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Abstract

We consider the problem of approximating fixed points of non-smooth con-
tractive functions with using of the absolute error criterion.

In [12] we proved that the upper bound on the number of function evaluations
to compute e-approximations is O(n®(In 1+In llfq—l—ln n)) in the worst case, where
0 < ¢ < 1 is the contraction factor and n is the dimension of the problem. This
upper bound is achieved by the circumscribed ellipsoid (CE) algorithm combined
with a dimensional deflation process.

In this paper we present an inscribed ellipsoid (IE) algorithm that enjoys
O(n*(lni +In 117(1 + Inn)) bound. Therefore the IE algorithm has almost the
same (modulo multiplicative constant) number of function evaluations as the
(nonconstructive) centroid method [11]. We conjecture that this bound is the
best possible for mildly contractive functions (¢ &~ 1) in moderate dimensional
case. Affirmative solution of this conjecture would imply that the IE algorithm

and the centroid algorithms are almost optimal in the worst case. In particular

they are much faster than the simple iteration method, that requires “EE%ZH

function evaluations to solve the problem.

Key words: Fixed points, inscribed ellipsoid algorithm, optimal complexity

algorithm.
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1 Introduction

Fixed point computation has been an intensive research area since 1967 when Scarf
[9] introduced a simplicial continuation algorithm to approximate fixed points. Several
classes of methods have been invented since then, including homotopy continuation,
simplical and Newton-type methods. Most of these methods solve the problem in the
residual sense, i.e., compute & such that the magnitude of |f(z) — x| is small. In our
paper we consider the absolute error criterion and the class of contractive functions.
We let B*(0,1) be the unit ball in the n-dimensional real space R* and C" = [—1,1]"

be the unit cube containing that ball. We consider the class of contractive functions

Fo=A{f:B"(0,1) = B"(0,1) = lf(z) = J(W)ll < glle —yll, Yo,y € B"(0,1)} (L.1)

where 0 < g < 1 is the contractive factor and || - || is the {;-norm. We let
_ x x € B™0,1
flz) = /(@) ©.1) for f € F,, and z € R". (1.2)
flz/]|z]])  otherwise,
Then we define
F,={f:R"— B"(0,1)} (1.3)

as the extension of the class F,, to functions defined on R". It turns out that each
f € F has the same contraction factor ¢ and fixed point @ = f(a) as the corresponding
function f € F,.

We want to compute an approximate solution to the nonlinear equation

r = f(x) (1.4)

for f € F,. The Banach’s Fixed Point Theorem says that there exists exactly one
solution «* € B™(0,1) of (1.4). For any f € F,, we want to find an e-approzimation
. to z* such that

|oe —a™|| < e < 1. (1.5)

The simple iteration (SI) algorithm given by
v = fa) w0 =0 (16)

requires at most

B In(1/¢)
e ) = Lnu/qﬂ (L)



iterations (function evaluations) to compute an e-approximation, for any function f €
F,.

It is known [7] that the efficiency of the ST algorithm can not be essentially improved
whenever the dimension n > n(e,q). For n < n(e, ¢) there exist methods more efficient
than the SI algorithm. In the univariate case (n = 1) we developed a hybrid bisection-
envelope (BEN) algorithm which is minimizing the number of function evaluations.

This minimal number is

In(2/¢) -‘
me,q) = | —2E) | e, q), 1.8
0= [t g | <o )
where b(e,q) = [log,(2/e)] is the number of function evaluations in the bisection

algorithm.
In paper [12] we developed a circumscribed ellipsoid (CE) algorithm, for moderate
dimensional problems (n not too large) and mildly contractive functions (¢ close to 1).

The number of function evaluations in the CEA algorithm is

1
l—gq

O(nS(lné + In +1Inn)) (1.9)

in the worst case. This algorithm was implemented and tested to be much more efficient
than the SI algorithm for small n and ¢ close to 1. Therefore, the CE algorithm is very
efficient for highly nonlinear, nonsmooth functions which are almost non-contracting,
i.e., for difficult problems.

In this paper we improve the bound from [12]. Namely, we present an inscribed
ellipsoid (IE) algorithm, and prove that in the worst case the number of function

evaluations is

O(nQ(lné + In +1Inn)). (1.10)

I —q
Therefore, the complexity of the IE algorithm is essentially the same as of the (noncon-
structive) centroid algorithm [11]. We conjecture that this bound is the best possible
in the worst case.

