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Abstract

We consider the problem of approximating �xed points of non�smooth con�

tractive functions with using of the absolute error criterion�

In ���� we proved that the upper bound on the number of function evaluations

to compute ��approximations is O�n��ln �
��ln �

��q�ln n		 in the worst case
 where

� � q � � is the contraction factor and n is the dimension of the problem� This

upper bound is achieved by the circumscribed ellipsoid �CE	 algorithm combined

with a dimensional de�ation process�

In this paper we present an inscribed ellipsoid �IE	 algorithm that enjoys

O�n��ln �
� � ln �

��q � ln n		 bound� Therefore the IE algorithm has almost the

same �modulo multiplicative constant	 number of function evaluations as the

�nonconstructive	 centroid method ����� We conjecture that this bound is the

best possible for mildly contractive functions �q � �	 in moderate dimensional

case� A
rmative solution of this conjecture would imply that the IE algorithm

and the centroid algorithms are almost optimal in the worst case� In particular

they are much faster than the simple iteration method
 that requires
l
ln�����
ln���q�

m
function evaluations to solve the problem�

Key words� Fixed points
 inscribed ellipsoid algorithm
 optimal complexity

algorithm�

�This research was partially supported by NSF under the ACERC grant�

�



� Introduction

Fixed point computation has been an intensive research area since ���� when Scarf

��� introduced a simplicial continuation algorithm to approximate �xed points� Several

classes of methods have been invented since then� including homotopy continuation�

simplical and Newton	type methods� Most of these methods solve the problem in the

residual sense� i�e�� compute x such that the magnitude of jf
x� � xj is small� In our

paper we consider the absolute error criterion and the class of contractive functions�

We letBn
�� �� be the unit ball in the n	dimensional real spaceRn and Cn 
 ���� ��n

be the unit cube containing that ball� We consider the class of contractive functions

Fn 
 ff � Bn
�� ��� Bn
�� �� � kf
x�� f
y�k � qkx� yk� �x� y � Bn
�� ��g 
����

where � � q � � is the contractive factor and k � k is the l�	norm� We let

�f
x� 


��
�

f
x� x � Bn
�� ��

f
x�kxk� otherwise�
for f � Fn and x � Rn� 
����

Then we de�ne
�Fn 
 f �f � Rn � Bn
�� ��g 
����

as the extension of the class Fn to functions de�ned on Rn� It turns out that each
�f � �F has the same contraction factor q and �xed point � 
 f
�� as the corresponding

function f � Fn�

We want to compute an approximate solution to the nonlinear equation

x 
 f
x� 
����

for f � Fn� The Banach�s Fixed Point Theorem says that there exists exactly one

solution x� � Bn
�� �� of 
����� For any f � Fn� we want to �nd an �	approximation

x� to x� such that

kx� � x�k � � � �� 
����

The simple iteration 
SI� algorithm given by

xi�� 
 f
xi�� x� 
 � 
����

requires at most

n
�� q� 


�
ln
����

ln
��q�

�

����

�



iterations 
function evaluations� to compute an �	approximation� for any function f �
Fn�

It is known ��� that the e�ciency of the SI algorithm can not be essentially improved

whenever the dimension n � n
�� q�� For n � n
�� q� there exist methods more e�cient

than the SI algorithm� In the univariate case 
n 
 �� we developed a hybrid bisection	

envelope 
BEN� algorithm which is minimizing the number of function evaluations�

This minimal number is

m
�� q� 


�
ln
����

ln

� � q��q�

�
� b
�� q�� 
����

where b
�� q� 
 dlog�
����e is the number of function evaluations in the bisection

algorithm�

In paper ���� we developed a circumscribed ellipsoid 
CE� algorithm� for moderate

dimensional problems 
n not too large� and mildly contractive functions 
q close to ���

The number of function evaluations in the CEA algorithm is

O
n�
ln
�

�
� ln

�

�� q
� lnn�� 
����

in the worst case� This algorithmwas implemented and tested to be muchmore e�cient

than the SI algorithm for small n and q close to �� Therefore� the CE algorithm is very

e�cient for highly nonlinear� nonsmooth functions which are almost non	contracting�

i�e�� for di�cult problems�

In this paper we improve the bound from ����� Namely� we present an inscribed

ellipsoid 
IE� algorithm� and prove that in the worst case the number of function

evaluations is

O
n�
ln
�

�
� ln

�

�� q
� lnn��� 
�����

Therefore� the complexity of the IE algorithm is essentially the same as of the 
noncon	

structive� centroid algorithm ����� We conjecture that this bound is the best possible

in the worst case�

This paper is organized as follows� In section � we present preliminary results from

our previous work ���� ��� and general results of convex analysis� which are needed in

the design and analysis of the IE algorithm� In section � we describe the IE algorithm�

In section �� we present the complexity analysis� list some open problems and formulate

the conjecture that O
n�
ln �
�
� ln �

��q � lnn�� bound is the best possible�

�



� Premilinaries

In the inscribed ellipsoid algorithm presented in this paper� we employ several results

and techniques presented in ��� ��� ��� ���� In particular� a bisection envelope algorithm�

dimensional reduction scheme� volume reduction estimates� a �xed point bounding

lemma and the L�owner	John ellipsoid theorem are utilized in the design and in the

complexity analysis of the algorithm� We brie�y outline these results in the following

sections�

��� A �xed point evelope algorithm

For univariate contractive functions� Sikorski and Wo�zniakowski ���� developed a �xed

point bisection envelope 
BEN� method� This method constructs two envelope func	

tions that interpolate already computed function values� Then� the set of all possible

�xed points of functions that coincide at all evaluation points is given by the interval

of uncertainty �a� b�� where a and b are the �xed points of the envelopes� Given the

initial interval of uncertainty ���� ��� the method iteratively computes functions at the

midpoints of intervals of uncertainty until the length of some interval is at most ���

Then the midpoint of the last interval is an �	approximation to the �xed point�

Algorithm BEN�

Step � Given � � �� Let a� 
 ��� b� 
 �� and i �
 ��

Step � If bi � ai � ��� 
bi � ai��� is an �	approximation to x�� Stop� Otherwise� go

to Step ��

Step � Let

xi�� 
 
bi � ai���� fi�� 
 f
xi����

If fi�� 
 xi��� then xi�� is the �xed point� Stop� If fi�� � xi��� then let

ai�� 
 
fi�� � qxi����
� � q��

bi�� 
 min
bi� 
fi�� � qxi����
�� q���

Otherwise� let

ai�� 
 max
ai� 
fi�� � qxi����
�� q���

bi�� 
 
fi�� � qxi����
� � q���

�



Let i 
 i� �� and go to Step ��

It was shown in ���� that for any � � q � ��� the BEN method requires the

minimal number of function evaluations to compute an �	approximation to the �xed

point of any f � This minimal number m
�� q� � dlog�
����e�
We note that dlog�
����e is the number of function evaluations required by bisection�

Obviously� m
�� q� is much less than n
�� q�� when q is close to ��

��� Dimensional reduction scheme

A dimensional reduction scheme needed in our algorithm was presented in ����� In the

IE Algorithm� a sequence of volume	decreasing interior ellipsoids is constructed� If the

radius of some ellipsoid is less than ���n 
see 
������ then the center of the ellipsoid

is an �	approximation of the �xed point� as guaranteed by Theorem ���� Otherwise�

the ellipsoids become elongated� Once some ellipsoid is so �at that it can be well

approximated by an 
n � ��	dimensional hyperplane� the algorithm switches to this

hyperplane to continue the �xed point approximation in the n� � dimensional space�

The IE algorithm repeats these bounding of �xed points and dimensional reduction

steps in all dimensions except in the one dimensional case in which the BEN algorithm

is used to approximate a one	dimensional �xed point�

Below we brie�y outline a general �owchart of the algorithm with dimensional

reduction scheme from �����

We suppose that 
x�u�Td 
 � is the 
k���	dimensional hyperplane� k 
 n� � � � � ��

that approximates the k	dimensional inscribed ellipsoid� and that Qk is an n � n or	

thogonal matrix in the form�

Qk 


�
�� I�n�k���n�k� �

� �Qk�k

�
	
 �

where �Qk�k is a k � k orthogonal matrix which rotates the vector d onto the �rst

