
Design Alternatives for Shared Memory Multiprocessors �

John B� Carter� Chen�Chi Kuo� Ravindra Kuramkote� Mark Swanson

fretrac� chenchi� kuramkot� swansong�cs�utah�edu
WWW� http���www�cs�utah�edu�projects�avalanche

UUCS�������

Department of Computer Science

University of Utah� Salt Lake City� UT �����

March �	� ����

Abstract

In this paper� we consider the design alternatives available for building the next generation
DSM machine �e�g�� the choice of memory architecture� network technology� and amount
and location of per�node remote data cache�� To investigate this design space� we have
simulated six applications on a wide variety of possible DSM architectures that employ
signi�cantly di�erent caching techniques� We also examine the impact of using a special�
purpose system interconnect designed speci�cally to support low latency DSM operation
versus using a powerful o� the shelf system interconnect� We have found that two ar�
chitectures have the best combination of good average performance and reasonable worst
case performance� CC�NUMA employing a moderate�sized DRAM remote access cache
�RAC� and a hybrid CC�NUMA�S�COMA architecture called AS�COMA or adaptable

S�COMA� Both pure CC�NUMA and pure S�COMA have serious performance problems
for some applications� while CC�NUMA employing an SRAM RAC does not perform as
well as the two architectures that employ larger DRAM caches� The paper concludes with
several recommendations to designers of next�generation DSM machines� complete with
a discussion of the issues that led to each recommendation so that designers can decide
which ones are relevant to them given changes in technology and corporate priorities�

� Introduction

Scalable hardware distributed shared memory �DSM� architectures have become increasingly pop�

ular for high�end compute servers� One of the purported advantages of shared memory multipro�

cessors compared to message passing multiprocessors is that they are easier to program� because

�This work was supported by the Space and Naval Warfare Systems Command �SPAWAR� and Advanced Research
Projects Agency �ARPA�� Communication and Memory Architectures for Scalable Parallel Computing� ARPA order
�B��� under SPAWAR contract �N���������C���	


	



programmers are not forced to track the location of every piece of data that might be needed�

However� naive exploitation of the shared memory abstraction can cause performance problems�

because the performance of DSM multiprocessors is often limited by the amount of time spent

waiting for remote memory accesses to be satis�ed� When the overhead associated with accessing

remote memory impacts performance� programmers are forced to spend signi�cant e�ort managing

data placement� migration� and replication 
 the very problems that shared memory is designed to

hide from programmers� Thus� the value of DSM multiprocessor architectures is directly related to

the extent to which observable remote memory latency can be reduced to an acceptable level�

The two basic approaches for addressing the memory latency problem are building latency�

tolerating features into the microprocessor and reducing the average memory latency� Because of

the growing gap between microprocessor cycle times and main memory latencies� modern micro�

processors incorporate a variety of latency�tolerating features such as �ne�grained multithreading�

lockup free caches� split transaction memory busses� and out�of�order execution �	� 	�� 	
�� These

features reduce the performance bottleneck of both local and remote memory latencies by allow�

ing the processor to perform useful work while memory is being accessed� However� other than

the �ne�grained multithreading support of the Tera machine �	�� which requires a large amount

of parallelism and an expensive and proprietary microprocessor� these techniques can hide only a

fraction of the total memory latency� Therefore� it is important to develop memory architectures

that reduce the overhead of remote memory access�

Remote memory accesses fall into three di�erent categories� �i� cold misses� �ii� coherent misses�

and �iii� con�ict�capacity misses� hereafter referred to simply as con�ict misses� The frequency of

cold and coherent misses depend on application access patterns� the coherency protocol used� and

the initial memory allocation policy� In contrast� the frequency of con�ict misses� a focus of this

paper� depends on the amount of caching available for remote accesses� The remote memory

overhead caused by con�ict misses is governed by two issues� �i� the number of cycles required to

satisfy each remote memory request and �ii� the frequency with which con�ict misses to remote

memory occur� The designers of high�end commercial DSM systems such as the SUN UE	���� �����

SGI Origin ���� �
� and Mercury Interconnect Architecture ���� have put considerable e�ort into

reducing the remote memory latency by developing specialized high speed interconnects� Pursuing

an alternative architecture� the designers of STiNG �	�� included a large DRAM network cache

in the DSM controller to reduce the number of remote accesses� Simple�COMA �SCOMA� ��	�

proponents have espoused using part of the local DRAM memory as remote memory page cache�

Recently researchers have suggested extending SCOMA to adapt to an hybrid architecture that

combines the best properties of both the CC�NUMA and SCOMA memory models ��� 	�� ���

The designers of distributed shared memory systems face a plethora of design choices and

accompanying open questions in balancing the cost of the system and its performance� If one

wants to build a next generation scalable shared memory machine� what design should one choose�

What are the design options� What are the cost�bene�t ratios� Where are the sweet spots�

Does adding a remote access cache �RAC� signi�cantly help� If so� is it better to build a small

but fast SRAM RAC or a larger but slower DRAM RAC� As an alternative to dedicating RAM

�



to a RAC� one might consider using a portion of main memory as an additional local replication

memory� by supporting an S�COMA or hybrid architecture� This last decision changes not only

the cost factors� but also introduces additional operating system overhead� The utility of adding

dedicated replication memory depends on the cost of remote memory accesses that are eliminated�

This� in turn� introduces the question of interconnect price and complexity� Do any or all of these

architectures reduce the frequency of remote accesses enough to allow the use of a less aggressive�

and thus less costly� interconnect�

The goal of this paper is to attempt to answer these questions by analyzing the costs and

bene�ts of the various methodologies on a variety of applications�

We considered �ve candidate architectures for next generation DSM machines� pure CC�

NUMA �	�� 
� ���� CC�NUMA extended to include either a DRAM remote access cache �	�� �remote

access cache� or an SRAM RAC �		� �SRAC�� pure Simple COMA ��	� �S�COMA�� and a hybrid