This paper is organized as follows. In section 2 we present preliminary results from
our previous work [11, 12] and general results of convex analysis, which are needed in
the design and analysis of the IE algorithm. In section 3 we describe the IE algorithm.
In section 4, we present the complexity analysis, list some open problems and formulate
the conjecture that O(n*(In é + In ﬁ +1Inn)) bound is the best possible.



2 Premilinaries

In the inscribed ellipsoid algorithm presented in this paper, we employ several results
and techniques presented in [4, 11, 12, 13]. In particular, a bisection envelope algorithm,
dimensional reduction scheme, volume reduction estimates, a fixed point bounding
lemma and the Lowner-John ellipsoid theorem are utilized in the design and in the
complexity analysis of the algorithm. We briefly outline these results in the following

sections.

2.1 A fixed point evelope algorithm

For univariate contractive functions, Sikorski and Wozniakowski [13] developed a fixed
point bisection envelope (BEN) method. This method constructs two envelope func-
tions that interpolate already computed function values. Then, the set of all possible
fixed points of functions that coincide at all evaluation points is given by the interval
of uncertainty [a,b], where a and b are the fixed points of the envelopes. Given the
initial interval of uncertainty [—1, 1], the method iteratively computes functions at the
midpoints of intervals of uncertainty until the length of some interval is at most 2e.

Then the midpoint of the last interval is an e-approximation to the fixed point.

Algorithm BEN:

Step 0 Given e > 0. Let ap = —1, b9 =1, and 7 := 0.

Step 1 If b, — a; < 2e, (b; + «;)/2 is an e-approximation to x*. Stop. Otherwise, go
to Step 2.

Step 2 Let
Tipr = (bi +a5)/2,  fixr = [(2i41).

If fix1 = @441, then ;44 is the fixed point. Stop. If fii1 > @41, then let
aiv1 = (fix1 +qrip)/(1+q),
biyi = min(b, (fix1 — qriy)/(1 —q)).

Otherwise, let
aiy1 = max(a;, (fiy1 —qrig1)/(1 —q)),
biyi = (fix1 +qrip)/(1+q)).
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Let : = ¢+ 1, and go to Step 1.

It was shown in [11] that for any 0 < ¢ < +oo, the BEN method requires the
minimal number of function evaluations to compute an e-approximation to the fixed
point of any f. This minimal number m(e, ¢) < [log,(2/¢)].

We note that [log,(2/¢)] is the number of function evaluations required by bisection.

Obviously, m(e, ¢) is much less than n(e, ¢), when ¢ is close to 1.

2.2 Dimensional reduction scheme

A dimensional reduction scheme needed in our algorithm was presented in [12]. In the
IE Algorithm, a sequence of volume-decreasing interior ellipsoids is constructed. If the
radius of some ellipsoid is less than £/a, (see (2.6)), then the center of the ellipsoid
is an e-approximation of the fixed point, as guaranteed by Theorem 2.4. Otherwise,
the ellipsoids become elongated. Once some ellipsoid is so flat that it can be well
approximated by an (n — 1)-dimensional hyperplane, the algorithm switches to this
hyperplane to continue the fixed point approximation in the n — 1 dimensional space.
The TE algorithm repeats these bounding of fixed points and dimensional reduction
steps in all dimensions except in the one dimensional case in which the BEN algorithm
is used to approximate a one-dimensional fixed point.

Below we briefly outline a general flowchart of the algorithm with dimensional
reduction scheme from [12].

We suppose that (z —u)Td = 0 is the (k — 1)-dimensional hyperplane, k = n, ..., 3,
that approximates the k-dimensional inscribed ellipsoid, and that (), is an n x n or-

thogonal matrix in the form:

Qk = _ )
0 Qkxk

where Quxr is a k x k orthogonal matrix which rotates the vector d onto the first
coordinate axis of the k-dimensional space. Then the algorithm with dimensional

reduction scheme can be described by the following general flowchart (Figure 1).
We make the following comments on the flowchart (Figure 1):

e Step 1 of the algorithm is realized by the IE algorithm described in Section 3.



k:=mn, fl'l = f and Q := I,4;
while £ > 1 do
begin
1. Find a (k — 1)-dimensional hyperplane
(r —u)Td = 0 such that
|($[k]* - U)Td| < Mn—kt1,
where z!¥* is the fixed point of f*, and
n;’s are termination parameters.
2. Find the matrix ¢); as defined above, and set:
Q) = Qi@
k:=k—1;
Cop = d u;

() = PQf(2)Q";

end;
Use the BEN algorithm to find ¢, such that |z — ¢, | < n,.
return Q7 [c;,...,c,]T as an s-approximation of the fixed
point z*.