coordinate axis of the k	dimensional space� Then the algorithm with dimensional

reduction scheme can be described by the following general �owchart 
Figure ���

We make the following comments on the �owchart 
Figure ���

	 Step � of the algorithm is realized by the IE algorithm described in Section ��

�



k �
 n� f �n� 
 f � and Q �
 In�n�

while k � � do

begin

�� Find a 
k � ��	dimensional hyperplane


x� u�Td 
 � such that

j
x�k�� � u�Tdj � �n�k���

where x�k�� is the �xed point of f �k�� and

�j �s are termination parameters�

�� Find the matrix Qk as de�ned above� and set�

Q �
 QkQ�

k �
 k � ��

cn�k �
 dTu�

f �k�
x� �
 PkQf
x�QT �

end�

Use the BEN algorithm to �nd cn such that jx���� � cnj � �n�

return QT �c�� � � � � cn�T as an �	approximation of the �xed

point x��

Figure �� General �owchart of the dimensional reduction algorithm�

	 It was shown in ���� that for

�k 

�
p
�� q�

n
� k 
 �� � � � � n � �� 
����

�n 
 ��n 
����

the algorithm computes vector c 
 �c�� � � � � cn�T such that kQTc � x�k � �� i�e��

QTc is an �	approximation to the �xed point x� of f
x��

��� A �xed point bounding lemma

We quote the following fundamental lemma for bounding �xed points ���� ��� ����

Lemma ��� We let f � Fn� and suppose that A 
 Bn
�� �� contains the �xed point

x�� Then for every x � A� we have x� � A � Bn
c� ��� where c 
 x � �
��q� 
f
x� � x�

and � 
 q
��q� kf
x�� xk�

�



From Lemma ���� its proof ����� and the de�nition of �Fn we have the following

corollary�

Corollary ��� We let f be any function in �Fn and A 
 ���� ��n be a polytope that

contains x�� Then� for any x � A�

x� � S 
 fz � A � aT 
z � b� � �g
with a 
 �x� �f
�x� and b 
 
 �f
�x� � q�x��
� � q�� where

�x 


��
�

x if x � Bn
�� ���

x
kxk

otherwise�

Corollary ��� says that a smaller polytope� which is the intersection of A with the

half space aT 
z � b� � �� contains x��

b
x

x*

f(x)
c

γ

A

0 1

S

-1

0

1

Figure �� Polytope from Corollary ����

��� Construction of ��optimal inscribed ellipsoids

We let K be a convex body in Rk� � � k � n� There is a unique inscribed ellipsoid

E� in K with the maximal volume ����� An inscribed ellipsoid E is called �	optimal�

�



where � � 
�� ��� if
Vol
E�

Vol
E��
� ��

We let

	
K� 
 maxfVol
E� � E is an ellipsoid and E 
 Kg�
and let �x be the center of the maximal ellipsoid� For any hyperplane Ha 
 fx �

aT 
x� �x� 
 �g passing through �x� we denote

K� 
 fx � x � K� �aT 
x� �x� � �g

to be two bodies into which this hyperplane subdivides K� The following theorems

from ���� give quantitative estimates of the volume reduction of the maximal inscribed

ellipsoids and the �	optimal inscribed ellipsoids�

Theorem ���

	
K�� � �����	
K��

If we replace the maximal inscribed ellipsoid E� with a �	optimal inscribed ellipsoid

E�
� in Theorem ���� we have

Theorem ���

	
K�� � ��������	
K��

We now suppose that a polytope P given by

P 
 fx � Rk � aTj x � bj� j 
 �� � � � �mg 
����

contains the �xed point x�� We want to �nd a �	optimal ellipsoid inscribed in P �

A k	dimensional ellipsoid centered at z can be represented as an a�ne transforma	

tion of the k	dimensional unit ball

E
X� z� 
 fx 
 Xu� z � kuk � �g�

where X is a positive de�nite matrix� Since



X� z� 
 lnVol
E
X� z�� 
 ln det
X�

�



and ln det
E
X� z�� is a concave function on any convex domain ���� then the problem

of �nding a maximal volume ellipsoid inscribed in the polytope P can be formulated

as the following convex programming problem ����

min � ln det
X�

subject to X 
 XT � �� 
����

E
X� z� 
 P

Several algorithms were proposed for solving 
���� ��� �� ��� Probably the most

e�cient algorithm was given by Khachiyan and Todd ���� They showed that a �	

optimal ellipsoid for the polytope P can be computed in at most

O

�
m��	 ln

�
mW

ln
����



ln

�
k lnW

ln
����


�

����

arithmetic operations� where W is an a priori known ratio of the radii of two Euclidean

balls� the �rst of which is circumscribed about P and the second inscribed in P � They

noted that for the method of inscribed ellipsoids one can assume without essential loss

of generality that � 
 ����� W 
 �k� m 
 O
k lnk��

��� John�s theorem

The following results are utilized in the complexity analysis of the IE algorithm�

Theorem ��� �The L�owner�John ellipsoid���	� For each convex body K in Rk� there

exist a point x and a linear transformation L such that

x� L
Bk
�� ��� 
 K 
 x� kL
Bk
�� ����

The ellipsoid E 
 x� L
Bk
�� ��� is the ellipsoid of maximum volume inscribed in K�

and Ed 
 x � kL
Bk
�� ��� is the homotetic dilatation of the ellipsoid E by the factor

k�

According to the above theorem� the dilatated ellipsoid Ed contains the set K�

A similar theorem holds for the �	optimal ellipsoids� Namely� we have

�



Theorem ��� �see �
� ���	 If E� 
 K is a ��optimal ellipsoid inscribed in a convex

body K 
 Rk� then

K 
 �kE� �

where �kE� is the homotetic dilatation of E� by the constant

�k 

� � �

p
�� �

�
k� 
����

� Inscribed Ellipsoid Algorithm

Now we are in a position to present the inscribed ellipsoid algorithm� In this algorithm�

a set of hyperplanes is constucted to form a polytope that contains the �xed point x��

In each step we �nd a �	optimal ellipsoid inscribed in the polytope� If the radius of the

ellipsoid is less than ���k� then the center of the ellipsoid is an �	approximation of x�� If

the smallest axis of the ellipsoid is so small that the ellipsoid can be well approximated

by a hyperplane� the dimensional reduction scheme is carried out� Otherwise� we �nd

a hyperplane passing through the center of the ellipsoid 
Corollary ���� and decide

which half space contains x�� We modify the polytope by adding this extra constraint�

If the number of hyperplanes exceeds some preset number N
k� for the dimension k�

we dilatate the ellipsoid by the factor �k� Then we construct the smallest box� which

encloses the dilated ellipsoid� by �nding �k hyperplanes pairwisely orthogonal to each

axis of the dilated ellipsoid� By Theorem ���� this box encloses the original polytope

and therefore contains the �xed point x�� Then we restart the algorithm from this box�

The inscribed ellipsoid algorithm can be formulated as follows�

Algorithm IE�

Step � Given constants �� � � 
�� ��� Let P ��� 
 ���� ��n 
Observe that �n linear

constraints uniquely represent P ����� Let k �
 n 
k is the current dimension��

i 
 �� f �n� 
 f � and Q be the n� n identity matrix�

Step � If k 
 �� go to Step �� Otherwise� construct a �	optimal inscribed ellipsoid

Ei in P �i�

Step � 
Termination check� If the radius of Ei is less than ���k� the center of Ei

is an �	approximation of x�� Stop� If the length �k

q
��
Ei� of the smallest

��



semi	axis of the dilataed ellipsoid Ed
i satis�es

�k

q
��
Ei� � �k 
 �

q
� � q��n� 
����

where ��
Ei� is the smallest eigenvalue of the matrix de�ning Ei� then carry

out the dimensional reduction scheme� Let k 
 k � � and go to Step ��

Otherwise� go to Step ��

Step � Evaluate f
x� at the center of Ei to decide which part of the polytope P �i�

contains x�� Find a half space

hi 
 fx � pTi x � aig

such that hi � P �i� contains x� 
See Corollary ����� Add hi to the set of

constaints for P �i� to form P �i����

Step � If i � N
k�� �nd �k hyperplanes

lj � pTj x 
 aj� j 
 �� � � � � �k

that bound P �i���� Let

P ��� 
 fx � Rk � pTj x � aj� j 
 �� � � � � �kg�

Let i 
 � and go to Step �� Otherwise� let i 
 i� � and go to Step ��

Step � Use Algorithm BEN with � 
 ��n to �nd cn� Then QT �c�� � � � � cn� is an �	

approximation to the �xed point x��

Below we clarify Steps � and � of the algorithm�

Termination condition �Step �	

We enter the dimensional reduction stage whenever we have already approximated

one component of the �xed point to within an error of at most �
p
�� q��n� see 
�����

The polytope containing the �xed point is a subset of the dilatated ellipsoid Ei� Then

we know that the distance of the �xed point to the center of Ei as measured along the

smallest axis is at most �k�i�

��



Dilatation of ellipsoids �Step �	

To limit the cost in 
���� we need to control the number of constraints de�ning

P �i� in our algorithm� If the number of hyperplanes exceeds N
k�� we �nd �k new

hyperplanes forming a new polytope box which contains x�� This is accomplished by

the following�

We let E be the �	optimal inscribed ellipsoid from Step ��

E 
 fXu� z � kuk � �g

According to Theorem ���� the ellipsoid

Ed 
 f
�kX�u � z � kuk � �g

contains P �i�� and x� as well� Thus� the new polytope is obtained by bounding Ed by