CC�NUMA�S�COMA architecture ��� 	�� �� we call AS�COMA ��� or adaptable S�COMA� Using de�

tailed execution�driven simulation� we examined these �ve architectures using two interconnects of

signi�cantly di�ering performance characteristics on six applications� In our study� we found that

two architectures have the best combination of good average performance and reasonable worst

case performance� CC�NUMA employing a moderate�sized DRAM remote access cache �RAC� and

a hybrid CC�NUMA�S�COMA architecture called AS�COMA or adaptable S�COMA� This result

indicates that for the programs and network latencies that we considered� providing large remote

data caches is more important than providing fast ones� We found that the performance of ma�

chines incorporating pure S�COMA� pure CC�NUMA� or CC�NUMA extended to include a small

SRAM RAC lag noticeably behind the performance of the above two architectures

When deciding whether to build a CC�NUMA with a DRAC or an AS�COMA� the most impor�

tant consideration is the memory access pattern of what the designer considers typical applications�

If your typical applications have strong spatial locality and working set sizes that allow at least

	�� of main memory to be used as a page cache� AS�COMA is the preferred option� If� however�

your typical applications consume all of main memory or have poor spatial locality� CC�NUMA

with a DRAC is the preferred option�

Finally� we found that the provision of a modest�sized DRAM RAC noticeably improves the

performance of pure CC�NUMA machines� even when the ratio of local to remote access latencies is

as low as ���� This result implies that the designers of the next generation SGI Origin ���� should

seriously consider adding a DRAC to their system� despite the excellent performance of their Spider

interconnect�

The remainder of this paper is organized as follows� In Section � we describe the design of

the di�erent DSM architectures that we compared� We describe our simulation environment� test

applications� and experiments in Section �� We present the results of our detailed simulation

experiments in Section �� and compare our research with related work in Section �� Finally� we

draw conclusions and discuss possible future work in Section ��

�



� Design

In this section� we discuss organization of the DSM machines that we are going evaluate� CC�

NUMA� CC�NUMA extended with RAC� S�COMA and AS�COMA�

��� Directory�based DSM Architectures

All the shared memory architectures that we consider share a common basic design� illustrated in

Figure 	� Individual nodes are composed of a single commodity microprocessor with its own private

processor caches connected to a coherent split�transaction memory bus� Also on the memory bus is

a main memory controller with shared main memory and a distributed shared memory controller

connected to a node interconnect� The aggregate main memory of the machine is distributed across

all nodes� The processor� main memory controller� and DSM controller all snoop the coherent

memory bus� looking for memory transactions to which they must respond�

The internals of the DSM controller are also shown in Figure 	� It consists of a memory bus

snooper� a control unit that manages locally cached shared memory ��cache controller��� a control

unit that retains state associated with shared memory whose �home� is the local main memory

��directory controller��� a network interface� and some local storage� In all the design alternatives

that we explore the local storage contains DRAM which is used to store directory state� The shaded

region which denotes RAC is present only in the two RAC con�gurations� while the page cache

state region is only present in the SCOMA and AS�COMA models�

When a local processor makes an access to shared data that is not satis�ed by its cache� a

memory request is put on the coherent memory bus where it is observed by the DSM controller�

The bus snooper detects that the request was made to shared memory and forward the request

to the DSM cache controller� The DSM cache controller will then take one of the following three

actions� �i� if the data is in main memory �home memory or page cache memory�� a coherency

response is given which allows the main memory controller to satisfy the request� �ii� if using a RAC

model� a lookup is done in the cache in local storage and the memory request is satis�ed on hit�

�iii� Otherwise� the request is forwarded to the appropriate remote node� Once a response has been

received� the DSM cache controller supplies the requested data to the processor� and potentially

also stores it to main memory or RAC�

A remote request for data that is received across the interconnect is forwarded to the directory

controller which tracks the status for each line of shared data for which it is the home node� If

the remote request can be supplied using the contents of local memory� the directory controller

simply responds with the requested data and updates its directory state� If the directory controller

is unable to respond directly� e�g�� because a remote node has a dirty copy of the requested cache

line� it forwards the request to the appropriate node�s� and updates its directory state�

Examples of each of these architectures have been described elsewhere� This paper concentrates

on comparing the various methodologies they use to reduce the remote access overhead due to

con�ict misses� This overhead can be represented as�

�



Processor

Network

Cache

Coherent Bus

DSM 
Controller

Cache
Controller Directory

Controller

Network
Interface

Snooper

S
t
a
g
i
n
g

B
u
f
f
e
r

D
i
r
e
c
t
o
r
y

S
t
a
t
e

Page Cache
State

RAC

Local Storage

Main
Memory

Memory
Controller

Figure � Typical Scalable Shared Memory Architecture

�Rpagecache � Lpagecache� � �Rsrac � Lsrac� � �Rdrac � Ldrac� � �Rrem � Lrem� �KO�

Rpagecache� Rsrac� Rdrac and Rrem represent the number of con�ict misses that were satis�ed

by the page cache� SRAC� DRAC and remote memory� The Lpagecache� Lsrac� Ldrac and Lrem

represent the latency while fetching the line from page cache� SRAC� DRAC and remote memory�

KO represents the software overheads experienced by the S�COMA and AS�COMA models�

The Figure � summarizes the remote memory overhead and where one can invest to reduce it�

The Figure � provides the cost in terms of the storage and complexity for each of the models� These

will be explained in the following sections along with how each model works�

�



Model Remote Overhead Performance Factors

CC�NUMA �Rrem �Lrem� Network speed
CC�NUMA �Rsrac � Lsrac�� ��Network speed
�SRAC� �Rrem �Lrem� �� SRAM size and associativity
CC�NUMA �Rsrac � Lsrac�� �� Network speed
�DRAC� �Rrem �Lrem� �� DRAM size and associativity
SCOMA �Rpagecache � Lpagecache�� �� Network speed

KO �� Software overhead
AS�COMA �Rpagecache � Lpagecache�� �� Network speed

�Rrem �Lrem� �KO �� Software overhead

Figure � Remote Memory Overhead of Various Models

Model Storage Cost Complexity

CC�NUMA None None
SRAC SRAM Controller for SRAM
DRAC DRAM Controller for DRAM
SCOMA Page cache state� ��Page cache state lookup