Figure 1: General flowchart of the dimensional reduction algorithm.

o It was shown in [12] that for

1_ 2
o= YT a1, (2.1)

o= ¢/n (2.2)

the algorithm computes vector ¢ = [cy, ..., ¢,]T such that ||QTc — || < ¢, i.e.,

QTc is an s-approximation to the fixed point z* of f(z).

2.3 A fixed point bounding lemma

We quote the following fundamental lemma for bounding fixed points [10, 11, 12].

Lemma 2.1 We let f € F,, and suppose that A C B™(0,1) contains the fixed point
x*. Then for every x € A, we have z* € AN B"(¢,7v), where ¢ = x + 1_1q2 (flx) —x)
and 3 = 121 7(z) — a].

1—g2




From Lemma 2.1, its proof [12], and the definition of F, we have the following

corollary.

Corollary 2.1 We let f be any function in F, and A C [-1,1]"

contains x*. Then, for any x € A,

et € S={z€A: a'(z—b) <0}

with a = & — f(z) and b= (f(2) + qz)/(1 + q), where
_{ x if v € B*(0,1),

s otherwise.
El

be a polytope that

Corollary 2.1 says that a smaller polytope, which is the intersection of A with the

half space a®(z — b) < 0, contains z*.

-1 0 1

Figure 2: Polytope from Corollary 2.1.

2.4 Construction of y-optimal inscribed ellipsoids

We let K be a convex body in R¥, 2 < k < n. There is a unique inscribed ellipsoid
FE* in K with the maximal volume [14]. An inscribed ellipsoid F is called y-optimal,
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where v € (0, 1], if
Vol(E)
Vol( E*)

>,

We let
p(K) = max{Vol(E) : FE is an ellipsoid and £ C K},

and let & be the center of the maximal ellipsoid. For any hyperplane H, = {z

a(z — z) = 0} passing through z, we denote
Ky={z : 2 € K, £a'(x —z) < 0}

to be two bodies into which this hyperplane subdivides K. The following theorems
from [14] give quantitative estimates of the volume reduction of the maximal inscribed

ellipsoids and the v-optimal inscribed ellipsoids.

Theorem 2.1
p(Ky) <0.843u(K).

If we replace the maximal inscribed ellipsoid £* with a y-optimal inscribed ellipsoid

EZ in Theorem 2.1, we have

Theorem 2.2
(K1) <0.8437 2 u(K).

We now suppose that a polytope P given by

P={cecRt :alz <b, j=1,...,m} (2.3)

J
contains the fixed point z*. We want to find a vy-optimal ellipsoid inscribed in P.

A Ek-dimensional ellipsoid centered at z can be represented as an affine transforma-

tion of the k-dimensional unit ball
B(X,2) = {e = Xut= : [lull <1},
where X is a positive definite matrix. Since

d(X,z) =InVol(E(X,z)) = Indet(X)



and Indet(E(X, z)) is a concave function on any convex domain [2], then the problem
of finding a maximal volume ellipsoid inscribed in the polytope P can be formulated

as the following convex programming problem [8]:
min ~ —In det(X)

subject to X=XT>o, (2.4)
E(X,2)C P

Several algorithms were proposed for solving (2.4) [3, 6, 8]. Probably the most
efficient algorithm was given by Khachiyan and Todd [6]. They showed that a +-
optimal ellipsoid for the polytope P can be computed in at most

0 o ] i ) &

arithmetic operations, where W is an a priori known ratio of the radii of two Euclidean
balls, the first of which is circumscribed about P and the second inscribed in P. They
noted that for the method of inscribed ellipsoids one can assume without essential loss

of generality that v = 0.99, W = 3k, m = O(kInk).

2.5 John’s theorem
The following results are utilized in the complexity analysis of the IE algorithm.

Theorem 2.3 (The Lowner-John ellipsoid[}]). For each convex body K in RF, there

exist a point x and a linear transformation L such that
x4+ L(B*0,1)) € K C x + kL(B*(0,1)).