�k hyperplanes pairwisely orthogonal to the corresponding axis of Ed�

We note that Ed may not be contained in ��� ��k� If we need to compute f
x� for x

outside Bk
�� �� we do use the extension �f
x� of f
x� as de�ned in 
�����

� Complexity analysis

In this section� we give a quantitative estimate of the computational cost of the IE

algorithm� We assume that � 
 ������ and denote

R 
 �������� � ������ 
����

��� Cost of the 	pure
 inscribed ellipsoid algorithm

In this section� we assume that N
k� can be arbitrarily large for each dimension k�

so that the ellipsoid dilatation step does not take place� In this case� we call the IE

algorithm as the �pure� inscribed ellipsoid algorithm�

We let B
z� r� be the k	dimensional ball with radius r centered at z� Then the

volume of B
z� r� is

Vol
B
z� r�� 
 rk�k�

where

�k 


k��

�
� � k
�
�
�

��



and �
�� is the Gamma function� Obviously� from the IE algorithm� we have

E� 
 Bk
�� �� 
 ���� ��k�

Thus� according to Theorem ��� and 
����� after i steps� we have

Vol
Ei� � RiVol
E�� 
 Ri�k� 
����

On the other hand� since the largest ball inscribed in Ei has the radius
q
��
Ei�� we

have

Vol
Ei� �
�q

��
Ei�
�k

�k 
����

Combining 
���� and 
����� we have

�q
��
Ei�

�k
� Ri�

which implies that q
��
Ei� � Ri�k� 
����

From 
���� and Theorem ���� we require that

�k

q
��
Ei� � �k 
 
��n�

q
�� q�� 
����

before the dimensional reduction scheme is carried out� This is satis�ed whenever

�kR
i�k � 
��n�

q
� � q��

Hence� we have

i �
k ln �kn

�
p

��q�

� lnR


 
� lnR���k

�
lnn� ln k � ln

�

�
� 
���� ln

�

�� q

� ln
� � �

p
� � �

�
� 
���� ln

�

� � q

�
� 
����

We denote H and � as

H 
 
� lnR��� � ������ � 
 ln
� � �

p
� � �

�
� ������ 
����

Then� we can take

i 


�
Hk

�
lnn� ln k � ln

�

�
� 
���� ln

�

�� q
� � � ln

�

�
p
� � q

��
� 
����

��



From 
���� and 
����� the total number of steps in dimensions k 
 �� � � � � n is

S �
nX

k
�

�
Hk

�
lnn� ln k � ln

�

�
�

�

�
ln

�

�� q
� � � 
���� ln

�

� � q

�
� �




� H
�
�

�
n
n� �� ln n�

Z n

�

x lnx�dx�

�

�
n
n� �� ln

�

�

�
�

�
n
n� �� ln

�

�� q
�

�

�
n
n� ��� �

�

�
n
n � �� ln

�

� � q

�
� n

� �

�
Hn
n� ��

�
lnn� ln

�

�
�

�

�
ln

�

�� q
� � �

�

�
ln

�

� � q

�

�H
�
�

�
n� lnn� �

�
n� � � ln � � �

�
� n 
����

We let Ck
f� be the cost of one function evaluation and Ck
E�� be the cost of

�nding a �	optimal inscribed ellipsoid� in k dimensional space� respectively� Then� the

total cost of the �pure� inscribed ellipsoid algorithm is

Cost � m
��n� q�C�
f� � S 
Cn
f� � Cn
E��� � 
�����

where m
�� q� is de�ned in 
����� with the assumption

Ck
f� � Cn
f�� Ck
E�� � Cn
E���

for k 
 �� � � � � n� ��

��� Cost of the IE algorithm with 	cycles
�

From 
������ we know that if the cost of function evaluations is moderate� then the

cost of �nding �	optimal inscribed ellipsoids may be a signi�cant part of the total cost�

Formula 
���� implies that the cost of �nding �	optimal inscribed ellipsoids depends on

m� the number of constraints of the convex programming 
����� Since m is increased

by one every time a new constraint is added in Step � of the IE algorithm� then the

