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Abstract

We have defined and implemented a new kernel API that
makes every exported operation either fully interruptible
and restartable, thereby appearing atomic to the user. To
achieve interruptibility, all possible states in which a thread
may become blocked for a “long” time are completely rep-
resentable as valid kernel API calls, without needing to re-
tain any kernel internal state.

This API provides important functionality. Since all ker-
nel operations appear atomic, services such as transparent
checkpointing and process migration that need access to
the complete and consistent state of a process can be im-
plemented by ordinary user-mode processes. Atomic op-
erations also enable applications to provide reliability in a
more straightforward manner.

This API also allows novel kernel implementation tech-
niques and evaluation of existing techniques, which we ex-
plore in this paper. Our new kernel’s single source im-
plements either the “process” or the “interrupt” execution
model on both uni- and multiprocessors, depending only
on a configuration option affecting a small amount of code.
Our kernel structure avoids the major complexities of tra-
ditional implementations of the interrupt model, neither re-
quiring ad hoc saving of state, nor limiting the operations
(such as demand-paged memory) that can be handled by
the kernel. Finally, our interrupt model configuration can
support the process model for selected components, with
the attendant flexibility benefits.

We report preliminary measurements comparing fully,
partially and non-preemptible configurations of both pro-
cess and interrupt model implementations. We find that
the interrupt model has a modest speed edge in some
benchmarks, maximum latency varies nearly three orders
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of magnitude, average latency varies by a factor of six, and
memory use favors the interrupt model as expected, but not
by a large amount. We find that the overhead for restarting
the most costly kernel operation ranges from 2–8%.

1 Introduction

This paper attempts to bring to light an important and
useful control-flow property of OS kernel interface seman-
tics that has been neglected in prevailing systems, and to
distinguish this interfaceproperty from the control-flow
properties of an OS kernel implementation. An essential
issue of operating system design and implementation is
when and how one thread can block and relinquish con-
trol to another, and how the state of a thread suspended
by blocking or preemption is represented in the system.
This crucially affects both the kernel interface that repre-
sents these states to user code, and the fundamental inter-
nal organization of the kernel implementation. A central
aspect of this internal structure is the execution model in
which the kernel handles processor traps, hardware inter-
rupts, and system calls. In the process model, which is
used by traditional monolithic kernels such as BSD, Linux,
and Windows NT, each thread of control in the system has
its own kernel stack. In the interrupt model, used by sys-
tems such as V [7], QNX [14], and Aegis [12], the ker-
nel uses only one kernel stack per processor—for typi-
cal uniprocessor kernels, just one kernel stack, period. A
thread in a process-model kernel retains its kernel stack
state when it sleeps, whereas in an interrupt-model kernel
threads must manually save any important kernel state be-
fore sleeping. This saved kernel state is often known as a
continuation[10], since it allows the thread to “continue”
where it left off.

In this paper we draw attention to the distinction be-
tween an interrupt-model kernel implementation, which is
a kernel that uses only one kernel stack per processor by
manually saving implicit kernel state for sleeping threads,
and an “atomic” kernel API, which is an API designed so
that sleeping threads needno such implicit kernel state at
all. These two kernel properties are related but fall on or-
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Figure 1: The kernel implementation and API model continuums.
V was originally a pure interrupt-model kernel but was later modified
to be partly process-model; Mach was a pure process-model kernel later
modified to be partly interrupt-model.

thogonal dimensions, as illustrated in Figure 1. In a purely
atomic API, all possible states in which a thread may sleep
for a noticeable amount of time are cleanly visible and ex-
portable to user mode. For example, the state of a thread
involved in any system call is always well-defined, com-
plete, and immediately available for examination or modi-
fication by other threads; this is true even if the system call
is long-running and consists of many stages. In general,
this means that all system calls and exception handling
mechanisms must be cleanly interruptibleand restartable,
in the same way that the instruction sets of modern proces-
sor architectures are cleanly interruptible and restartable.
For purposes of readability, in the rest of this paper we will
refer to API’s with these properties as “atomic,” as well as
the properties themselves.

We have developed a new kernel called Fluke which ex-
ports a purely atomic API. This API allows the complete
state of any user-mode thread to be examined and modi-
fied by other user-mode threads without being arbitrarily
delayed. In unpublished work that we were not aware of
until very recently, the MIT ITS [11] system implemented
an API with a similar property, some 30 years ago. Sev-
eral other systems came close to providing this property
but still had a few situations in which thread state was
not always extractable. Supporting a purely atomic API
slightly widens the kernel interface due to the need to ex-
port additional state information. However, such an API
provides the atomicity property that gives important ro-
bustness advantages, making it easier to build fault-tolerant
systems [24].1 It also simplifies implementation of a pure

1Some examples of this are (i) This property is similar to “chained
transactions” [Gray93] which allow a single transaction to progress
through intermediate stages while building up state, but is able to roll-
back only to the last stage. Chained transactions are easier to provide than

interrupt-model kernel by eliminating the need to store im-
plicit state in continuations.

In addition, our kernel supports both internal execution
models through a build-time configuration option affect-
ing only a small fraction of the source enabling the first
“apples-to-apples” comparison between them. Our kernel
demonstrates that the two models are not as fundamentally
different as they have been considered to be in the past;
however, they each have strengths and weaknesses. Some
processor architectures have an inherent bias towards the
process model—e.g., a 5–10% kernel entry/exit perfor-
mance difference on the x86. It is also easier to make
process-model kernels fully preemptible. Full preemptibil-
ity comes at a cost, but this cost is associated with pre-
emptibility, not with the process model itself. Process-
model kernels tend to use more per-thread kernel mem-
ory, but this is a problem in practice only if the kernel
is liberal in its use of stack space and thus requires large
kernel stacks, or if the system uses a very large number
of threads. Thus, we show that although an atomic API
is highly beneficial, the kernel’s internal execution model
is less important: the interrupt-based organization has a
slight size advantage, whereas the process-based organiza-
tion has somewhat more flexibility.

Finally, contrary to conventional wisdom, our kernel
demonstrates that it is practical to use legacy process-
model code even within interrupt-model kernels and even
on architectures such as the x86 that make it difficult. The
key is to run the legacy code in user modebut in the ker-
nel’s address space.

Our key contributions in this work are:

� To present a kernel supporting a pure atomic API and
demonstrate the advantages and drawbacks of this ap-
proach.

� To explore the relationship between an “atomic API”
and the kernel’s execution model.

� To present the first “apples-to-apples” comparison be-
tween the two kernel implementationmodels using a
kernel that supports both, revealing that the models
are not as different as commonly believed.

� To show that it is practical to use process-model
legacy code in an interrupt-model kernel, and to
present several techniques for doing so.

nested transactions, but yield significant benefits. (ii) It is well known
that providing atomicity at lower layers allows higher layers to be written
more simply. (iii) ITS exploited an atomic API for a number of prop-
erties; it particularly made it easy to write user-mode schedulers, as one
could set the state of a thread at any time. [4, 3] (iv) Large telecomm ap-
plications use an “auditor,” a daemon that periodically wakes up and test
each of the critical data structures in the system to see if it does not vio-
late some assertions. For critical OS’es one could think of applying the
same concept to the kernel. (v) One could both debug and detect deadlock
conditions in threads that dive into the kernel, using this property.
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The rest of the paper is organized as follows. In Sec-
tion 2 we look at other systems that have used the inter-
rupt model and have explored the relationships between
the interrupt and process model. In Section 3 we define the
two models more precisely, and examine the implementa-
tion issues in each, looking at the strengths and weaknesses
each model brings to a kernel. The atomic API introduced
in the previous section is detailed in Section 4. In the 5th
section, we present five issues of importance to the execu-
tion model of a kernel, with measurements based on dif-
ferent configurations of the same kernel. The final section
summarizes our analysis.