�� � bits per block �� local � � � remote page map
�� �� bits per page 	� Page�daemon and VM kernel

AS�COMA Page cache state� ��Page cache state controller
�� � bits per block �� local � � � remote page map
�� �� bits per page 	� Page�daemon and VM kernel
Refetch Count� �� Refetch counter
 comparator
� bits per page per node and interrupt generator

Figure � Cost and Complexity of Various Models

��� CC�NUMA

In CC�NUMA� a mapping from a global virtual address to the appropriate global physical address

is created at the �rst page fault to that shared memory page� This mapping is inserted into

the local page table and the TLB� If the home node of the page is not the local node� then the

global physical address will contain that node number� Subsequently� when the local processor

su�ers a cache miss to a line in this shared data page� the DSM controller fetches a copy from

the remote node� incurring a signi�cant access delay�� Applications that su�er a large number of

con�ict misses to remote data perform poorly on CC�NUMAs ���� Unfortunately� these applications

are fairly common �	�� because remotely homed data can be cached only in the relatively small

processor cache�

The con�ict miss cost in the CC�NUMA model is represented by �Rrem�Lrem�� that is� all misses

to shared memory with a remote home must be remote misses� To reduce this overhead� designers

of such systems have to adopt a high speed interconnect to reduce �Lrem�� Such an investment also

reduces the cold and coherent access overhead� helping programs dominated by any of the three

miss types�

�



��� CC�NUMA with RAC

In the RAC model� a non�inclusive� secondary cache for remote data is added to the DSM controller

to help reduce con�ict miss costs by reducing Rrem� The RAC model operates just as CC�NUMA

except that a line that is brought from a remote node is also stored in the RAC� If the line is

con�icted out of the processor cache and then re�referenced� it is supplied from the RAC if it is

still present there� An SRAC is composed of SRAM which can provide short access times but will

be relatively small due to the cost of SRAM� A DRAC is comprised of DRAM� and can thus be

made quite large at reasonable cost� resulting in higher hit rates than a similarly costly SRAC�

The DRAC hit rate will be o�set by the longer access time of DRAM� however� Compared to CC�

NUMA� these models entail additional cost for the SRAM or DRAM and for the cache controller

to manage the RAC�

In the SRAC and DRAC models� the overhead is given by �Rsrac � Lsrac� � �Rrem � Lrem�

and �Rdrac � Ldrac� � �Rrem � Lrem�� respectively� In these models the remote overhead can be

reduced either by increasing the RAC size� which in turn reduces Rrem� or by reducing Lrem or

both� Whether the SRAC outperforms a DRAC depends on the SRAC and DRAC hit ratio and

the SRAM to DRAM speed di�erential�

��� S�COMA

In the S�COMA model� the DSM controller and operating system cooperate to provide access to

remotely homed data� In S�COMA� a mapping from a global virtual address to a local physical

address is created at the �rst page fault to that shared memory page� The page fault handler selects

an available page from the page cache in the local physical memory to use in the mapping� Page

cache state in the DSM controller local storage that maps local physical pages to global physical

pages is updated� as well as the set of valid bits for each S�COMA page� where each bit indicates

whether a particular cache line in the page is valid� If there are no free S�COMA pages when

a page fault occurs� the page fault handler selects an S�COMA page to replace and �ushes the

corresponding cache lines from the local processor cache prior to mapping the new S�COMA page�

When a local processor su�ers a cache miss to remote data� the DSM cache controller examines

the valid bit for the line� If the valid bit is set� the data can be supplied directly from main

memory� thereby avoiding an expensive remote operation� If� however� the requested line is invalid �

the DSM cache controller will perform a remote request to acquire a copy of the requested data�

The returned line is written to the page cache and also supplied to the processor�

S�COMA�s aggressive use of local memory to replicate remote shared data can signi�cantly

reduce Rrem when the memory pressure on a node is low� Memory pressure is the percentage

of machine memory being used to store home pages or strictly local pages� and which are thus

unavailable for use as S�COMA pages� For example� at ��� memory pressure� on average only

�Though non�inclusive� the RAC is not exclusive� Data may be in both the RAC and the processor cache at the same
time� Con�ict in the RAC do not cause invalidations in the processor cache�

�



��� of each node�s pages are available for use in the page cache� Pure S�COMA�s performance

degrades rapidly for some applications as memory pressure increases� All remote data must be

mapped to some local physical page before it can be accessed� so if the number of local physical

pages available for S�COMA page replication is small� there is heavy contention for these pages�

When the number of valid cache lines per S�COMA page is low� increasing memory pressure causes

an S�COMA machine to thrash due to paging before a CC�NUMA machine would thrash due to

cache misses� Given the high cost of page replacement� this can lead to dismal performance�

The S�COMA model requires DRAM in the DSM controller to store page state information ��

Also� there is a slight increase in the complexity of the cache controller since it has to lookup the

valid bit and also has to translate local page addresses to global page addresses and vice�versa�

Finally� S�COMA imposes a software development cost in terms of modi�cation to kernel VM

system and page�out daemon software development�

In the SCOMA model� the con�ict miss cost is represented by �Rpagecache �Lpagecache�� �Rrem �

Lrem� �KO� Up to a certain application�dependent memory pressure threshold� page remapping

does not occur and Rrem is zero� For example� if each node in the system has 	�� pages and the

application requires at each node �� home pages and a maximum of �� pages for replication� Rrem

will be zero until ��� memory pressure� As the memory pressure increases beyond this threshold�

Rrem increases as the pages in the page cache must be remapped� thus losing their e�ectiveness for

satisfying con�ict misses� Even worse� however� is that as memory pressure approaches 	���� page

thrashing causes kernel overhead �KO� to become signi�cant� This overhead includes� context

switch time between application and page�out daemon� �ushing of blocks from victim pages� page

remapping� and additional misses that occur after the remapping�

��� AS�COMA

AS�COMA is a hybrid model that is similar to the S�COMA model� It di�ers from S�COMA by

using the page cache only for hot remote pages� A page is considered hot if it is being accessed

actively and lines within it su�er a lot of con�ict misses� We use mechanisms similar to RNUMA ���

to identify hot pages� The directory controller maintains for each page a count of refetches from a

node� When the count crosses a threshold� the directory controller informs of the hot page number

by interrupting the node� Initially� AS�COMA handles the page faults identically to S�COMA�

Once the number of pages in the page cache reaches a threshold where remapping will start to

occur� the behavior of AS�COMA changes� In this phase� a pageout daemon runs periodically

and goes through a victim eviction process wherein cold � pages in the page cache are selected for

eviction� The valid blocks from each selected page are �ushed from the processor cache and the

page is added to the free page pool� The virtual page corresponding to this victim is then mapped

�
 bits per line is needed to indicate the validity and the state of the line� Assuming a reasonable memory per node�
�� bits per page is needed to store local to remote and remote to local page translation�
�A page in the page cache not being actively used is termed a cold page� This can be determined by accumulating
TLB reference bits�

�



to the global physical page back at the home node� Subsequent cache line misses to such pages are

satis�ed as in CC�NUMA� If enough free pages are available in the page cache� the pageout daemon

remaps hot pages to one of the local page� Before doing that� the daemon will have to �ush out all

the blocks from the the processor cache�

By supporting both CC�NUMA and S�COMA access modes in the same machine� AS�COMA

is able to exploit available local memory as a large RAC for CC�NUMA pages� By tracking refetch

counts� it is able to select dynamically which CC�NUMA pages should populate the S�COMA cache

based on access behavior�

AS�COMA entails all of the implementation costs of S�COMA as well as some additional costs�

First� there is another slight increase in the complexity of the cache controller to maintain the

refetch counts� Second� there is the requirement for storage to maintain the refetch count for each

node and for each page� Finally� there is some additional software complexity in the page�out

daemon to enable it to exploit the refetch counts in its remapping decisions�

AS�COMA�s con�ict miss cost is identical to that of the SCOMA model� up to the memory�

pressure threshold at which page remapping begins in S�COMA� At this point� an e�ective AS�

COMA will track close to �R pagecache � L pagecache�� with only modest increases in Rrem up

to some higher threshold� at which the page cache is no longer large enough to hold the hot pages�

A perfect AS�COMA would simply degrade monotonically to the CC�NUMA cost� Rrem � Lrem��

as a worst case at 	��� memory pressure� Realizable AS�COMA models will fare worse than CC�

NUMA at pressures somewhat less than 	���� due to the extra kernel overhead incurred before

the system stabilizes�

AS�COMA di�ers from the other hybrid approaches in three ways� �i� it chooses cold pages

for eviction from the DRAM page cache using local information� �ii� it uses S�COMA� rather than

CC�NUMA� as the initial allocation policy when possible� and� �iii� it supports a graceful backo�

algorithm to avoid thrashing when the number of free pages available in the memory becomes too

small� This backo� algorithm is particularly important for avoiding excessive page thrashing and

kernel overhead at high memory pressures ����

� Performance Evaluation

��� Experimental Setup

All experiments were performed using an execution�driven simulation of the XXX architecture��

Our simulation environment includes detailed simulation modules for a �rst level cache� system

bus� memory controller� network interconnect� and DSM engine� It provides a multiprogrammed

processor model with support for operating system code� so the e�ects of OS�user code interac�

tions are modeled� The simulation environment includes a kernel based on ���BSD that provides

scheduling� interrupt handling� memory management� and limited system call capabilities� The

�Architecture occluded to maintain anonymity�






modeled physical page size is �KB� The VM system was modi�ed to provide the page translation�

allocation� and replacement support needed by the various distributed shared memory models� We

extended the �rst touch algorithm �	�� to equally distribute home pages to nodes by limiting the

number of home pages that are allocated at each node using �rst touch� Once this limit is reached�

remaining pages are allocated in a round robin fashion to nodes that have not reached the limit�

The modeled processor� DSM engine� and system bus are all clocked at 	��MHZ� All cycle

counts reported herein are with respect to this clock� The characteristics of the L	 cache� RACs�

and network that we modeled are shown in Figure �� In addition� we model a ��bank main memory

controller that can supply data from local memory in �� cycles� The size of the main memory and

the amount of free memory used for page caching was varied from application to application to

test the di�erent models under varying conditions� Given our SRAC and DRAC sizes� the ratio of

SRAC to L	 cache size and DRAC to L	 cache size are 	�� and ��	� respectively� which we believe

is reasonable for real machines�

We used a sequentially�consistent write�invalidate consistency protocol� DSM data is moved in

	���byte ���line� chunks to amortize the cost of remote communication and reduce the memory

overhead of DSM metadata� As part of a remote memory access� the DSM engine writes the

received data back to the RAC or main memory as appropriate� Our CC�NUMA and AS�COMA

models are not �pure�� as we employ a 	���byte cache of the last remote data received as part of

performing a ��line fetch� This minor optimization had a larger impact on performance than we

had anticipated� as is described in the next section�

We modeled two interconnects� a fast network where the remote to local memory access ratio

was ��	 and a slow network where the remote to local memory access ratio was 
�	� The fast

network is intended to model a system with a system interconnect designed speci�cally to support

low latency DSM operations� such as the Spider chip found in the SGI Origin ���� �
�� The slow

network is intended to model a system built using a powerful� but o� the shelf� system interconnect

such as Myrinet ���� These interconnects represent two reasonable design alternatives that could

be selected by a DSM system architect� Note that our network model only accounts for input

contention�

Finally� Figure � shows the minimum latency required to satisfy a load or store from various

locations in the global memory hierarchy� The average latency in our simulation is considerably

Component Characteristics

L� Cache Size� ��kilobytes� 	� byte lines
 direct�mapped
 virtually indexed
 physically tagged

non�blocking
 � up to one outstanding miss
 � write bu
ers
 ��cycle hit latency

RACs ��� byte lines
 direct�mapped
 non�inclusive
 non�blocking
 up to � outstanding miss

Size�Latency� � kilobytes��	 cycles �SRAC� or �� kilobytes��� cycles �DRAC�

Networks � cycle propagation
 �X� switch topology
 port contention �only� modeled
Fall through delay� � cycles �fast � 	��� or ��� cycles �slow � ����

Figure � Cache and Network Characteristics

	�



higher than this minimum because of contention for various resources �bus� memory banks� net�

works� etc�� that we accurately model� simulation�

��� Benchmark Programs

We used six programs from the SPLASH�� benchmark suite ���� in our study� radix� fft� lu�

barnes� cholesky� and ocean� Figure � shows the inputs used for each test program� The column

labeled Home pages indicates the number of shared data pages initially allocated at each node�

These numbers indicate that each node manages from ���MB to �MB of �home� data� with an

average of 	��MB per node over the six applications� We selected a processor cache size of �KB�

an SRAC size of �K� and a DRAC size of ��K to keep the ratio between an average process�s total

working and the amount of caching it has available reasonable compared to real systems�

The Maximum remote pages column presented the maximum number of remote pages that

each are accessed by a node for each application� which gives an indication of the size of the

application�s global working set� Finally� the Ideal pressure column is the memory pressure below

which our S�COMA and AS�COMA machines act like a �perfect� S�COMA� meaning that every

node has enough free memory to cache all remote pages that it will ever access� Below this memory

pressure� S�COMA and AS�COMA never experience a con�ict miss to remote data� nor will they

su�er from kernel or page daemon overhead required to remap pages� Somewhat surprisingly� there

is not a strong correlation between the ideal memory pressure for an application and how e�ciently

it executes on the various memory architectures� In particular� radix and barnes both accessed

a large number of remote pages� yet radix performed quite poorly across the board while barnes

performed quite well�

Due to their small default problem sizes and long execution times� lu and fft were run on just

� nodes� All other applications were run on � nodes�

Finally� Figure � shows the amount of memory required to store S�COMA or AS�COMAs

metadata� S�COMA requires 	�� bits per page� while AS�COMA requires 	�� bits per page for a

� node architecture or 	�� bits per page for � node architecture �from Figure ��� The minimum

overhead represents the amount of metadata needed to manage 	�� of main memory as a page

cache �i�e�� at 
�� memory pressure�� while the maximum overhead represents the amount of

Data Location Latency

L� Cache � cycle
Local Memory �� cycles
SRAC �	 cycles
DRAC �� cycles
Remote Memory �fast network� ��� cycles
Remote Memory �slow network� ��� cycles

Figure � Minimum Access Latency

		



metadata needed at the �ideal� memory pressure where all remote pages ever accessed by a node

can be cached locally� The amount of storage required to store S�COMA�AS�COMA metadata is

an important consideration� since this storage should be signi�cantly smaller than a typical DRAC

size for S�COMA�AS�COMA to make sense economically� Conveniently� it is�

� Results

Figures � and 
 present the relative execution time of our six applications for each of the �ve

memory models using both a slow and a fast interconnect� In addition to raw performance� we

present a breakdown of where each program spent its time� performing user�level operations� stalled

on shared memory shmem� or performing kernel operations� such as page replacement or process

synchronization� All results reported below are for the parallel phase of the applications�

The bars in Figures � and 
 represent pure CC�NUMA� pure S�COMA� CC�NUMA augmented

with an ��kilobyte SRAM RAC �SRAC�� CC�NUMA augmented by ���kilobyte DRAM RAC

�DRAC�� and a hybrid CC�NUMA�S�COMA architecture �AS�COMA�� Each architecture has two

bars� one for each network� For S�COMA and AS�COMA� we simulated a number of memory

pressures between 	�� and 
��� This lets us see how well they perform when a large number of

main memory pages are available for caching remote data �low memory pressure�� and how stable

Program Input parameters Home Pages Maximum Ideal
�per node� Remote Pages Pressure

radix �M Keys
 Radix � ���� ��� �	�� ��
FFT ���K Points
 ��� ��� ��

tuned for cache sizes
LU ����x���� matrix
 ��� ��� ��

��x�� blocks
 contiguous
barnes ��K particles ��� ��� ��
cholesky tk�� input ��� ��� 	�
ocean ���x��� ocean ��	 	�� ��

Figure � Programs and Problem Sizes Used in Experiments

Program S�COMA AS�COMA

radix �	� � �� ��� � ��
fft ��� � �	 ��� � ��
lu ��� � � ��	 � �
barnes ��� � � ��� � ��
cholesky ��� � �� ���� � ��
ocean ��� � � � � �

Figure � Minimum and Maximum Storage Requirements for S�COMA and AS�COMA
Metadata �kilobytes�

	�



they are when the page cache shrinks to almost nothing �high memory pressure�� All results are

scaled relative to the performance of a �pure� CC�NUMA machine with a fast network� a model

similar to the SGI Origin ���� �
��

Figures 	� and 		 illustrates the e�ectiveness of the remote data caches employed by the di�erent

architectures by showing where cache misses to remote shared data are satis�ed� An S�COMA miss

is satis�ed from the local page cache� RAC misses are satis�ed from the local RAC �SRAM or

DRAM�� COLD misses are necessarily satis�ed on a remote home node� Finally� C�C misses

represent con�ict�capacity misses that are not satis�ed by a local RAC or S�COMA page� and thus

result in remote accesses�

Looking at Figures � and 
� we can divide the six applications into roughly three groups� �i�

applications for which the DSM memory architecture mattered very little �ocean and fft�� �ii�

applications that access moderate to high amounts of remote data and exhibit good spatial locality

in these accesses �barnes� lu� and cholesky�� and �iii� applications that access moderate to high

amounts of remote data� but exhibit poor spatial locality in these accesses �radix�� We consider

each category in turn�

Neither ocean nor fft su�er a signi�cant number of con�ict or capacity misses to remote data�

Although the results shown in Figure 		 make it appear that ocean su�ers a high number of

capacity misses for the CC�NUMA architectures� it turns out that using a simple �rst touch page

allocation policy results in almost perfect page placement� Only �� of ocean�s cache misses are

to remote data� so the choice of DSM architecture or interconnect latency is largely irrelevant�

Similarly� fft�s remote data set �ts almost entirely in an ��kilobyte L	 cache� so after the initial

cold misses needed to load the relevant portions of remote memory into cache� fft su�ers very few

capacity or con�ict misses to remote data� Those few misses are almost entirely satis�ed by even

the 	���byte RAC used in the �pure� CC�NUMA architecture� so once again� the choice of memory

architecture is largely moot� In the case of fft� however� a faster network reduces execution time

by approximately ��� For both ocean and fft� the kernel overhead required to swap pages in

S�COMA increases execution time by up to ��� at high memory pressures�

The architectures that are able to cache signi�cant amounts of remote data signi�cantly out�

perform �pure� CC�NUMA on the problems that access moderate to high amounts of remote data

with good spatial locality �barnes� lu� and cholesky�� barnes� in particular� exhibits very high

spatial locality 
 it tends to access large dense regions of remote memory that can make good use

of S�COMA pages� For this reason� AS�COMA executes barnes approximately twice as fast as

pure CC�NUMA and 	�� faster than a CC�NUMA with DRAC when the systems are connected

via a slow interconnect� The reason for this is clear from Figure 	� � AS�COMA is able to convert

the relatively high number of con�ict misses in all of the CC�NUMA variants into local S�COMA

hits� For lu� AS�COMA demonstrates a similar� but less dramatic� performance advantage over the

	�



LU

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

kernel

shmem

user

BARNES
2.972.96

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

kernel

shmem

user

FFT

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

kernel

shmem

user

Figure � Relative Execution Times for barnes� fft and lu

	�



RADIX
11.0210.84

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

kernel
shmem
user

CHOLESKY

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

OCEAN

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
kernel

shmem

user

Figure � Relative Execution Times for ocean� radix� and cholesky

	�



LU

0

5000000

10000000

15000000

20000000

C/C
COLD
RAC
SCOMA

BARNES

0.00E +00

5.00E +06

1.00E +07

1.50E +07

2.00E +07

2.50E +07

3.00E +07

3.50E +07

4.00E +07

C/C
COLD
RAC
SCOMA

FFT

0

50000

100000

150000

200000

250000

300000

350000

400000

C/C
COLD
RAC
SCOMA

Figure �	 Where Cache Misses Were Satis�ed for barnes� fft and lu

	�



CHOLESKY

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

2.50E+06

3.00E+06

3.50E+06

4.00E+06

C/C
COLD
RAC
SCOMA

OCEAN

0.00E+00

3.00E+05

6.00E+05

9.00E+05

1.20E+06

1.50E+06

C/C
COLD
RAC
SCOMA

RADIX

0.00E+00

3.00E+05

6.00E+05

9.00E+05

1.20E+06
1.50E+06

1.80E+06

2.10E+06

2.40E+06

2.70E+06

3.00E+06

C/C
COLD
RAC
SCOMA

Figure �� Where Cache Misses Were Satis�ed for ocean� radix� and cholesky

	�



CC�NUMA variants for the same reason� Finally� cholesky is primarily synchronization�bound�

and thus not dramatically impacted by the choice of DSM architecture��

With a low latency interconnect� all of the architectures perform approximately equally� al�

though CC�NUMAwith a DRAC performs slightly better than the alternatives other than S�COMA

at very memory pressures� With a high latency interconnect� the DRAC�based architecture com�

pletes cholesky in under two�thirds the time of the pure CC�NUMA machine� and ����� faster

than the AS�COMA machine� depending on the memory pressure�

Finally� radix is a DSM architect�s nightmare � it exhibits almost no spatial locality� as every

processor accesses pseudo�random portions of every page of shared data during every iteration of the

sort� This e�ect can be seen in the high remote miss rate experienced by every DSM architecture�

This phenomenon causes pure S�COMA�s performance to tail o� dramatically due to thrashing once

memory pressures exceed 	�� �see Table ��� Even though radix accessed more remote pages than

any other program� as illustrated in Figure �� the ���kilobyte DRAC architecture outperformed

AS�COMA� with its larger but more coarsely allocated DRAM cache� This occurs because radix�s

locality is so poor that the AS�COMA page cache is very poorly utilized � only a small number of

cache lines tend to be active in any given S�COMA page at a time� Thus� in the case of radix� and

similar applications� a large cache managed at a �ne granularity is important�

We draw the following conclusions from the data presented in Figures � through 		�

� Overall� the CC�NUMA with DRAC and AS�COMA architectures have the best combination

of good average performance and reasonable worst case performance� This indicates that for

the programs and network latencies that we considered� providing large remote data caches is

more important than providing fast ones�

� If your typical applications have strong spatial locality and working set sizes that allow at

least 	�� of main memory to be used as a page cache� AS�COMA is the preferred option� If�

however� your typical applications consume all of main memory or have poor spatial locality�

CC�NUMA with a modest�sized DRAC is the preferred option�

� Pure S�COMA su�ers serious performance problems in medium�to�high memory pressure sit�

uations for applications with poor spatial locality� radix being the extreme example� In fact�

in these circumstances� pure S�COMA�s performance is so poor that we recommend that ar�

chitects interested in providing S�COMA�like page caching seriously consider using a hybrid

solution� AS�COMA�s performance was never more than �� worse than the equivalent pure

CC�NUMA machine� even for radix�

� For pure CC�NUMA� providing a fast network improves performance by as much as ���

�e�g��barnes�� but often has negligible impact on performance �e�g�� fft and ocean�� Even

�We inadvertently collected the breakdown of where cholesky spends its time on the complete run� rather than just
the parallel phase� Unfortunately� we discovered this error too late to re�run the necessary simulations in time to
include their results here� Upon acceptance� these numbers will appear in the �nal paper�

	�



with a fast network� the addition of a modest�sized DRAC can improve performance of a CC�

NUMA machine ����� �e�g�� barnes� cholesky� lu� and radix�� This result implies that the

designers of the next generation SGI Origin ���� should seriously consider adding a DRAC to

their system� despite the excellent performance of their Spider interconnect�

� If faced with the decision between spending engineering resources on the development of an

extremely low latency network or a complex and powerful DSM controller� it is interesting to

note that AS�COMA performed almost as well on average with a slow �
�	� network as pure

CC�NUMA did with a fast ���	� network� When coupled with a modest�sized DRAC� however�

CC�NUMA with a fast network was clearly superior to an AS�COMA with a slow network�

Finally� we note that fetching 	�� bytes per remote cache �ll� rather than the minimum ��

bytes required to satisfy a cache miss� removed a surprisingly high number of remote operations

in both the �pure� CC�NUMA and AS�COMA models� This e�ect can be seen via the high

percentage of remote misses satis�ed in the 	���byte RAC employed in these systems� Upon

further investigation� we determined that the e�ect is caused by a combination of factors� First�

we are essentially prefetching three extra cache lines for sequentially accessed data� Second�

we observed frequent con�icts between local and shared data caused by the small size of the L	

cache �� kilobytes�� and the 	���byte RAC allowed a large percentage of the resulting con�ict

misses to be satis�ed locally�

� Related Work

There are a number of past as well as ongoing e�orts in the area of directory based hardware

DSM architectures� This section details these research e�orts� However� we limit our discussion to

systems that used commodity processors and commodity coherent busses�

The Stanford DASH multiprocessor �		� 	��� was one of the �rst systems � to use a directory�

based cache design� DASH supported a CC�NUMA model and had 	��KB of SRAM RAC in its

DSM controller which was able to reduce remote tra�c by ������ The DASH system had a local

access latency of �� cycles and a remote access latency of �	 cycles� giving a remote to local access

ratio of �� The Origin ���� system �
� is similar to the DASH system in many aspects except that it

does not have a RAC� and it uses an extended coherence protocol which is robust to deadlock and

out�of�order delivery of messages� The Origin system uses a very high speed interconnect based

on SGI Spider router chip ���� The Origin ���� has a local memory access time of �	�ns and a

remote memory access time of ���ns for an � node system� The remote to local access ratio is

approximately ���� The use of the high speed interconnect for distributed I�O justi�es some of its

cost� To alleviate the capacity�con�ict misses� the system has support in hardware to aid in page

migration� However� we did not consider its e�ects in our study since page migration to date has

only been successful for read�only or non�shared data� which signi�cantly limits their e�ectiveness�

�The MIT Alewife machine ��� �� was the other contemporary machine to implement directory based shared memory�

	




The STiNG CC�NUMA machine �	�� uses an SCI�based coherent interconnect� The system has a

��way associative ��MB DRAM RAC� The average local access time ranged from �� to ��usec and

the remote time ranged from � to 	�usec� Though the system has some cost�e�ective features such

as cheap network and DRAC� the use of SCI coherent interface and occupancy in the controller�

limit its performance �	���

Simple�COMA �S�COMA� systems ��	� 	�� combine the best of the DVM and the COMA sys�

tems ��� to use DRAM for remote memory replication� When a node accesses a page� an S�COMA

machine allocates pages in local physical memory for replication� as is done by a DVM system�

However� instead of fetching the whole page� the S�COMA DSM controller fetches each individual

block from the home node on a cache miss� The Tempest and Typhoon systems �	�� used a page

cache known as stache to support S�COMA and �ne grain software access control to detect and

fetch invalid blocks in the page as they were accessed�

The S��mp multiprocessor system �	�� was developed with a goal of using a hardware sup�

ported DSM system in a spatially distributed system connected by a local area network� For the

interconnect it used a new CMOS serial link that supported greater than 	Gbit�sec transfer rate�

The S��mp system was one of the �rst systems to support both CC�NUMA and S�COMA models�

However� it did not demonstrate the hardware and software support necessary for a hybrid model�

The Reactive NUMA ��� system is similar to the hybrid model we detailed in this study� The R�

NUMA study showed the usefulness of a hybrid model by showing the improvement in performance

over CC�NUMA and S�COMA for most of the applications with the worst performance penalty

being ���� However� the study did not include the performance of the hybrid model under dif�

ferent memory pressures� especially high pressures� Because of this the study did not research the

back�o� techniques necessary under high memory pressure� The victim�cache�NUMA �VC�NUMA�

system �	�� showed the problems of hybrid models at high memory pressure and suggested using

a victim cache and reducing the number of refetch counts� However� their victim cache solution

requires modi�cations to the processor cache controller and changes in the bus protocol� Their

study had some similarities to our study as they compared against SRAC and DRAC� However�

the VC�NUMA study did not explore varying the network latency�

� Conclusions

In this paper� we have carefully studied the design alternatives available for building the next

generation of scalable shared memory multiprocessors� From a candidate �eld of �ve major DSM

architectures that includes all of the major DSM alternatives currently being proposed �three vari�

eties of CC�NUMA� S�COMA� and a hybrid CC�NUMA�S�COMA architecture�� we have identi�ed

two that appear to hold the most promise� CC�NUMA enhanced with a large DRAM remote access

cache and AS�COMA� a hybrid CC�NUMA�S�COMA architecture�

Extending conventional CC�NUMA designs to include a large DRAM RAC� as is done in the

Sequent STiNG �	��� and employing a fast special�purpose network� as is done in the SGI Origin

���� �
�� would be the conservative approach for extending DSM architectures to the next gen�

��



eration� However� there are strong indications from this work and that of others ��� 	�� that a

hybrid CC�NUMA�S�COMA architecture such as AS�COMA holds at least as much promise as

CC�NUMA with a large DRAC� AS�COMA� and the other hybrid CC�NUMA�S�COMA archi�

tectures� addresses S�COMA�s primary failing� its instability under high memory pressures� The

hybrid architectures all bene�t from S�COMA�s primary strength� the ability to cache remote data

in generic system DRAM� Since AS�COMA caches data in main memory� it is easy to increase the

size of an AS�COMA page cache � the need for high�speed tags and the restricted use of CC�NUMA