The ellipsoid £ = x + L(B*(0,1)) is the ellipsoid of mazimum volume inscribed in K,
and E* = v + kL(B*(0,1)) is the homotetic dilatation of the ellipsoid E by the factor
k.

According to the above theorem, the dilatated ellipsoid ¢ contains the set K.

A similar theorem holds for the ~v-optimal ellipsoids. Namely, we have



Theorem 2.4 (see [5, 14]) If E, C K is a y-optimal ellipsoid inscribed in a convex
body K C RF, then
K C OékEW,

where a L), is the homotelic dilatation of E., by the constant

_ 6T,

- (2.6)

O

3 Inscribed Ellipsoid Algorithm

Now we are in a position to present the inscribed ellipsoid algorithm. In this algorithm,
a set of hyperplanes is constucted to form a polytope that contains the fixed point z*.
In each step we find a v-optimal ellipsoid inscribed in the polytope. If the radius of the
ellipsoid is less than &/ay, then the center of the ellipsoid is an e-approximation of z*. If
the smallest axis of the ellipsoid is so small that the ellipsoid can be well approximated
by a hyperplane, the dimensional reduction scheme is carried out. Otherwise, we find
a hyperplane passing through the center of the ellipsoid (Corollary 2.1) and decide
which half space contains *. We modify the polytope by adding this extra constraint.
If the number of hyperplanes exceeds some preset number N(k) for the dimension k,
we dilatate the ellipsoid by the factor ap. Then we construct the smallest box, which
encloses the dilated ellipsoid, by finding 2k hyperplanes pairwisely orthogonal to each
axis of the dilated ellipsoid. By Theorem 2.4, this box encloses the original polytope
and therefore contains the fixed point z*. Then we restart the algorithm from this box.

The inscribed ellipsoid algorithm can be formulated as follows:

Algorithm IE:

Step 0 Given constants &, v € (0,1). Let P = [—1,1]" (Observe that 2n linear
constraints uniquely represent P()). Let k :=n (k is the current dimension),
i =0, f1 = f, and Q be the n x n identity matrix.

Step 1 If £ =1, go to Step 5. Otherwise, construct a vy-optimal inscribed ellipsoid
E; in P

Step 2 (Termination check) If the radius of FE; is less than e/ay, the center of F;
is an e-approximation of x*. Stop; If the length ax\/A1(E;) of the smallest

10



Step 3

Step 4

Step 5

semi-axis of the dilataed ellipsoid E¢ satisfies

apy/ A (E) < e =ey/1 —¢?/n, (3.1)

where A;(F;) is the smallest eigenvalue of the matrix defining F;, then carry
out the dimensional reduction scheme. Let & = k — 1 and go to Step 1.

Otherwise, go to Step 3.

Evaluate f(x) at the center of E; to decide which part of the polytope P

contains x*. Find a half space
hi={x : ple < a4}

such that h; N PO contains z* (See Corollary 2.1). Add h; to the set of

constaints for P to form PO+,

If : > N(k), find 2k hyperplanes
[;: pjT:L' = aj, J=1,...,2k
that bound PU+Y. Let
PO = {re R . pjT:L' < aj, j=1,...,2k}.

Let ¢+ = 0 and go to Step 1. Otherwise, let ¢ = + 1 and go to Step 1.
Use Algorithm BEN with ¢ = ¢/n to find ¢,. Then QT[ecy,...,¢c,] is an &-

approximation to the fixed point z*.

Below we clarify Steps 2 and 4 of the algorithm.

Termination condition (Step 2)

We enter the dimensional reduction stage whenever we have already approximated
one component of the fixed point to within an error of at most e\/1 — ¢?/n, see (2.1).
The polytope containing the fixed point is a subset of the dilatated ellipsoid £;. Then

we know that the distance of the fixed point to the center of E; as measured along the

smallest axis is at most agn;.
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Dilatation of ellipsoids (Step 4)

To limit the cost in (2.5) we need to control the number of constraints defining
PY in our algorithm. If the number of hyperplanes exceeds N(k), we find 2k new
hyperplanes forming a new polytope box which contains z*. This is accomplished by
the following.

We let £ be the v-optimal inscribed ellipsoid from Step 1,

E={Xu+z: |u|| <1}
According to Theorem 2.4, the ellipsoid
Bl = {(@X)u+ = ull <13

contains PY_ and z* as well. Thus, the new polytope is obtained by bounding £¢ by
2k hyperplanes pairwisely orthogonal to the corresponding axis of £7.

We note that £¢ may not be contained in [0, 1]*. If we need to compute f(z) for =
outside B*(0,1) we do use the extension f(x) of f(z) as defined in (1.2).

4 Complexity analysis

In this section, we give a quantitative estimate of the computational cost of the IE

algorithm. We assume that v = 0.999, and denote

R =0.843v7% ~ 0.845, (4.1)

4.1 Cost of the “pure” inscribed ellipsoid algorithm

In this section, we assume that N(k) can be arbitrarily large for each dimension k,
so that the ellipsoid dilatation step does not take place. In this case, we call the IE
algorithm as the “pure” inscribed ellipsoid algorithm.

We let B(z,r) be the k-dimensional ball with radius r centered at z. Then the
volume of B(z,r) is

Vol(B(z,r)) = rkwk,

where

k2
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and I'(+) is the Gamma function. Obviously, from the IE algorithm, we have
Ey = B*0,1) C [-1,1)%,
Thus, according to Theorem 2.2 and (4.1), after ¢ steps, we have
Vol(E;) < R'Vol(Ey) = R'wy. (4.2)

On the other hand, since the largest ball inscribed in F; has the radius (/A1 (F;), we
have

k
Vol(E;) > ( )\I(Ei)) o (4.3)
Combining (4.2) and (4.3), we have

( M(E»)k <R

which implies that
M (E;) < RVE (4.4)

From (2.1) and Theorem 2.4, we require that
apy/AM(E) < n = (e/n)y/1 — ¢2 (4.5)
before the dimensional reduction scheme is carried out. This is satisfied whenever

ap R < (e/n)y/1 — g2

Hence, we have

ol —2E

Z. > ey/1—¢2
- —InR
1
- (—lnR)_lk (lnn +Ink+In—+(1/2)In .
€ —q
1 V1 — 1
n 2EOVETT o) —) (4.6)
gl 144
We denote H and § as
14+ 641 —
H=(—nR)" ~5925, §=ln—V""7 <017 (4.7)
Y

Then, we can take

1 1
1= {Hk (lnn—l—lnk—l—ln——l—(1/2)1n1——|—5—|—1n2 (4.8)
e —q

)|
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From (4.6) and (4.8), the total number of steps in dimensions k =2,...,n is

n

1 1
S < Z [Hk (1nn—|—lnk+lng—|—§ln

k=2

1
1_q—|—5—|—(1/2)1n1+q)—|—1]

IA

1 n 1 1
H <§n(n—|—1)lnn—|—/ (xIna)de + §n(n—|—1)ln—
2 €

1 1 1 1 1
—I—Zn(n—l—l)lnl_q—|—§n(n—|—1)5—|—1n(n—|—1)lnl+q) +n

1 1 1 1
§Hn(n—|—1) (lnn—l—lng—l—§ln1_q

IA

1 1
o+ =1
+ —|—2n1_|_q)

1 1
—|—H(§n21nn—1n2—21n2—|—1)—|—n (4.9)

We let Ci(f) be the cost of one function evaluation and Cy(FE,) be the cost of
finding a v-optimal inscribed ellipsoid, in k& dimensional space, respectively. Then, the

total cost of the “pure” inscribed ellipsoid algorithm is
Cost <m(e/n,q)Ci(f) + S (C.(f) + Cu(E,)), (4.10)
where m(e, g) is defined in (1.8), with the assumption

Ce(f) < Calf),  Ci(Ey) < Cu(Ey).
fork=2,...,n—1.

4.2 Cost of the IE algorithm with “cycles”.

From (4.10), we know that if the cost of function evaluations is moderate, then the
cost of finding v-optimal inscribed ellipsoids may be a significant part of the total cost.
Formula (2.5) implies that the cost of finding y-optimal inscribed ellipsoids depends on
m, the number of constraints of the convex programming (2.4). Since m is increased
by one every time a new constraint is added in Step 3 of the IE algorithm, then the
Cr(E,) can be very large if N(k) is not bounded.

In this section, we assume that
N(k) =CkInk, (4.11)

where (' is a constant independent of k. In this case, the number of the constraints m
in (2.4) is
m <2k + N(k) = O(kInk). (4.12)
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We construct the v-optimal inscribed ellipsoids in cycles of N(k) steps. After
each N(k) steps we dilatate the resulting ellipsoid by the factor oy, and restart the
construction from the box containing the dilatated ellipsoid. Then, from Theorem 2.2,

we conclude that after s cycles of the constructions, we get
VOI(E;lN(k))) = QQRN(MVOl(E(ds_nN(k))
< aF RPNVl (Ey)

= af RNy, (4.13)
Then as in (4.3) we have

d d k
Vol( By i) = (M(Edvy)) wi. (4.14)
By combining (4.11), (4.13) and (4.14), we get

M(Ehy ) < asRENB/E = o2 pOsink, (4.15)

(%)

The deflation of dimension is carried out when the smallest axis of the ellipsoid E;lN(k)

is at most /1 — ¢*/n. This is satisfied whenever
eVl —¢q?

aj REk < (4.16)
n
From (4.7) and (4.16), we have
Inn+Int+(1/2)In -+ + (1/2)1In L+
s> = ({) L (172 tal (4.17)
(Clng —1)Ink -9
Hence,
Inl+(1/2)In-+—+1nn+ (1/2)1ln

s= ¢ (1/2)In 7 (1/2) L (4.18)

(Clng —1)Ink—0
for some p € [0,1). In this case, the total number of steps Si before the dimensional

reduction is carried out is

S, = sCklnk
C 1 1
= ck{In—+(1/2)1 1 1/2)1
Clng—1-06/Ink (n5+(/)n1—q+nn+(/)nl+q)
+ pCklnk (4.19)
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When ¢ is small and ¢ is close to 1, the dominant term in (4.19) is

k(lné—l—(l/Z)lnliq—l—lnn).

We denote K(C, k) as
C

[x((],k):cm%_l_(s/lnk. (4.20)

We need to choose €' such that K(C, k) is reasonably small. We note that
K(C k) < K(C,2), fork > 2.

Figure 3 shows the relationship of K(C,2) and C. The graph of K(C,2) indicates
that 18.2 > K(C,2) > 11.7 for C € [11,15].

501
404
301
K(C, 2)

20t

10+

06 7 8 9 10 11 12 ]é 14 15 16 17 18 19 20

Figure 3: Illustration of the dependency of K(C,2) on C.

Total cost of the IE algorithm with “cycles”

Based on the above analysis, we can give the total cost of the IE algorithm.

From (2.5) and (4.12), the cost of constructing ellipsoids is
Co(Ey) < O (K**(Ink)**(Ink +Inlnk))

O (K*3(Ink)™) (4.21)

%
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Hence, the total cost of the IE algorithm is

Total Cost = m(e/n,q)Ci(f) + Zn: Sk (Ce(f) + Cr(E,)) (4.22)

k=2

When ¢ is small and ¢ is close to 1, we have

1 2
Total Cost = ) <ln ?n) Ci(f)

1 1 1
—K(C, 2 [In—+ =1
—I—QX(C, n (ng—l—in_q

+1n n) (Co(f) + Ca(E,)) (4.23)

4.3 Conclusions

From the above analysis, we conclude that:

1. If the cost of each function evaluation is much larger than the ellipsoid construc-
tion cost, then the total cost is O(n*(In + In ﬁ +1Inn)), i.e., the IE algorithm

is asymptotically of the same cost as the centroid method [11].

2. If Ci(f) is smaller or about the same as Ci(F.,), then the total cost depends on

n, €, q as:

@) ((nlnn)5'5(ln é +(1/2)In 4

Fhun).

3. It is an interesting problem to find the arithmetic complexity of finding y-optimal
ellipsoids. The estimate (2.5) is the best result known to us at this point.

4. The algorithm described in [6] handles linear constraints. Can this method be
generalized to quadratic constraints (as needed in our algorithm)? This may

result in faster volume reduction of interior ellipsoids.

5. We conjecture that the bound

1
l—gq

@) (nz(ln é + In +In n))

on the number of function evaluations is optimal to within a multiplicative con-
stant. Affirmative proof of this would imply almost optimality of the centroid
algorithm. We remark that the constant H = 5.925 in the “pure” IE algorithm
is about 2.7 times larger than the constant H = —m ~ 2.18 in the centroid
algorithm.
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