2 Related Work
2.1 Interruptibility and Restartability

The clean interruptibility and restartability of instruc-
tions is now recognized as a vital property of all modern
processor architectures. However, this has not always been
the case; as Hennessy and Patterson state:

This last requirement is so difficult that comput-
ers are awarded the title restartableif they pass
that test. That supercomputers and many early
microprocessors do not earn that badge of honor
illustrates both the difficulty of interrupts and the
potential cost in hardware complexity and execu-
tion speed. [13]

Since the system calls and other services provided by an
operating system appear to user-mode code essentially as
an extension of the processor architecture, the OS clearly
faces a similar challenge. However, to this point operat-
ing systems have rarely met this challenge nearly as thor-
oughly as processor architectures have: in fact, we have
found only one system prior to our own that provides a
fully interruptible and restartable API—a system over 30
years old.

For example, the Unix API[28, 15] distinguishes be-
tween “short” and “long” operations. “Short” operations
such as disk reads are made non-interruptible on the as-
sumption that they will complete quickly enough that the
delay will not be noticeable to the application, whereas
“long” operations are interruptible but, if interrupted, must
be restarted manually by the application. This distinction
is arbitrary and has historically been the source of numer-
ous practical problems. The case of disk reads from an
NFS server that has gone down is a well-known instance
of this problem: the arbitrarily long delays caused by the
network makes it no longer appropriate to treat the read op-
eration as “short,” but on the other hand these operations
cannot simply be changed to “long” and made interrupt-
ible because existing applications are not written with the
expectation of having to restart file reads.

The Mach API[1] implements I/O operations using IPC;
each operation is divided into an RPC-style request and re-

ply stage, and the API is designed so that the operation can
be cleanly interrupted after the request has been sent but
before the reply has been received. This design reduces
but does not eliminate the number of situations in which
threads can get stuck in states that aren’t cleanly interrupt-
ible and restartable. For example, a common remaining
case is when a page fault occurs while the kernel is copying
the IPC message into or out of the user’s address space; the
IPC operation cannot be cleanly interrupted and restarted
at this point, but handling the page fault may involve ar-
bitrary delays due to communication with other user-mode
servers or even across a network. KeyKOS[5] comes very
close to solving this problem by limiting all IPC opera-
tions to transfer at most one page of data and performing
this data transfer atomically; however, in certain corner-
case situations it gains promptness by sacrificing correct-
ness.2 Amoeba[21] allows one user-mode process (or clus-
ter in Amoeba terminology) to “freeze” another process
for debugging purposes, but processes cannot be frozen in
certain situations such as while waiting for an acknowl-
edgement from another network node. V[7, 26] allows one
process to examine and modify the state of another, but
the retrieved state is incomplete, and state modification is
only allowed if the target process is awaiting an IPC reply
from the modifying process. The V kernel also contains
special support for process migration and checkpointing,
which allow the complete state of a process to be saved
and reconstructed; however, this state is not made directly
available to application code.

The Incompatible Time Sharing (ITS) operating sys-
tem [11], developed in the 1960s and 1970s at MIT for the
DEC PDP-6 and PDP-10 computers, did allow all system
calls to be cleanly interrupted and restarted, representing
all aspects of a suspended computation in the contents of
a thread’s user-mode registers. In fact, this property was a
central principle of the system’s design and substantial ef-
fort was made in the implementation to achieve it. We re-
cently learned of an unpublished memo [3] that describes
the design and implementation in detail, but no formally
published work has previously identified the benefits of an
atomic API and explored the implementation issues. The
failure of later systems to learn from the experience of this
pioneering system is an oversight we hope to rectify.

2.2 Kernel Execution Models
Many existing kernels have been built using either the

interrupt or the process model internally: for example,
most Unix systems use the process model exclusively,
whereas QNX [14] and Aegis [12] use the interrupt model

2If the client’s data buffer into which an IPC reply is to be received
is paged out by a user-mode memory manager at the time the reply is
made, the kernel simply discards the reply message rather than allowing
the operation to be delayed arbitrarily long by a potentially uncooperative
user-mode pager. This usually was not a problem in practice because most
paging in the system is handled by the kernel, which is trusted to service
paging requests promptly.
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exclusively. Other systems such as Taos [20, 23] were de-
signed with a hybrid model where threads often give up
their kernel stacks in particular situations but can retain
them as needed to simplify the kernel’s implementation.
Minix [25] used kernel threads to run process-model ker-
nel activities such as device driver code, even though the
kernel “core” used the interrupt model. The V kernel [7]
was originally organized around a pure interrupt model,
but was later adapted by Carter [6] to allow multiple kernel
stacks while handling page faults. The Mach 3.0 kernel [1]
was taken in the opposite direction: it was originally cre-
ated in the process model, but Draves [9, 10] later adapted
it to use a partial interrupt model by adding continuations
in key locations in the kernel and by introducing a “stack
handoff” mechanism. However, they did not eliminate all
kernel stacks for suspended threads. Draves et al also iden-
tified the optimization of continuation recognition, which
exploits explicit continuations to recognize the computa-
tion a suspended thread will perform when resumed, and
do part or all of that work by mutating the thread’s state
without transferring control to the suspended thread’s con-
text. But since this information is not explicit in the user-
mode thread state, there is no way for user code to take ad-
vantage of these same optimization techniques in threads
examining and coordinating with each other.

The ITS [3] system used the process model of execu-
tion, each thread always having a private kernel stack that
the kernel switched to and from for normal blocking and
preemption. However, the system guaranteed that—when
necessary—a thread’s state could always be precisely rep-
resented by some state of its user-mode registers and a
small set of per-thread OS state variables (called “user
variables”), whose values had well-defined meanings (such
that user code could in fact store a “mid-operation” value
at any time, and know what results to expect from “restart-
ing” a complex operation whose earlier stages might not
in fact ever have happened). When a thread’s exact state
needed to be recorded, either because another thread ex-
plicitly asked to examine the state, or because the thread
incurred a page fault or other exception whose handler
must able to inspect and/or restart the faulting operation,
any system call in progress would be either promptly fin-
ished or backed out to a clean state, updating the regis-
ters and user (thread) variables to reflect the progress of
the kernel operation. The implementations of system calls
were required to register cleanup handlers before calling
any potentially-blocking kernel primitive; thereafter, the
system call might be interrupted and its context discarded
entirely except for running the cleanup handlers. The PC
and registers remained at their system call entry state, re-
quiring the system call code or its cleanup handlers to up-
date the PC, registers, and user variables explicitly to re-
flect partial completion of the operation. The implementa-
tion burden of these requirements was eased by the policy
that each user memory page touched by system call code

was locked in core until the system call completed or was
cleaned up and discarded.

We are not aware of any previous kernel that simulta-
neously supported both the “pure” interrupt model and the
“pure” process model through configuration options.