RAC memory makes it less likely that this memory can be extended easily� In addition� memory

added to an AS�COMA page cache can be used e�ectively by non�DSM applications� since it is�

after all� just normal system memory�

In addition� we have identi�ed the value of adding a DRAC even to CC�NUMA machines

with very low latency networks� demonstrated the importance of considering hybrid CC�NUMA�S�

COMA architectures to address S�COMA�s inability to handle high memory pressure gracefully�

and suggested a number of ways that DSM designers can tune their architectures�

To continue this work� we plan to explore additional design parameters that should be considered

for the next generation of DSM architectures� such as set�associative RACs and putting processors

on memory chips ����� We also plan to continue to investigate ways to reduce the system software

overhead associated with S�COMA architecture� as this software overhead seems to be the primary

performance limiting factor for these architectures� Finally� we intend to extend both our simulation

environment and set of applications so that we can evaluate a wider variety of design alternatives

used in a larger number of ways�

References

��� R� Alverson
 D� Callahan
 D� Cummings
 B� Koblenz
 A� Porter�eld
 and B� Smith� The Tera computer
system� In Proceedings of the ���� International Conference on Supercomputing
 pages ���
 September
�����

��� N�J� Boden
 D� Cohen
 R�E� Felderman
 A�E� Kulawik
 C�L� Seitz
 J�N� Seizovic
 and W��K� Su� Myrinet
� A gigabit�per�second local�area network� IEEE MICRO
 ���������	�
 February �����

�	� D� Chaiken and A� Agarwal� Software�extended coherent shared memory� Performance and cost� In
Proceedings of the ��st Annual International Symposium on Computer Architecture
 pages 	���	��

April �����

��� D� Chaiken
 J� Kubiatowicz
 and A� Agarwal� LimitLESS directories� A scalable cache coherence
scheme� In Proceedings of the �th Symposium on Architectural Support for Programming Languages and
Operating Systems
 pages �����	�
 April �����

��� B� Falsa� and D�A� Wood� Reactive NUMA� A design for unifying S�COMA and CC�NUMA� In
Proceedings of the ��th Annual International Symposium on Computer Architecture
 pages �������

June �����

��� M� Galles� Scalable pipelined interconnect for distributed endpoint routing� In In Hot Interconnects���

�����

��� E� Hagersten
 A� Landin
 and S� Haridi� DDM � A cache�only memory architecture� IEEE Computer

�������������
 September �����

�	



��� Chen�Chi Kuo
 J� Carter
 R� Kuramkote
 and M� Swanson� As�coma� An adaptive hybrid shared
memory architecture� Technical report
 University of Utah � Computer Science Department
 March
�����

��� J� Laudon and D� Lenoski� The SGI Origin� A ccNUMA highly scalable server� In SIGARCH��
 pages
�������
 June �����

���� D� Lenoski
 J� Laudon
 K� Gharachorloo
 A� Gupta
 and J� Hennessy� The directory�based cache
coherence protocol for the DASH multiprocessor� In Proceedings of the ��th Annual International
Symposium on Computer Architecture
 pages �������
 May �����

���� D� Lenoski
 J� Laudon
 K� Gharachorloo
 W��D� Weber
 A� Gupta
 J� Hennessy
 M� Horowitz
 and M� S�
Lam� The Stanford DASH multiprocessor� IEEE Computer
 ���	���	���
 March �����

���� T� Lovett and R� Clapp� STiNG� A CC�NUMA compute system for the commercial marketplace� In
Proceedings of the ��rd Annual International Symposium on Computer Architecture
 pages 	���	��

May �����

��	� M� Marchetti
 L� Kontothonassis
 R� Bianchini
 and M�L� Scott� Using simple page placement policies
to reduce the code of cache �lls in coherent shared�memory systems� In Proceedings of the Ninth
ACM	IEEE International Parallel Processing Symposium 
IPPS�
 April �����

���� MIPS Technologies Inc� MIPS R����� Microprocessor User�s Manual� Version �
�
 December �����

���� A� Moga and M� Dubois� The e
ectiveness of SRAM network caches in clustered DSMs� In Proceedings
of the Fourth Annual Symposium on High Performance Computer Architecture
 �����

���� A� Nowatzyk
 G� Aybay
 M� Browne
 E� Kelly
 M� Parkin
 B� Radke
 and S� Vishin� The S	�mp
scalable shared memory multiprocessor� In Proceedings of the ���� International Conference on Parallel
Processing
 �����

���� S� E� Perl and R�L� Sites� Studies of Windows NT performance using dynamic execution traces� In
Proceedings of the Second Symposium on Operating System Design and Implementation
 pages �������

October �����

���� S�K� Reinhardt
 J�R� Larus
 and D�A� Wood� Tempest and Typhoon� User�level shared memory� In
Proceedings of the ��st Annual International Symposium on Computer Architecture
 pages 	���		�

April �����

���� V� Santhanam
 E�H� Fornish
 and W��C� Hsu� Data prefetching on the HP PA������ In Proceedings of
the ��th Annual International Symposium on Computer Architecture
 pages ������	
 June �����

���� A� Saulsbury
 F� Pong
 and A� Nowatzyk� Missing the memory wall� The case for processor�memory
integration� In Proceedings of the ��rd Annual International Symposium on Computer Architecture

pages ������
 May �����

���� A� Saulsbury
 T� Wilkinson
 J� Carter
 and A� Landin� An argument for Simple COMA� In Proceedings
of the First Annual Symposium on High Performance Computer Architecture
 pages �������
 January
�����

���� Sun Microsystems� Ultra Enterprise ����� System Overview� http���www�sun�com�servers�datacenter�products�starfire�

��	� W� Weber
 S� Gold
 P� Helland
 T� Shimizu
 T� Wicki
 and W� Wilcke� The mercury interconnect
architecture� A cost�e
ective infrastructure for high�performance servers� In SIGARCH��
 page ���

June �����

���� S�C� Woo
 M� Ohara
 E� Torrie
 J�P� Singh
 and A� Gupta� The SPLASH�� programs� Characterization
and methodological considerations� In Proceedings of the ��nd Annual International Symposium on
Computer Architecture
 pages ���	�
 June �����

��


