down the pipeline with
every stall transition�

��� Superscalar DLX processor

The superscalar DLX processor is a dual issue version of the DLX processor� Both the pipelines have similar
structure as Figure � except that the second pipeline only executes alu
immediate and alu instructions�
In addition� there is one instruction bu�er location�

Specifying the completion functions for the various un�nished instructions was similar� A main di�er�
ence was how the completion functions of the un�nished instructions in the sets IF�ID of pipeline registers
and the instruction bu�er �say the instructions are i� j� k and completion functions are C i� C j and
C k respectively� are composed to handle the speculative fetching of instructions� These un�nished in�
structions could be potential branches since the branch instructions are executed in the ID stage of the
�rst pipeline� So while constructing the abstraction function� we compose C j �with C i����rest of the

completion functions in order����� only if instruction i is not a taken branch and then compose C k

only if instruction j is not a taken branch too� We used a similar idea in constructing the synchronization
function too� The speci�cation machine would not execute any new instructions if any of the instructions
i� j� k mentioned above is a taken branch� It is very easy and natural to express these conditions using
completion functions since we are not concerned with when exactly the branches are taken in the imple�
mentation machine� However� if using the pure �ushing approach� even the synchronization function will
have to be much more complicated having to cycle the implementation machine for many cycles �Bur�	
�

Another di�erence between the two processors was the complex issue logic here which could issue zero
to two instructions per cycle� We had eight veri�cation conditions on how di�erent instructions get issued
or stalled�move around� �This again is the particular decomposition that we chose� we can reduce this by
choosing a coarser decomposition�� The complete PVS speci�cation and proofs can be found at �Hos��
�
The proofs of all the veri�cation conditions again used very similar strategies� The synchronization function
had many more cases in this example and the previously proved veri�cation conditions were used many
times over�

��� Hybrid approach to reduce the manual e�ort

In some cases� it is possible to derive the de�nitions of some of the completion functions automatically
from the implementation to reduce the manual e�ort� We illustrate this on the DLX example�

The implementation is provided in the form of a typical transition function giving the �new� value for

�



each state component� Since the implementation modi�es the regfile in the writeback stage� we take
C MEM WB to be new regfile� This is a function of dest wb and result wb� To determine how C EX MEM

updates the register �le� we perform a step of symbolic simulation of the non�observables i�e� replace
dest wb and result wb in above function with their �new�� counterparts� Since the MEM stage updates
dmem� C EX MEM will have another component modifying dmem which we simply take as new dmem� Similarly
we derive C ID EX from C EX MEM through symbolic simulation� For the set IF�ID of pipeline registers� this
gets complicated on two counts � the instruction there could get stalled due to a load interlock and the
forwarding logic that appears in the ID stage� So we let the user specify this function directly� We have
done a complete proof using these completion functions� The details of the proof are similar� An important
di�erence here is that this eliminated the invariant that was needed earlier�

While reducing the manual e�ort� this way of deriving the completion functions from the implementation
has the disadvantage that we are verifying the implementation against itself� This contradicts our view of
these as desired speci�cations and negates our goal of incremental veri�cation� In the example above� a bug
in the writeback stage would go undetected and appear in the completion functions that are being built
up� �In fact� VC� r for regfile is true by the construction of C MEM WB and hence need not be proved � we
believe� we can formalize this under suitable assumptions on the implementation�� All bugs will eventually
be caught however� since the �nal commute diagram uses the �correct� speci�cation provided by the user
instead of being generated from the implementation� To combine the advantages of both� we could use
a hybrid approach where we use explicitly provided and symbolically generated completion functions in
combination� For example� we could derive it for the last stage� specify it for the penultimate stage and
then derive it for the stage before it �from the speci�cation for the penultimate stage� and so on�

� Conclusions

We have presented a systematic approach to modularize and decompose the proof of correctness of pipelined
microprocessors� This relied on the user expressing the cumulative e�ect of �ushing in terms of a set of
completion functions� one per un�nished instruction� This resulted in a natural decomposition of the proof
and allowed the veri�cation to proceed incrementally� While this method increased the manual e�ort on the
part of the user� we found specifying the completion functions and constructing the abstraction function
was quite easy and believe that a typical designer would have an understanding of these� We also believe
that our approach can verify deeper and complex pipelines than is possible with other automated methods�

Our future plan is to see how our approach can be applied� or can be adapted� to verify more complex
pipeline control that use out�of�order completion of instructions� Our initial attempts at verifying such a
processor appear encouraging� The particular processor we are attempting to verify allows out�of�order
completion of instructions but has a complex issue logic that allows such a possibility only if that instruction
does not cause any WAW hazards� The crucial idea here is that we can reorder the completion functions
of the un�nished instructions to match the program order �the order used by the abstraction function�
using this property of the issue logic� Other plans include testing the e�cacy of our approach for verifying
pipelines with data dependent iterative loops and asynchronous memory interface�

Acknowledgements

We would like to thank John Rushby for very useful feedback on the �rst draft of this paper�

References

�BD��
 J� R� Burch and D� L� Dill� Automatic veri�cation of pipelined microprocessor control� In David

��



Dill� editor� Computer�Aided Veri�cation� CAV ���� volume ��� of Lecture Notes in Computer
Science� pages 	����� Stanford� CA� June ����� Springer�Verlag�

�BDL�	
 Clark Barrett� David Dill� and Jeremy Levitt� Validity checking for combinations of theories
with equality� In Srivas and Camilleri �SC�	
� pages ��������

�Bur�	
 J� R� Burch� Techniques for verifying superscalar microprocessors� In Design Automation Con�
ference� DAC ��	� June ���	�

�CRSS��
 D� Cyrluk� S� Rajan� N� Shankar� and M� K� Srivas� E�ective theorem proving for hardware
veri�cation� In Ramayya Kumar and Thomas Kropf� editors� Theorem Provers in Circuit Design

TPCD ����� volume ��� of Lecture Notes in Computer Science� pages �������� Bad Herrenalb�
Germany� September ����� Springer�Verlag�

�Cyr�	
 David Cyrluk� Inverting the abstraction mapping� A methodology for hardware veri�cation� In
Srivas and Camilleri �SC�	
� pages ������	�

�Hos��
 Ravi Hosabettu� PVS speci�cation and proofs of DLX and superscalar DLX examples� �����
Available at http���www�cs�utah�edu��hosabett�pvs�dlx�html�

�HP��
 John L� Hennessy and David A� Patterson� Computer Architecture� A Quantitative Approach�
Morgan Kaufmann� San Mateo� CA� �����

�JDB�

 R� B� Jones� D� L� Dill� and J� R� Burch� E�cient validity checking for processor veri�cation�
In International Conference on Computer Aided Design� ICCAD ��
� ���
�

�PD�	
 Seungjoon Park and David L� Dill� Protocol veri�cation by aggregation of distributed actions� In
Rajeev Alur and Thomas A� Henzinger� editors� Computer�Aided Veri�cation� CAV ��	� volume
���� of Lecture Notes in Computer Science� pages �������� New Brunswick� NJ� July�August
���	� Springer�Verlag�

�SC�	
 Mandayam Srivas and Albert Camilleri� editors� Formal Methods in Computer�Aided Design

FMCAD ��	�� volume ��		 of Lecture Notes in Computer Science� Palo Alto� CA� November
���	� Springer�Verlag�

�SH��
 J� Sawada and W� A� Hunt� Jr� Trace table based approach for pipelined microprocessor ver�
i�cation� In Orna Grumberg� editor� Computer�Aided Veri�cation� CAV ���� volume ��
� of
Lecture Notes in Computer Science� pages �	����
� Haifa� Israel� June ����� Springer�Verlag�

�SM�	
 Mandayam K� Srivas and Steven P� Miller� Applying formal veri�cation to the AAMP
 micro�
processor� A case study in the industrial use of formal methods� Formal Methods in Systems
Design� ������
������ March ���	�

��


