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Abstract

Language-based extensible systems such as Java use
type safety to provide memory safety in a single address
space. Memory safety alone, however, is not sufficient to
protect different applications from each other. Such sys-
tems must support aprocess modehat enables the control
and management of computational resources. In particular,
language-based extensible systems must support resource
control mechanisms anal ogous to those in standard operat-
ing systems. They must support the separation of processes
and limit their use of resources, but still support safe and
efficient interprocess communication.

We demonstrate how this challenge can be addressed in
Java operating systems. First, we describe the technical is-
suesthat arise when implementing aprocess model in Java.
In particular, we lay out the design choices for managing
resources. Second, we describe the solutions that we are
exploring in two complementary projects, Altaand GVM.
GVM issimilar to atraditional monolithic kernel, whereas
Alta closely models the Fluke operating system. Features
of our prototypesinclude flexible control of processor time
using CPU inheritance scheduling, per-process memory
controls, fair allocation of network bandwidth, and exe-
cution directly on hardware using the OSKit. Finally, we
compare our prototypes with other language-based operat-
ing systems and explore the tradeoffs between the various
designs.

1 Introduction

Language-based extensible systems in the form of Java
virtual machines are used to implement execution environ-
ments for applets in browsers, servletsin servers, and mo-
bile agents. All of these environments share the property
that they run multiple applications at the same time. For
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example, auser may load applets from different Web sites
into a browser; a server may run servlets from different
sources; and an agent server may run agents from across
the Internet. Given the necessity of supporting multiple
applications, alanguage-based extensible system must be
able to isolate applications from one another because they
may be buggy or even malicious.

Conventional operating systems provide the abstraction
of a process which encapsulates the execution of a pro-
gram. A process modalefines what a processis and what
it may do. The following features are necessary in any pro-
cess model for safe, extensible systems:

e Protection A process must not be able to manipulate
or destroy another process's data in an uncontrolled
manner. For example, an unprivileged process must
not be able to deliberately (or accidentaly) interfere
with another process's forward progress.

¢ Resource ManagemerResources allocated to a pro-
cess must be separable from those allocated to other
processes. An unprivileged or untrusted process must
not be able to starve other processes by denying them
resources.

e Communication Since applications may consist of
multiple cooperating processes, processes must be
able to communicate with each other. The communi-
cation channels must be safe and should be efficient.

These requirements on processes form one of the pri-
mary tradeoffs in building operating systems, asillustrated
in Figure 1. On the right-hand side, processes can be pro-
tected from each other most easily if they are on com-
pletely separate machines. In addition, managing com-
putational resources is much simpler, since the resources
are completely separate. Unfortunately, communication is
more expensive between processes on different machines.
On the left-hand side, communication is much cheaper,
since processes can share memory directly. As a result,
though, protection and accurate resource accounting be-
come more difficult.

Operating systems research has spanned the entire range
of these systems, with a primary focus on systems in the
middle. Research in distributed systems and networking
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Figure 1: Trading off sharing and isolation between pro-
cesses. On the right, running different processes on sep-
arate machines isolates them cleanly, but communication
is more expensive. On the left, in theory a single-address-
space operating system alows the most efficient commu-
nication between processes, but isolation is the most diffi-
cult.

has focused on the right side of the figure. Research on
single-address-space operating systems such as Opal [12],
as well as older work on language-based operating sys-
tems [39, 44] has focused on the left side of the figure.
The reemergence [7, 32, 53] of language-based extensible
systems has focused attention back on the left side of the
diagram. Such systems are single-address-space systems
that use type safety instead of hardware memory mapping
for protection. In this paper we discuss how resource man-
agement can be provided in language-based systems (in
particular, in Java), and how the tradeoff between memory
control and sharing is expressed in these systems.

1.1 Processesin Java

We use Java as the “prototypical” language-based ex-
tensible system in our research for several reasons. First,
Java's use of load-time bytecode verification removes the
need for a trusted compiler. Second, Java's popularity
makes it possible for our process model to be used widely.
Third, freely available source code for a Java virtual ma-
chine (Kaffe[46]) isavailable, and it serves as an excellent
foundation for our modifications. Finaly, Javais genera
enough that the lessons we have learned in developing a
process model for it should apply to other language-based
extensible systems.

Whileit is possibleto run multiple Java applications and
applets in separate Java virtual machines (JVMs), there
are severa reasons to run them within one virtual ma-
chine. Aside from the overhead involved in starting multi-
ple VMs, the cost of communication between applications
and appletsisgreater when applications are run in separate
virtual machines (as suggested by Figure 1). Additionally,
in small systems, such as the PalmPilot, there might not
be OS or even hardware support for multiple processes. In
such environments, the VM must perform operating sys-
tem tasks. A fina reason to use asingle VM is that bet-
ter performance should be achievable through reduction of
context switching and IPC costs. Unfortunately, standard
Java systems do not readily support multiprogramming,
since they do not support a process abstraction. The re-
search issues that we explore in this paper are the design
problems that arise in implementing a process model in
Java.

The hard problems in implementing a process model in
Java revolve around memory management. In a conven-
tional operating system, protection is provided through a
memory management unit. Process memory is inherently
separated, and systems must be engineered to provide fast,
efficient communication. In a Java system, protection is
provided through the type safety of the language. The pri-
mary reason that memory management is harder in Java
than in conventional operating systems is that the address
spaceisshared. We discuss different solutionsto this prob-
lem (and other secondary problems) and describe the solu-
tions that we have used in the systems that we are building.

In this paper we describe two complementary Java op-
erating systems being developed at the University of Utah,
and the process models that they support. In these two
prototypes, called GVM and Alta, we are exploring the de-
sign space for language-based operating systems in terms
of resource management options and the tradeoff between
sharing and process isolation. GVM is structured much
like a traditional monolithic kernel and focuses on strin-
gent and comprehensive resource controls, whereas Altais
structured much like the Fluke microkernel [21], provides
a hierarchical process model, and focuses on providing
safe, efficient sharing between processes with potentially
different type-spaces. These systems use CPU inheritance
scheduling [22] to provide extensible control of processor
usage, and different garbage collection strategies to con-
trol memory usage. As we show in this paper, it should
not be surprising that language-based operating systems
can be structured like traditional hardware-based operat-
ing systems. many of the design issues and implementa-
tion tactics remain the same. Both GVM and Alta support
strong process models: each can limit the resource con-
sumption of processes, but still permit processes to share
data directly when necessary.



1.2 Contributions
This paper makes the following contributions:

o We describe the important design decisions in build-
ing Java operating systems, in terms of allowing pro-
cesses to both manage resources and share data.

o We describe two complementary prototypes that we
arebuilding at the University of Utah, GVM and Alta,
that represent two different pointsin the design space.
Many differencesin their designs are analogousto the
differencesin traditional OS designs.

e We compare our design choices with those used in
other Java operating systems. A variety of other
systems are being developed in both industry and
academia; we show why our two systems represent
interesting points in the design space.

1.3 Roadmap

Section 2 overviews Java and its terminology. Section 3
describes the technical challenges in addressing resource
management that we have encountered in designing and
building two prototype Java operating systems, GVM and
Alta. Section 4 compares the design and implementation
of our two systems, as well as that of Cornéll’s J-Kernel.
Section 5 describes related research in traditiona operat-
ing systems, language-based operating systems, and Java
in particular. Section 6 summarizes our conclusions.

2 Background

Java is both a high-level language [26] and a specifi-
cation for a virtual machine that executes bytecodes [32].
The Java programming language supports most modern
programming language features such astype safety, object-
orientation, exception handling, multi-threading, and dy-
namic loading. Java gives applications control over the dy-
namic linking process through special objects called class
loaders Class loaders support user-defined, type-safe [31]
loading of new data types, object types, and code into a
running Java system. Class loaders also determine type
identity: two classes loaded by different loaders are con-
sidered distinct. Each class loader provides a separate
name space of classes. A class can be rel oaded by different
class loaders. each reloaded instance is distinct.

A JVM provides asingle address space for applications.
It guarantees memory safety by ensuring the type safety of
the programs that it executes. Type safety is enforced by
passing bytecodes through a bytecode verifier and by man-
dating automatic memory management. That is, the byte-
codes must satisfy certain semantic constraints, and only
the JV M-provided automatic garbage collector can reclaim
storage. A traditional VM is structured as atrusted kernel,
usually implemented in C, augmented with Java libraries.