3 The Interrupt and Process Models

An essential feature of operating systems is managing
many computations, or threads of control, on a smaller
number of processors (often just one). When a thread is
suspended either because it blocks awaiting some event
or is preempted when the scheduler policy chooses an-
other thread to run, the system must record the suspended
thread’s state so that it can continue operation later. The
way an OS kernel represents the state of suspended threads
is a fundamental aspect of its internal structure.

In the “process model,” each thread of control in the
system has its own kernel stack. When a thread makes a
system call or is interrupted, the processor switches to the
thread’s assigned kernel stack and executes an appropriate
handler in the kernel’s address space. This handler may
at times cause the thread to go to sleep waiting for some
event, such as the completion of an I/O request; at these
times the kernel may switch to a different thread having its
own separate kernel stack state, and then switch back later
when the first thread’s wait condition is satisfied. The im-
portant point is that each thread retains its kernel stack state
even while it is sleeping, and therefore has an implicit “ex-
ecution context” describing what operation it is currently
performing. Threads may even hold kernel resources, such
as locks or allocated memory regions, as part of this im-
plicit state they retain while sleeping.

An “interrupt-model” kernel, on the other hand, uses
only one kernel stack per processor—for typical unipro-
cessor kernels, just one kernel stack, period. This stack
only holds state related to the currently runningthread; no
state is stored for sleeping threads other than the state ex-
plicitly encoded in its thread control block or equivalent
kernel data structure. Context switching from one thread
to another involves “unwinding” the kernel stack to the be-
ginning and starting over with an empty stack to service the
new thread. In practice, putting a thread to sleep often in-
volves explicitly saving state relating to the thread’s opera-
tion, such as information about the progress it has made in
an I/O operation, in a continuationstructure. This contin-
uation information allows the thread to “continue” where
it left off once it is again awakened. By saving the re-
quired portions of the thread’s state, it essentially performs
the function of the per-thread kernel stack in the process
model.
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3.1 Kernel Structure vs. Kernel API
The internal thread handling model employed by the

kernel is not the only factor in choosing a kernel design.
There tends to be a strong correlation between the ker-
nel’s execution model and the kinds of operations pre-
sented by the kernel to application code in the kernel’s
API. Interrupt-model kernels tend to export short, sim-
ple, atomic operations that don’t require large, complicated
continuations to be saved to keep track of a long running
operation’s kernel state. Process-model kernels tend to ex-
port longer operations with more stages because they are
easy to implement given a separate per-thread stack and
they allow the kernel to get more work done in one sys-
tem call. There are exceptions, however; in particular, ITS
used one (small, 40 word) [4] stack per thread despite its
provision of an atomic API.

Thus, in addition to the execution model of the kernel it-
self, a distinction can be drawn between an “atomic API,”
in which kernel operations are designed to be short and
simple so that the state associated with long-running activi-
ties can be maintained mostly by the application process it-
self, and a “conventional API,” in which operations tend to
be longer and more complex and their state is maintained
by the kernel invisibly to the application. This stylistic dif-
ference between kernel API designs is comparable to the
“CISC versus RISC” debates in the area of processor ar-
chitecture design. However, although there is an obvious
relationship between a kernel’s internal execution model
and its exported API, the exact nature of this relationship
has to this point not been well understood.

Fluke, a new microkernel we have designed and im-
plemented, exports a fully interruptible and restartable
(“atomic”) API, in which there are no implicit thread
states relevant to, but not visible and exportable to appli-
cation code. Furthermore, its implementationcan be con-
figured to use either execution model in its pure form (i.e.,
either exactly one stack per processor or exactly one stack
per thread); to our knowledge it is the first kernel to do
so. In fact, it is Fluke’s atomic API that makes it relatively
painless for the kernel to run using either organization: the
difference in the kernel code for the two models amounts
to only about two hundred assembly language instructions
in the system call entry and exit code, and about fifty lines
of C in the context switching, exception frame layout, and
thread startup code. Notably, this difference is due almost
exclusively to dealing with the stacks. The configuration
option to select between the two models has no impact on
the functionality of the API. The API and implementation
model properties of the Fluke kernel and their relationships
are discussed in detail in the following sections.

4 Properties of an Atomic API
As mentioned above, the Fluke API is an atomic API, in

which all possible thread states relevant to application code

are well-defined in the API and are exported to the appli-
cation. Such an API provides several important and desir-
able properties, including promptand correctexportability
of thread state, and full interruptibility and restartability
of system calls and other kernel operations. To illustrate
these basic properties, we will contrast the Fluke API with
the more conventional APIs of kernels such as Mach and
Unix.

4.1 State Exportability

In the Fluke API, any thread can extract, examine, and
modify the state of any other thread, assuming that appro-
priate permission checks are satisfied. The Fluke API re-
quires the kernel to ensure that one thread always be able to
manipulate the state of another thread in this way without
being held up indefinitely as a result of the target thread’s
activities or its interactions with other threads in the sys-
tem. Such state manipulation operations can be delayed in
some cases, but only by activities internal to the kernel that
do not depend on the promptness of other untrusted appli-
cation threads; this is the API’s promptnessrequirement.
For example, if a thread is performing an RPC to a server
and is waiting for the server’s reply, its state must still be
promptly accessible to other threads without delaying the
operation until the reply is received.

In addition, the Fluke API requires that, if the state of
an application thread is extracted at an arbitrary time by
another application thread, and then the target thread is de-
stroyed, re-created from scratch, and reinitialized with the
previously extracted state, the new thread must behave in-
distinguishably from the original, as if it had never been
touched in the first place. This is the API’s correctness
requirement.

Fulfilling one or the other of these requirements is fairly
easy for a kernel to do, but strictly satisfying both is much
more difficult. For example, if promptness is not a require-
ment, and the target thread is blocked in a system call,
then thread manipulation operations on that target can sim-
ply be delayed until the system call is completed. This is
the approach generally taken by debugging interfaces such
as Unix’s ptrace and /proc facilities [28], for which
promptness is not a primary concern—e.g., if users are un-
able to stop and debug a thread because it is involved in
a non-interruptible NFS read, they will either just wait for
the read to complete or do something to cause it to com-
plete sooner, such as rebooting the server.

Similarly, if correctness is not an absolute requirement,
then if one thread tries to extract the state of another at an
inconvenient time, the kernel can simply return the thread’s
“last known” state in hopes that it will be “good enough.”
This is the approach taken by the Mach 3.0 API, which
provides a thread abort to forcibly break a thread out
of a system call in order to make its state accessible; this
operation is guaranteed to be prompt, but in some cases
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may affect the state of the target thread so that it will not
behave properly if it is ever resumed. OSF later added a
thread abort safely operation [22] which provides
correctness, but at the expense of promptness.

Prompt and correct state exportability are required to
varying degrees in different situations. For debugging,
correctness is critical since the debugger must be able to
perform its function without affecting the state of the tar-
get thread, but promptness is not as vital since the debug-
ger and target process are under the user’s direct control.
For conservative garbage collectors which must check an
application thread’s stack and registers for pointers, cor-
rectness is not critical as long as the “last-known” regis-
ter state of the target thread is available. Promptness, on
the other hand, is important because without it the garbage
collector could be blocked for an arbitrary length of time,
causing resource shortages for other threads, or even dead-
lock. User-level checkpointing, process migration, dump-
ing, and similar services clearly require correctness, since
without it the state of re-created threads may be invalid;
promptness is also highly desirable and possibly critical if
the risk of being unable to checkpoint or migrate an appli-
cation for arbitrarily long periods of time is unacceptable.
Most programmers have probably encountered promptness
or correctness problems in some form on all mainstream
operating systems: e.g., the inability to interrupt a net-
working application under Windows 95, or the occasional
situation under Unix where stopping and restarting a pro-
cess causes it to fail.

4.2 Atomicity and Interruptibility
One natural implication of the Fluke API’s prompt-

ness and correctness requirements for thread control is
that all system calls a thread may make must either be
completely atomic, or must be cleanly divisible into user-
visible atomic stages.

An atomic system call is one that always completes
“instantaneously” as far as user code is concerned. If a
thread’s state is extracted by another thread while the tar-
get thread is engaged in an atomic system call, the kernel
will either allow the system call to complete, or will trans-
parently abort the system call and roll the target thread
back to its original state just before the system call was
started. (This contrasts with the Unix and Mach APIs, for
example, where user code is responsible for restarting in-
terrupted system calls. In Mach, the restart code is part
of the Mach library that normally wraps kernel calls; but
there are intermediate states in which system calls cannot
be interrupted and restarted, as discussed below.) Because
of the promptness requirement, the kernel can only allow
a system call to complete if the target thread is notwaiting
for any event produced by some other user-level activity;
the system call must be currently running (i.e., on another
processor) or it must be waiting on some kernel-internal
condition that is guaranteed to be satisfied “soon” without

any user-mode involvement. For example, a short, simple
operation such as Fluke’s equivalent of getpid() will
always be allowed to run to completion; whereas sleeping
operations such as mutex lock() are interrupted and
rolled back.

While many Fluke system calls can easily be made
atomic in this way, others fundamentally require the pres-
ence of intermediate states. For example, there is an IPC
system call that a thread can use to send a request mes-
sage and then wait for a reply. Another thread may attempt
to access the thread’s state after the request has been sent
but before the reply is received; if this happens, the request
clearly cannot be “un-sent” because it has probably already
been seen by the server; however, the kernel can’t wait for
the reply either since the server may take arbitrarily long
to reply (and may even never reply). Mach addressed this
scenario by allowing an IPC operation to be interrupted
between the send (request) and receive (reply) operations,
later restarting the receive operation from user mode.

A subtler problem is that page faults may occur while
transferring IPC messages. Since Fluke IPC doesn’t ar-
bitrarily limit the size of IPC messages, faulting IPC op-
erations can’t simply be rolled back to the beginning;
however, since page faults may be handled by user-mode
servers, the kernel cannot hold off all accesses to the fault-
ing thread’s state either. In Mach, a page fault mid-transfer
in either the sender or the receiver can cause IPC system
calls to block for arbitrarily long periods, until the fault is
satisfied. Fluke’s atomic API allows the kernel to update
system call parameters in place in the user-mode registers
to reflect the data transferred prior to the fault. While wait-
ing for the fault to be satisfied, both threads are left in well-
defined states of having transferred some data and about to
restart the IPC to transfer more. The API for Fluke calls is
directly analogous to the interface of machine instructions
that operate on large ranges of memory, such as the block-
move and string instructions on machines such as the x86.
The buffer addresses and sizes used by these instructions
are stored in registers, and the instructions advance the val-
ues in these registers as they work. When the processor
takes an interrupt or page fault during a string instruction,
the parameter registers in the interrupted processor state
have been updated to indicate the memory about to be op-
erated on, and the PC remains at the faulting string instruc-
tion. When the fault is resolved, simply jumping to that PC
with that register state resumes the string operation in the
exact spot it left off.

4.3 Multi-Stage System Calls
The Fluke API handles this problem by breaking long

operations such as these into small, atomic stages. En-
try to each can be completely represented in the thread’s
user-mode register state. As an example of how this can
be done, consider the Unix read() system call. If a
page fault or other interruption occurs part way through
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Type Examples Count Percent

Trivial thread self 8 7%
Short mutex trylock 68 64%
Long mutex lock 8 7%
Multi-stage cond wait, IPC 23 22%

Total 107 100%

Table 1: Breakdown of the number and types of system calls in the
Fluke API. “Trivial” system calls are those that always run to comple-
tion without putting the thread to sleep (thread self() is analogous
to Unix’s getpid()). “Short” system calls usually run to completion
immediately, but may encounter page faults or other exceptions during
processing which causes them to roll back the thread’s state. “Long” sys-
tem calls are those that can be expected to sleep for an extended period of
time. “Multi-stage” system calls are those that can sleep indefinitely and
can be interrupted at various intermediate points in the operation.

a read(), the kernel could adjust the buffer and size pa-
rameters on the user’s stack according to the amount of
data still to be read, changing the user’s instruction pointer
so that it once again points to the read() system call.
When the interrupted thread eventually starts executing
again, it will automatically restart the system call to read
the remainder of the data. Although Unix kernels don’t
do this3, this example illustrates how system calls canbe
made atomic.

This is exactly what is done in the Fluke API. Table 1
shows a breakdown of the number and types of system
calls in the API. For example, cond wait(), which
works as in POSIX pthreads [16], must reacquire the
condition variable’s associated mutex after waiting on the
condition (successfully or not). Fluke does this by chang-
ing the thread state to point to the mutex lock() sys-
tem call entrypoint; thus, mutex lock() is the second
“stage” of cond wait().

Except for region search, which can be passed an
arbitrarily large region of memory in which to locate ker-
nel objects, all of the other multi-stage calls in the Fluke
API are IPC-related. Most of these calls simply represent
different options and combinations of the basic send and
receive primitives. Although all of these entrypoints could
easily be rolled into one, as is often done in other systems
such as Mach, the Fluke API’s design gives preference to
exporting several simple, narrow entrypoints with few pa-
rameters rather than one large, complex entrypoint with
many parameters. This approach enables the kernel’s crit-
ical paths to be streamlined by eliminating the need to test
for various options. However, the issue of whether system
call options are represented as additional parameters or as
separate entrypoints is orthogonal to the issue of atomicity
and interruptibility; the only difference is that if a multi-

3Instead, they just abort the system call and return EINTR, which
has historically been the source of innumerable subtle bugs. Also, the
read() operation’s return value would cause trouble if this operation
was to be made transparently restartable; this problem could be fixed by
making the return value indicate the remainingnumber of bytes in the
buffer not read, rather than the number of bytes successfully read.

Actual Cause of Exception Cost to Cost to
Remedy Rollback

Unmapped memory 23536 446
Server Page Fault (Unmapped mem) 26973 1360
Server Page Fault (VTOP translation fault) 5851 496

Table 2: Breakdown of restart costs for various kernel-
internal exceptions during a reliable IPC transfer, the area of
the kernel with the most internal synchronization (specifically,
ipc client connect send over receive()). The ‘Actual
Cause’ describes the reason the exception was raised; for example a
KR PAGE FAULT is raised for a virtual to physical translation fault, an
unmapped page, and for a page not actually in memory. Note that for the
latter two, an IPC to the user-mode memory manager is made to map
in the required page. The ‘Cost to Rollback’ is roughly the amount of
work thrown away and redone that did not need to be, while the ‘Cost to
Remedy’ approximates the amount of work needed to service the fault.
All costs are in cycles; results were obtained on a 200-Mhz Pentium Pro
with the Fluke kernel configured using a process model without kernel
thread preemption.

stage IPC operation in Fluke is interrupted, the kernel may
occasionally modify the user-mode instruction pointer to
refer to a different system call entrypoint in addition to up-
dating the other user-mode registers to indicate the amount
of data remaining to be transferred.

The implications of providing an atomic API are dis-
cussed more fully in [2]. In summary, the purely atomic
API greatly facilitates the job of user-level checkpointer,
process migrators, and distributed memory systems. The
correct, prompt access to all relevant kernel state of any
thread in a system makes user-level managers themselves
correct and prompt. Additionally, the clean, uniform man-
agement of thread state in an atomic API frees the man-
agers from having to detect and handle obscure corner
cases. Finally, such an API simplifies the kernel itself
and is fundamental to allowing the kernel implementation
to use either explicit or implicit continuations to represent
blocked threads internally; this factor will be discussed in
Section 5.

4.4 Disadvantages of an Atomic API
This discussion reveals several potential disadvantages

of an atomic API:

� Design effort required: The API must be care-
fully designed so that all intermediate kernel states
in which a thread may have to wait indefinitely can
be represented in the explicit user-accessible thread
state. Although the Fluke API demonstrates that this
can be done, in our experience it does take consider-
able effort and discipline.

� API width: Additional system call entrypoints (or
additional options to existing system calls) may be
required to represent these intermediate states, effec-
tively widening the kernel’s API. For example, in
the Fluke API, there are five system calls that are
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rarely called directly from user-mode programs, and
are instead are usually only used as “restart points”
for interrupted kernel operations. However, we have
found in practice that although these seldom-used en-
trypoints are mandated by the fully-interruptible API
design, they are also directly useful to some applica-
tions; there are no Fluke entrypoints whose purpose
is solely to provide a pure interrupt-model API.

� Thread state size: Additional user-visible thread
state may be required. For example, in Fluke on the
x86, due to the shortage of processor registers, two
“pseudo-registers” implemented by the kernel are in-
cluded in the user-visible thread state frame to hold
intermediate IPC state. These pseudo-registers add
a little more complexity to the API, but they never
need to be accessed directly by user code except when
saving and restoring thread state, so they do not in
practice cause a performance burden. Furthermore,
they amount to only two 32-bit words on the x86, and
would be unnecessary on most other architectures.

� Overhead from Restarting Operations: During
some system calls, various events can cause the
thread’s state to be rolled back, requiring a certain
amount of work to be re-done later. Our measure-
ments, summarized in Table 2, show this not to be
a significant cost. Application threads rarely access
each other’s state (e.g., only during the occasional
checkpoint or migration), so although it is important
for this to be possible, it does not have to be highly
efficient. The only other situation in which threads
are rolled back is when an exception such as a page
fault occurs, and in such cases, the time required to
handle the exception invariably dwarfs the time spent
re-executing a small piece of system call code later.

� Architectural bias: Certain older architectures, such
as the 68020/030, make it impossible for the kernel
to provide correct and prompt state exportability, be-
cause the processor itselfdoes not do so. For exam-
ple, the 68020/030 saved state frame includes some
undocumented fields whose contents must be kept un-
modified by the kernel; these fields cannot safely be
made accessible and modifiable by user-mode soft-
ware, and therefore a thread’s state can never be fully
exportable when certain floating-point operations are
in progress. However, most other architectures, in-
cluding the x86 and even other 680x0 processors such
as the 68040, do not have this problem.

In practice, none of these disadvantages has caused us
significant problems in comparison to the benefits of cor-
rect, prompt state exportability.

5 Kernel Execution Models

We now return to the issue of the execution model used
in a kernel’s implementation. Although typically there is a
strong correlation between a kernel’s API and its internal
execution model, in many ways these issues are indepen-
dent and orthogonal. In this section we report our experi-
ments with Fluke and, previously, with Mach, that demon-
strate the following findings.

� Exported API: A process-model kernel can easily
implement either style of API, but an interrupt-model
kernel has a strong “preference” for an atomic API.

� Preemptibility: It is easier to make a process-model
kernel preemptible, regardless of the API it exports;
however, it is easy to make interrupt-model kernels
partly preemptible by adding preemption points.

� Memory use: Naturally, process-model kernels use
more memory because of the larger number of ker-
nel stacks in the system; of course, the size of kernel
stacks sometimes can be be reduced to minimize this
disadvantage.

� Architectural bias: Some architectures, such as the
x86 architecture, are fundamentally biased towards
the process model, whereas others support both mod-
els equally well. CISC architectures tend to be biased
because they insist on providing automatic stack han-
dling, whereas RISC architectures usually don’t.

� Legacy code: Since most existing, robust, easily
available OS code, such as device drivers and file sys-
tems, is written for the process model, it is easiest to
use this legacy code in process-model kernels. How-
ever, it is also possible to use this code in interrupt-
model kernels with a slight performance penalty.

The following sections discuss these issues in detail and
provide concrete measurement results where possible.

5.1 Exported API

One of the most common objections to the interrupt-
based execution model is that it requires the kernel to man-
age explicit continuations. However, our observation is
that continuations are not a fundamental property of an
interrupt-model kernel, but instead are the symptom of
a mismatch between the kernel’s API and its implemen-
tation. In brief, continuations are only required to im-
plement a conventional API with an interrupt-model ker-
nel; in an interrupt-model kernel exporting an atomic API,
the thread’s explicit user-visible register state acts as the
thread’s “continuation,” holding all the state necessary for
the thread to continue where it left off.
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msg_send_rcv(msg, option, send_size, rcv_size, ...)
{

rc = msg_send(msg, option, send_size, ...);
if (rc != SUCCESS)

return rc;

rc = msg_rcv(msg, option, rcv_size, ...);
return rc;

}

Figure 2: Example IPC send-receive path in a process-model kernel.
Any waiting or fault handling during the operation must keep the kernel
stack bound to the current thread.

5.1.1 Continuations

To illustrate this difference, consider the IPC pseu-
docode fragments in Figures 2, 3, and 4. The first shows a
very simplified version of a combined IPC message send-
and-receive system call similar to the mach msg trap
system call inside the original process-model Mach 3.0
kernel. The code first calls a subroutine to send a mes-
sage; if that succeeds, it then calls a second routine to
receive a message. If an error occurs in either stage, the
entire operation is aborted and the system call finishes by
passing a return code back to the user-mode caller. This
structure implies that any exceptional conditions that oc-
cur along the IPC path that shouldn’tcause the operation
to be completely aborted, such as the need to wait for an
incoming message or service a page fault, must be han-
dled completely within these subroutines by blocking the
current thread while retaining its kernel stack. Once the
msg send receive call returns, the system call is com-
plete.

Figure 3 shows pseudocode for the same IPC path mod-
ified to use a partial interrupt-style execution environment,
as was done by Draves in the Mach 3.0 continuations
work [10, 9]. The first stage of the operation, msg send,
is expected to retain the current kernel stack, as above; any
page faults or other temporary conditions during this stage
must be handled in process-model fashion, without dis-
carding the stack. However, in the common case where
the subsequent receive operation must wait for an incom-
ing message, the msg rcv function can discard the kernel
stack while waiting. When the wait is satisfied or inter-
rupted, the thread will be given a new kernel stack and
the msg rcv continue function will be called to finish
processing the msg send rcv system call. The original
parameters to the system call must be saved explicitly in a
continuation structure in the current thread, since they are
not retained on the kernel stack.

Note that although this modification partly changes the
system call to have an interrupt-model implementation,
it still retains its conventional API semanticsas seen by
user code. For example, if another thread attempts to ex-
amine this thread’s state while it is waiting continuation-
style for an incoming message, the other thread will ei-

msg_send_rcv(msg, option, send_size, rcv_size, ...)
{

rc = msg_send(msg, option, send_size, ...);
if (rc != SUCCESS)

return rc;

cur_thread->continuation.msg = msg;
cur_thread->continuation.option = option;
cur_thread->continuation.rcv_size = rcv_size;
...

rc = msg_rcv(msg, option, rcv_size, ...,
msg_rcv_continue);

return rc;
}

msg_rcv_continue(cur_thread)
{

msg = cur_thread->continuation.msg;
option = cur_thread->continuation.option;
rcv_size = cur_thread->continuation.rcv_size;
...

rc = msg_rcv(msg, option, rcv_size, ...,
msg_rcv_continue);

return rc;
}

Figure 3: Example interrupt-model IPC send-receive path. State
defining the “middle” of the send-receive is saved away by the
kernel in msg send rcv in the case that the msg rcv is inter-
rupted. Special code is needed to handle restart from a continuation,
msg rcv continue().

ther have to wait until the system call is completed, or
the system call will have to be aborted, causing loss of
state.4 This is because the thread’s continuation structure,
including the continuation function pointer itself (pointing
to msg rcv continue()), is part of the thread’s logical
state but is inaccessible to user code.

5.1.2 Interrupt-Model Kernels Without Continua-
tions

Finally, contrast these first two examples with corre-
sponding code in the style used throughout the Fluke ker-
nel, shown in Figure 4. Although this code at first appears
very similar to the code in Figure 2, it has several fun-
damental differences. First of all, in this environment,
system call parameters are generally passed in registers
rather than on the stack. The low-level system call en-
try/exit code does not need to copy parameters from the
user’s stack to the kernel’s; instead, it merely saves the
appropriate registers into the thread’s control block in a
standard format, and the system call handlers take their
parameters directly from there. (With the use of simple

4In this particular situation in Mach, the mach msg trap operation
gets aborted with a special return code; standard library user-mode code
can detect this situation and manually restart the IPC. However, there are
many other situations, such as page faults occurring along the IPC path
while copying data, which, if aborted, cannot be reliably restarted in this
way.
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msg_send_rcv(cur_thread)
{

rc = msg_send(cur_thread);
if (rc != SUCCESS)

return rc;

set_pc(cur_thread, msg_rcv_entry);

rc = msg_rcv(cur_thread);
if (rc != SUCCESS)

return rc;

return 0;
}

Figure 4: Example send-receive path for a kernel exporting an atomic
API. The set pc() operation effectively serves the same purpose as
saving a continuation, using the user-visible register state as the storage
area for the continuation. Exposing this state to user mode as part of the
API provides the benefits of a purely atomic API and eliminates much
of the traditional complexity of continuations. The kernel never needs to
save parameters or other continuation state on entry because it’s already
in the thread’s user-mode register state.

preprocessor macros or inline functions, this does not nec-
essarily introduce significant machine dependencies into
otherwise machine-independent code.) Second, when an
internal system call handler returns a nonzero result code,
the system call exit layer does notsimply complete the sys-
tem call and pass this result code back to the user. Instead,
it leaves the user’s program counter pointing just beforethe
instruction causing the system call, then passes the result
code to an exception handling routine in the kernel. Thus,
return values in the kernel are only used for kernel-internal
exception processing that are intended to be transparent to
the user; results intended to be seen by user code are re-
turned by modifying the thread’s saved user-mode register
state. Finally, if the msg send stage in msg send rcv
completes successfully, then before proceeding with the
msg rcv stage, the kernel updates the user-mode program
counter to point to the user-mode system call entrypoint for
msg rcv. This way, if the msg rcvmust wait or encoun-
ters a page fault, it can simply return a nonzero (kernel-
internal) result code, and the thread’s user-mode register
state will be left so that when normal processing is eventu-
ally resumed, the msg rcv system call will automatically
be invoked with the appropriate parameters to finish the
IPC operation.

The upshot of this is that in the Fluke kernel, the thread’s
explicit user-mode register state acts as the “continuation,”
allowing the kernel stack to be thrown away or reused by
another thread if the system call must wait or handle an
exception. Since this state is explicit and fully visible to
user-mode code, it can be exported at any time to other
threads, thereby providing the promptness and correctness
properties required by the atomic API. Furthermore, this
atomic API in turn simplifies the interrupt-model kernel
implementation to the point of being almost as simple and

Model Kernel Preemption Locking

Process None None
Process Partial None
Process Full Mutex locks
Interrupt None None
Interrupt Partial None

Table 3: Characteristics of different Fluke kernel configurations mea-
sured. Shown for each are the execution model of the kernel (Process or
Interrupt), the availability of kernel preemption (None, Partial, or Full)
and the type of locking implied.

clear as the original process-model code in Figure 2.

5.2 Preemptibility

Although the use of an atomic API greatly reduces the
kernel complexity and inconvenience burden traditionally
associated with interrupt-model kernels, there are other rel-
evant factors as well, such as kernel preemptibility. Low
preemption latency is a desirable kernel characteristic, and
is critical in real-time systems and in microkernels such as
L3 [18] and VSTa [27] that dispatch hardware interrupts to
device drivers running as ordinary threads (in which case
preemption latency effectively becomes interrupt-handling
latency). Since preemption can generally occur at any
time while running in user mode, it is the kernel itself that
causes preemption latencies that are greater than the hard-
ware minimum.

In a process-model kernel that already supports multi-
processors, it is often relatively straightforward to make
most of the kernel preemptible by changing spin locks into
blocking locks (e.g., mutexes). Of course, a certain core
component of the kernel, which implements scheduling
and preemption itself, must still remain nonpreemptible.
Implementing kernel preemptibility in this manner fun-
damentally relies on kernel stacks being retained by pre-
empted threads, so it clearly would not work in a pure
interrupt-model kernel. The Fluke kernel, besides support-
ing both the interrupt and process models, is optionally
configurable to support this form of kernel preemptibility
in the process model.

Even in an interrupt-model kernel, important parts of
the kernel can often be made preemptible as long as pre-
emption is done in a carefully controlled way. For exam-
ple, in microkernels that rely heavily on IPC, many long-
running kernel operations tend to be IPCs that copy data
from one process to another. It is relatively easy to in-
troduce preemption pointsin select locations such as on
the data copy path. Besides supporting full kernel pre-
emptibility in the process model, the Fluke kernel also
supports partial preemptibility in this way in either exe-
cution model. QNX [14] is an example of another exist-
ing interrupt-model kernel whose IPC path is made pre-
emptible in this fashion.
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Figure 5: Performance of the Fluke kernel in different configurations.
For each application, the execution time is normalized to the performance
of the process-model kernel without kernel preemption (Process NP), the
first bar in each group. The remaining bars are, left to right, process-
model with partial kernel preemption (Process PP), process-model with
full kernel preemption (Process FP), interrupt-model without kernel pre-
emption (Interrupt NP), and interrupt-model with partial kernel preemp-
tion (Interrupt PP).

5.3 Performance of Different Configurations

The Fluke kernel supports a variety of build-time con-
figuration options that control the execution model of the
kernel; by comparing different configurations of the same
kernel, we can analyze the properties of these different ex-
ecution models. We explore kernel configurations along
two axes: interrupt versus process model and full versus
partial (explicit preemption points) versus no preemption.
5 Since full kernel preemptibility is incompatible with the
interrupt model, there are effectively five possible configu-
rations, summarized in Table 3.

Figure 5 shows the relative performance of various ap-
plications on the Fluke kernel under various kernel con-
figurations. For each application, the execution times for
all kernel configurations are normalized to the execution
time of that application on the “base” configuration: pro-
cess model with no kernel preemption. The non-fully-
preemptible kernels were run both with and without par-
tial preemption support on the IPC path. All tests were run
on a 200MHz Pentium Pro PC with 256KB L2 cache and
64MB of memory. The applications measured include:

� Perftestruns a series of tests to time various synchro-
nization and IPC primitives. It performs a large num-
ber of kernel calls and context switches.

� Memtestaccesses 16MB of memory one byte at a
time sequentially. Memtest runs under a memory
manager which allocates memory on demand, exer-
cising kernel fault handling and the exception IPC fa-
cility.

5Additionally, Fluke supports another axis, multi- versus uni-
processor configurations, that are omitted for brevity.

flukeperf
Test latency schedules

ave max run miss
Process FP 5.14 19.6 9212 0
Process PP 18.0 1200 7805 5
Process NP 28.9 7430 7594 132
Interrupt PP 18.7 1272 7531 7
Interrupt NP 30.4 7356 7348 141

Table 4: Effect of execution model on preemption latency. We measure
the average and maximum time (�s) required for a periodic high-priority
kernel thread to start running after being scheduled, while competing with
lower-priority application threads. Also shown is the number of times the
kernel threads runs over the lifetime of the application and the number of
times it failed to complete before the next scheduling interval.

� Gcc compiles a single .c file. This test include run-
ning the front end, the C preprocessor, C compiler,
assembler and linker to produce a runnable Fluke bi-
nary.

As expected, non-fully-preemptible kernels perform
better than the fully-preemptible equivalents since they
include no locking overhead. The interrupt and process
model kernels are nearly identical in performance except
for the perftestcase. In perftestwe are seeing a positive
effect of using a single processor stack: better cache local-
ity on context switches.

To measure the effect of the execution model of pre-
emption latency, we introduce a high-priority kernel thread
which is scheduled every millisecond, and record its ob-
served preemption latencies during a run of the flukeperf
application from the previous graph. Flukeperfis used be-
cause it performs a number of large, long running IPC op-
erations ideal for inducing preemption latencies. Table 4
summarizes the experiment. The first two columns are
the average and maximum observed latency in microsec-
onds. The last two columns of the table show the num-
ber of times the thread ran over the course of the appli-
cation and the number of times it could not be scheduled
because it was still running or queued from the previous in-
terval. As expected, the fully-preemptible (FP) kernel per-
mits much smaller and predictable latencies and allowed
the high-priority thread to run without missing an event.
The non-preemptible (NP) kernel configuration exhibits
highly variable latency for both the process and interrupt
model causing a large number of missed events. Though
we implement only a single explicit preemption point on
the IPC data copy path, the partial preemption (PP) config-
uration fares well on this benchmark. This is not surprising
given that it performs a number of large IPC operations.

5.4 Memory Use
Traditionally, one of the primary perceived benefits of

the interrupt model is the memory saved by having only
one kernel stack per processor rather than one per thread.
For example, Mach’s average per-thread kernel mem-
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System Execution TCB Stack Total Procs Mem.
Model Size Size Size Used

FreeBSD Process 2132 6700 8832 5 44K
Linux Process 2395 4096 6491 5 32K
Mach Process 452 4022 4474 N/A
Mach Interrupt 690 — 690 N/A
L3 Process 1024 1024 N/A
Fluke Process 4096 4096 19 76K
Fluke Process 1024 1024 19 19K
Fluke Interrupt 300 — 300 19 6K

Table 5: Comparison of the kernel model of various existing systems
and the overhead due to thread/process management. TCB, stack, and
total sizes are reported in bytes. The ‘Procs’ column lists the number of
processes or threads (in the case of Fluke) to run a minimal system. The
‘Memory Used’ column indicates roughly the amount of kernel memory
given to these processes and threads.

ory overhead was reduced by 85% when the kernel was
changed to use a partial interrupt model [9, 10]. Of course,
the overall memory used in a system for thread manage-
ment overhead depends not only on whether each thread
has its own kernel stack, but also on how big these kernel
stacks are and how many threads are generally used in a
realistic system.

To provide an idea of how these factors add up in prac-
tice, we show in Table 5 memory usage measurements
gathered from a number of different systems and config-
urations. The Mach figures are as reported in [9]: the
process-model numbers are from MK32, an earlier version
of the Mach kernel, whereas the interrupt-model numbers
are from MK40. The L3 figures are as reported in [19].
For Fluke, we show three different rows: two for the pro-
cess model using two different stack sizes, and one for the
interrupt model.

The two process-model stack sizes for Fluke bear spe-
cial attention. The smaller 1K stack size is sufficient only
in the “production” kernel configuration which leaves out
various kernel debugging features, and only when the de-
vice drivers do not run on these kernel stacks. Section 5.6
will describe Fluke’s device driver support in more detail;
however, the important point for now is that the device
drivers we use are borrowed from legacy systems and are
considerably more stack-hungry than the kernel itself.

To summarize these results, although it is true that
interrupt-model kernels tend to minimize kernel thread
memory use most effectively, at least for modest num-
bers of active threads, much of this reduction can also be
achieved in process-model kernels simply by structuring
the kernel to avoid excessive stack requirements. At least
on the x86 architecture, as long as the thread management
overhead is about 1K or less per thread, there appears to
be no great difference between the two models for mod-
est numbers of threads. However, real production sys-
tems may need larger stacks and also may want to have
them be a multiple of the page size in order to use a “red

zone.” These results should apply to other architectures
just as well, though the basic sizes may be scaled by an
architecture-specific factor. For all but power-constrained
systems, the memory differences are probably in the noise.

5.5 Architectural Bias

Besides the more fundamental advantages and disadvan-
tages of each model as discussed above, in some cases
there are advantages to one model artificially caused by
the design of the underlying processor architecture. In
particular, traditional CISC architectures, such as the x86
and 680x0, tend to be biased somewhat toward the pro-
cess model and make the kernel programmer jump through
various hoops to write an interrupt-model kernel. With a
few exceptions, more recent RISC architectures tend to be
fairly unbiased, allowing either model to be implemented
with equal ease and efficiency.

Unsurprisingly, the architectural property that causes
this bias is the presence of automatic stack management
and stack switching performed by the processor. For ex-
ample, when the processor enters supervisor mode on the
x86, it automatically loads the new supervisor-mode stack
pointer, and then pushes the user-mode stack pointer, in-
struction pointer (program counter), and possibly several
other registers onto this supervisor-mode stack. Thus, the
processor automatically assumesthat the kernel stack is
associated with the current thread. To build an interrupt-
model kernel on such a “process-model architecture,” the
kernel must either copy this data on kernel entry from the
per-processor stack to the appropriate thread control block,
or it must keep a separate, “minimal” process-model stack
as part of each thread control block, which is the stack
the processor switches to on kernel entry, and then switch
to the “real” kernel stack just after entry. Fluke in its
interrupt-model configuration uses the former technique,
while Mach uses the latter.

Most RISC processors, on the other hand, including the
MIPS, PA-RISC, and PowerPC, use “shadow registers” for
exception and interrupt handling rather than explicitly sup-
porting stack switching in hardware. When an interrupt or
exception occurs, the processor merely saves off the orig-
inal user-mode registers in special one-of-a-kind shadow
registers, and then disables further interrupts until they are
explicitly re-enabled by software. If the OS wants to sup-
port nested exceptions or interrupts, it must then store these
registers on the stack itself; it is generally just as easy for
the OS to save them on a per-processor interrupt-model
stack as it is to save them on a per-thread process-model
stack. A notable exception among RISC processors is the
SPARC, with its stack-based register window feature.

To examine the effect of architectural bias on the x86,
we compared the performance of the interrupt and process-
model Fluke kernels in otherwise completely equiva-
lent configurations (using no kernel preemption). On a
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100MHz Pentium CPU, the additional trap and system call
overhead introduced in the interrupt-model kernel by mov-
ing the saved state from the kernel stack to the thread struc-
ture on entry, and back again on exit, amounts to about six
cycles (60ns). In contrast, the minimal hardware-mandated
cost of entering and leaving supervisor mode is about 70
cycles on this processor. Therefore, even for the fastest
possible system call the interrupt-model overhead is less
than 10%, and for realistic system calls is in the noise. We
conclude that although this architectural bias is a signifi-
cant factor in terms of programming convenience, and may
be important if it is necessary to “squeeze every last cycle”
out of a critical path, it is probably not a major performance
concern in general.

5.6 Legacy Code
One of the most important practical concerns with an

interrupt-based kernel execution model is that it appears to
be impossible to use pre-existing legacy code, borrowed
from process-model systems such as BSD or Linux, in an
interrupt-model kernel, such as the Exokernel [12] and the
CacheKernel [8]. For example, especially on the x86 archi-
tecture, it is impractical for any small programming team
to write device drivers for any significant fraction of the
commonly available PC hardware; they must either bor-
row drivers from existing systems, or support only a bare
minimum set of hardware configurations. The situation is
similar, though not as severe, for other types of legacy code
such as file systems or TCP/IP protocol stacks.

There are a number of reasonable approaches to incor-
porating process-model legacy code into interrupt-model
kernels. For example, if kernel threads are available
(threads that run in the kernel but are otherwise ordi-
nary process-model threads), process-model code can be
run on these threads when necessary. This is the method
Minix [25] uses to run device driver code. Unfortunately,
kernel threads can be difficult to implement in interrupt-
model kernels, and can introduce additional overhead on
the kernel entry/exit paths, especially on architectures with
the process-model bias discussed above. This is because
such processors behave differently in a trap or interrupt
depending on whether the interrupted code was in user
or supervisor mode [17]; therefore each trap or interrupt
handler in the kernel must now determine whether the in-
terrupted code was a user thread, a process-model kernel
thread, or the interrupt-model “core” kernel itself, and re-
act appropriately in each case. In addition, the process-
model stacks of kernel threads on these architectures can’t
easily be pageable or dynamically growable, because the
processor depends on always being able to push saved state
onto the kernel stack if a trap occurs. Ironically, on RISC
processors that have no bias towards the process model, it
is much easier to implement process-model kernel threads
in an interrupt-model kernel.

As an alternative to supporting kernel threads, the ker-

nel can instead use only a partial interrupt model, in which
kernel stacks are usually handed off to the next thread
when a thread blocks, but can be retained while execut-
ing process-model code. This is the method that Mach
with continuations [10] uses. Unfortunately, this approach
brings with it a whole new set of complexities and inef-
ficiencies, largely caused by the need to manage kernel
stacks as first-class kernel objects independent of and sep-
arable from both threads and processors.

The Fluke kernel uses a different approach, which keeps
the “core” interrupt-model kernel simple and uncluttered
while effectively supporting something almost equivalent
to kernel threads. Basically, the idea is to run process-
model “kernel” threads in user modebut in the kernel’s
address space. In other words, these threads run in the
processor’s unprivileged execution mode, and thus run on
their own user stacks separate from the kernel’s stack;
however, the address translation hardware is set up so that
while these threads are executing, their view of memory
is effectively the same as it is for the “core” interrupt-
model kernel itself. This allows the core kernel to treat
these process-level activities just like any other user-level
activities, which run in a separate address space from the
other user-level address spaces; but this particular address
space is just set up a little differently.

There are three main issues with this approach. The first
is that these user-level pseudo-kernel threads may need
to perform privileged operationsoccasionally, for exam-
ple to enable or disable interrupts or access device reg-
isters. In the x86 this isn’t a problem because user-level
threads can be given direct access to these facilities simply
by setting some processor flag bits associated with those
threads; however, on other architectures these operations
may need to be “exported” from the core kernel as pseudo-
system calls only available to these special pseudo-kernel
threads. Second, these user-level activities may need to
share data structureswith the core kernel to perform op-
erations such as allocating kernel memory or installing in-
terrupt handlers; since these threads are treated as normal
user-mode threads, they are probably fully preemptible
and do not share the same constrained execution environ-
ment as the core kernel. Again, a straightforward solution,
which is what Fluke does, is to “export” the necessary fa-
cilities through a special system call that allows these spe-
cial threads to temporarily jump into supervisor mode and
the kernel’s execution environment, perform some arbi-
trary (nonblocking) activity, and then return to user mode.
The third issue is the cost of performing this extra mode
switching; our calculations indicate that this cost is negli-
gible, [but we will measure it to be sure.]

6 Conclusion
In this paper, we have explored in depth the differences

between the interrupt and process models and presented
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a number of ideas, insights, and results. Our Fluke ker-
nel demonstrates that, contrary to conventional wisdom,
the need for the kernel to manually save state in continua-
tions is not a fundamental property of the interrupt model,
but instead is a symptom of a mismatch between the ker-
nel’s implementation and its API. Our kernel is only the
second to export a purely “atomic” API, in which all ker-
nel operations are fully interruptible and restartable; this
property has important benefits for fault-tolerance and for
applications such as user-mode process migration, check-
pointing, and garbage collection, and eliminates the need
for interrupt-model kernels to manually save and restore
continuations. Using our configurable kernel which sup-
ports both the interrupt-based and process-based execu-
tion models, we have made an “apples-to-apples” com-
parison between the two execution models. As expected,
the interrupt-model kernel requires less per-thread mem-
ory. Although a null system call entails a 5–10% higher
overhead on an interrupt-model kernel due to a built-in bias
toward the process model in common processor architec-
tures such as the x86, the interrupt-model kernel exhibits
a modest performance advantage in some cases, although
it can incur vastly higher latencies. Our conclusion is that
it is highly desirable for a kernel to present an atomic API
such as Fluke’s, but that for the kernel’s internal execution
model, either implementation model is reasonable.
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