Ck
E�� can be very large if N
k� is not bounded�

In this section� we assume that

N
k� 
 Ck ln k� 
�����

where C is a constant independent of k� In this case� the number of the constraints m

in 
���� is

m � �k �N
k� 
 O
k ln k�� 
�����

��



We construct the �	optimal inscribed ellipsoids in cycles of N
k� steps� After

each N
k� steps we dilatate the resulting ellipsoid by the factor �k� and restart the

construction from the box containing the dilatated ellipsoid� Then� from Theorem ����

we conclude that after s cycles of the constructions� we get

Vol
Ed
sN�k��� 
 �k

kR
N�k�Vol
Ed

�s���N�k��

� � � � � �

� �sk
k R

sN�k�Vol
E��


 �sk
k R

sN�k��k 
�����

Then as in 
���� we have

Vol
Ed
sN�k�� �

�q
��
Ed

sN�k��
�k
�k� 
�����

By combining 
������ 
����� and 
������ we get

q
��
Ed

sN�k�� � �s
kR

sN�k��k 
 �s
kR

Cs lnk� 
�����

The de�ation of dimension is carried out when the smallest axis of the ellipsoid Ed
sN�k�

is at most �
p
�� q��n� This is satis�ed whenever

�s
kR

Cs lnk � �
p
�� q�

n
� 
�����

From 
���� and 
������ we have

s � lnn� ln �
�
� 
���� ln �

��q � 
���� ln �
��q


C ln �
R
� �� ln k � �


�����

Hence�

s 

ln �

�
� 
���� ln �

��q � lnn� 
���� ln �
��q


C ln �
R
� �� ln k � �

� p 
�����

for some p � ��� ��� In this case� the total number of steps Sk before the dimensional

reduction is carried out is

Sk 
 sCk ln k



C

C ln �
R
� � � �� ln k

� k
�
ln

�

�
� 
���� ln

�

�� q
� lnn � 
���� ln

�

� � q

�

� pCk lnk 
�����

��



When � is small and q is close to �� the dominant term in 
����� is

k

�
ln

�

�
� 
���� ln

�

�� q
� lnn

�
�

We denote K
C� k� as

K
C� k� 

C

C ln �
R
� � � �� ln k

� 
�����

We need to choose C such that K
C� k� is reasonably small� We note that

K
C� k� � K
C� ��� for k � ��

Figure � shows the relationship of K
C� �� and C� The graph of K
C� �� indicates

that ���� � K
C� �� � ���� for C � ���� ����
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Figure �� Illustration of the dependency of K
C� �� on C�

Total cost of the IE algorithm with 
cycles�

Based on the above analysis� we can give the total cost of the IE algorithm�

From 
���� and 
������ the cost of constructing ellipsoids is

Ck
E�� � O
�
k��	
ln k���	
ln k � ln ln k�

�

� O
�
k��	
ln k�	�	

�
� 
�����

��



Hence� the total cost of the IE algorithm is

Total Cost 
 m
��n� q�C�
f� �
nX

k
�

Sk 
Ck
f� � Ck
E��� 
�����

When � is small and q is close to �� we have

Total Cost � �

ln �

�
ln

�n

�

�
C�
f�

�
�

�
K
C� ��n�

�
ln

�

�
�

�

�
ln

�

�� q
� lnn

�

Cn
f� � Cn
E��� 
�����

��� Conclusions

From the above analysis� we conclude that�

�� If the cost of each function evaluation is much larger than the ellipsoid construc	

tion cost� then the total cost is O
n�
ln �
�
� ln �

��q
� lnn��� i�e�� the IE algorithm

is asymptotically of the same cost as the centroid method �����

�� If Ck
f� is smaller or about the same as Ck
E��� then the total cost depends on

n� �� q as�

O

�

n lnn�	�	
ln

�

�
� 
���� ln

�

� � q
� lnn�

�
�

�� It is an interesting problem to �nd the arithmetic complexity of �nding �	optimal

ellipsoids� The estimate 
���� is the best result known to us at this point�

�� The algorithm described in ��� handles linear constraints� Can this method be

generalized to quadratic constraints 
as needed in our algorithm�� This may

result in faster volume reduction of interior ellipsoids�

�� We conjecture that the bound

O

�
n�
ln

�

�
� ln

�

�� q
� lnn�

�

on the number of function evaluations is optimal to within a multiplicative con	

stant� A�rmative proof of this would imply almost optimality of the centroid

algorithm� We remark that the constant H 
 ����� in the �pure� IE algorithm

is about ��� times larger than the constant H 
 � �
ln���e���

� ���� in the centroid

algorithm�

��
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