Together, the kernel and libraries implement the standard
Java class libraries. Calls to the kernel C code are made
through native methods

The combination of a well-defined virtual machine,
portable bytecode, and dynamic class loading makes
Java well-suited for executing dynamically acquired client
code. In order to protect the system from potentially buggy
or malicious code, and to protect clients from each other,
Java requires more control over applications than just the
protection afforded by type safety. In particular, a VM
must also be able to provide security (control over data,
such as information in files) and resource management
(control over computational resources, such as CPU time
and memory).

Java security started with the “sandbox” model, which
provided all-or-nothing privileges to applets, depending on
whether the applet was local or remote. JavaSoft relaxed
the sandbox model in JDK 1.2 [24] by introducing ac-
cess control lists and allowing a user to extend the WVM's
trust perimeter for signed code. In this model, the calling
principal’s privileges are determined by inspecting the call
stack [50]. Other approaches to Java security include the
use of capabilities and restricting an applet’'s name space.

Although security issues are being addressed in Java,
resource management has not been as thoroughly inves-
tigated. For example, a client can abuse its use of mem-
ory (either intentionally or accidentally) to compromisethe
overal functionality of a VM. The design and implemen-
tation of robust Java operating systems that tightly control
resource usage is therefore an open area of research.

3 Resource Management

This section discusses the primary design choices for
managing resources in a Java operating system. Since Java
encourages direct sharing of memory, the primary diffi-
culty in supporting a process model in Java is in isolat-
ing processes’ resources from one another. We divide the
problems of resource management into three related sub-
problems:

¢ Resource accountinghe ability to track resource us-
age. Accounting can be exact or approximate, and
can be fine-grained or coarse-grained.

e Resource reclamationthe ability to reclaim a pro-
cess's resources when it terminates. We discuss how
complex allocation management policies and flexi-
ble sharing policies can make reclamation difficult.
Reclamation can be immediate or delayed.

¢ Resource allocatianthe ability to allocate resources
to processes in a way that does not alow processes
to violate imposed resource limits. Allocation mech-
anisms should be fair and should not incur excessive
overhead.



In the following sections we discuss each of the previ-
ous issues with respect to several computational resources:
memory, CPU usage, and network bandwidth. We do not
currently deal with managing the use of persistent storage.

3.1 Memory

The two issues that must be addressed with respect to
managing memory in Java are the following: how mem-
ory is shared between processes, and how allocation and
deallocation are managed.

3.1.1 SharingMode

Communication between processes is necessary in order
to support flexible applications. A sharing modebefines
how processes can share data with each other. In a Java
operating system, three choices are possible: copying, di-
rect sharing, and indirect sharing. The sharing model in
standard Java (without processes) is one of direct sharing
objects contain pointers to one another, and a thread ac-
cesses an object’s fields via offsets from the object pointer.
In Java with processes, the choice of sharing model af-
fects how memory accounting and process termination (re-
source reclamation) can be implemented.

Copying. Systems should always support copying as a
means of communicating data between processes, where
one process provides data that is copied into another pro-
cess's memory. Copying is the only feasible aternative
when address spaces are not shared: for example, when
two processes are on different machines. Copying was
the traditional approach to communication in RPC sys-
tems [8], although research on same-machine RPC [6] has
aimed at reducing the cost of copying. Mach [1], for ex-
ample, used copy-on-write and out-of-line data to avoid
copies.

If data copying isthe only means of communication be-
tween processes, then memory accounting and process ter-
mination are straightforward. Processes do not share any
objects, so a process’s objects can be reclaimed immedi-
ately; there can be no ambiguity as to which process owns
an object. Of course, the immediacy of reclamation de-
pends on the garbage collector’s involvement in memory
accounting: reclaiming objects in Java could require afull
garbage collection.

In Java, the use of copying alone as a communication
mechanism is unappealing because it violates the spirit of
the Java sharing model, and becauseit isslow. Ontheother
hand, in a system that only supports copying data between
processes, process termination and per-process memory
accounting are much simpler.

Direct Sharing. Since Javais designed to support direct
sharing of objects within processes, another design point
isto alow direct sharing betweermrocesses. |nterprocess
sharing of objectsis then the same as intraprocess sharing.

Direct sharing in single-address-space systems is some-
what analogous to shared memory (or shared libraries) in
separate-address-space systems, but the unit of sharing is
much finer-grained.

If a system supports direct sharing between processes,
then process termination and resource reclamation are
greatly complicated. In particular, if a process can export
a directly shared object, that object cannot be reclaimed
when the exporting process is terminated. The reason that
reclamation is not possible is that al pointers to an ob-
ject would have to be located: in the presence of C code,
it is impossible to do so without extensive compiler sup-
port. Therefore, in order to support resource reclamation
when a process is killed, either direct sharing needs to be
restricted or the system must guarantee that all outstanding
references to any object can be located.

Indirect Sharing. An alternative to direct sharingisin-
direct sharing in which objects are shared through a level
of indirection. When communicating a shared object, a
direct pointer to that object is not provided. Instead, the
process creates a proxy object (that internally pointsto the
shared object) and then passes a pointer to the proxy. Prox-
ies are system-protected objects; in order to maintain indi-
rect sharing (and prevent direct sharing), the system must
ensure that there is no way for a client to extract a direct
object pointer from a proxy.

Compared to direct sharing, indirect sharing is less effi-
cient, since an extra level of indirection must be followed
whenever an interprocess call occurs. Its advantage, how-
ever, is that resource reclamation is straightforward. All
references to a shared object can be revoked, because the
level of indirection enablesthe system to track object refer-
ences. Therefore, when aprocessiskilled, al of its shared
objects can be reclaimed immediately. As with copying,
immediate revocation is subject to the cost of afull garbage
collection.

3.1.2 Allocation and Deallocation

Without page-protection hardware, software-based
mechanisms are necessary to account for memory in a
Java operating system. Every allocation (or aggregation
of alocations) must be checked against the all ocating pro-
cess's heap limit. Stack frame allocations must be checked
against the executing thread's stack limits.

Memory is necessarily reclaimed in Java by an auto-
matic garbage collector [52]. Since a garbage collector
is necessary to reclaim memory, it seems obvious to use
it to do memory accounting. In our systems the VM and
the garbage collector cooperate to account for all memory.
The simplest mechanism for keeping track of memory isto
have the VM debit a process that allocates memory, and
have the garbage collector credit a process when its mem-
ory is reclaimed.

In the presence of object sharing (whether direct or in-



direct), other memory accounting schemes are possible.
For example, a system could conceivably divide the “cost”
of an object among al the parties that keep the object
alive. This model has the drawback that a process can be
spontaneously charged for memory when it isn't allocat-
ing any memory. For example, suppose a process acquires
apointer to alarge object, and isinitialy only charged for
asmall fraction of the object’s memory because there are
alarge number of sharers. Later on, if the other sharersre-
lease their references, the process may asynchronously run
out of memory, because it will be forced to bear the cost of
the large (previously shared) object.

Another potential scheme is to allow processes to pass
memory “credits’ to other processes. For example, aserver
could require that clients pass severa memory credits with
each request to pay for the resources the server allocates.
Such a scheme is analogous to economic models that have
been proposed for resource allocation [49]. Alternatively,
a system might permit a process to transfer the right to
allocate under its allowance. The same effect ispossiblein
asimple alocator-pays model by having the client allocate
objects and pass them to the server to “fill in.”

Animportant issue in managing memory isthe relation-
ship between all ocation and accounting schemes. In partic-
ular, a system that charges per object, but allocates mem-
ory in larger chunks, might be subject to a fragmentation
attack. A process with a small budget could accidentally
or maliciously cause the alocation of a large number of
blocks. One solution is to provide each process with its
own region of physical or virtual addresses from which to
allocate memory. While this solution guarantees accurate
accounting for internal fragmentation, it has the potential
to introduce external fragmentation.

3.2 CPU Usage

The two mechanisms necessary for controlling CPU us-
age are accounting and preemption. The system must be
able to account accurately for the CPU time consumed by
athread. The system must also be able to prevent threads
from exceeding their assigned CPU limits by preempting
(or terminating) them. Desirable additional features of
cpu management are multiple scheduling policies, user-
providable policies, and support for real-time policies.

3.21 CPU Accounting

The accuracy of CPU accounting is strongly influenced
by the way in which processes obtain services. If services
areimplemented inlibraries or as callsto amonoalithic ker-
nel, accounting simply amounts to counting the CPU time
that athread accrues.

CPU accounting is difficult with shared system services,
where the process to bill for CPU usageis not easily deter-
mined. Examples of such services include garbage col-
lection and interrupt processing for network packets. For

both of these services, the system needs to have ameans of
deciding what process should be charged.

Garbage Collection. The simplest accounting policy
for garbage collection isto treat it as a global system ser-
vice. Unfortunately, such a policy is undesirable because
it opens the system to denial-of-service attacks. For exam-
ple, aprocess could trigger garbage collections frequently
so as to slow down other processes. In addition, treating
garbage collection as a universal service alows priority
inversion to occur. If alow-priority thread allocates and
deallocates large chunks of memory, it may cause a high-
priority thread to wait for a garbage collection.

We see two approaches that can be taken to solve this
problem. First, the garbage collector could charge its CPU
usage to the process whose objects it is traversing. How-
ever, since this solution would require fine-grained mea-
surement of CPU usage, its overhead would likely be pro-
hibitive.

The second alternative is to provide each process with
a heap that can be garbage collected separately, such that
the GC time can be charged to the owning process. Inde-
pendent collection of different heaps requires special treat-
ment of inter-heap references if direct sharing is to be al-
lowed. In addition, distributed garbage collection algo-
rithms might be necessary to collect data structures that
are shared across heaps.

Packet Handling. Interrupt handling is another system
service, but its behavior differs from that of garbage col-
lection, because the “user” of an external interrupt cannot
be known until the interrupt is serviced. The goal of the
system should be to minimize the time that is needed to
identify the receiver, as that time cannot be accounted for.

As an example of how interrupt processing should be
handled, Druschel and Banga [18] showed how packets
should be handled by an operating system. They demon-
strated that system performance can drop dramatically if
too much packet processing is done at interrupt level,
where normal process resource limits do not apply. They
concluded that systems should perform lazy receiver pro-
cessingLRP), which is a combination of early packet de-
multiplexing, early packet discard, and processing of pack-
ets at the receiver’s priority. They demonstrated that the
use of LRP improves traffic separation and stability under
overload.

3.2.2 Preemption and Termination

Preempting athread that holds a system lock could lead
to priority inversion. As a result, it is generaly better
to let the thread exit the critical section before it is pre-
empted. Similarly, destroying athread that holds a system
lock could lead to consistency or deadlock problems, de-
pending on whether the lock is released. Preemption and
termination can only be safe if the system can protect crit-
ical sections against these operations.



In addition to providing support for non-preemptible
(and non-killable) critical sections, a Java operating sys-
tem needs to have a preemption model for its kernel.* The
design choices are similar to those in traditional systems.
First, the kernel could be single-threaded, and preemption
would only occur outsidethekernel. Alternatively, the sys-
tem can be designed to alow multiple user threads to enter
the kernel. In the latter case, preemption might be more
immediate, but protecting the kernel’s data structures in-
curs additional overhead.

3.3 Network Bandwidth

Although bandwidth is not a resource that many tra-
ditional operating systems control explicitly, it is becom-
ing increasingly important due to the network-centric na-
ture of Java. For example, the ANTS [51] active network
testbed is written in Java, and needs the ability to control
the amount of bandwidth that active packets consume.

A basic mechanism to control outgoing bandwidth is
simply to count the number of bytes or packets sent. This
can be done at varying granularity: either on a per-process,
per-socket, or per-session basis. Depending on the level
in the networking stack at which this accounting is in-
terposed, it may or may not accurately reflect the actual
physical resources that must be managed. For instance, if
the accounting is done above the level of protocol process-
ing, the actual physical interface on which a packet is sent
might not be known, or protocol overhead might not be
taken into account.

A large body of research, such as[4], has been invested
inthe development of packet scheduling algorithms. These
algorithms often try to combine the guarantee of delay
bounds for real-time and priority service with link-sharing
guarantees. In order for an operating to provide effective
service guarantees to network streams with varying traffic
properties, a Java operating system should integrate such
scheduling algorithms into its networking infrastructure.

4 Comparison

In this section we describe in detail our two prototype
systems, GVM and Alta, and athird Java operating system,
JKernel, that has been built at Cornell. These systemslie
indifferent parts of the Java operating system design space,
and represent different sets of design tradeoffs:

e GVM partitions the Java heap so asto isolate resource
consumption. In addition, restricted direct sharing

In atraditional, hardware-based system, entry to (and exit from) the
kernel is marked with atrap instruction. The separation between kernel
and user code is not as clear in Java, since making a call into the kernel
might be no different than any other method invocation. Nonetheless, the
distinction needs to be made.

is permitted through the system heap. Garbage col-
lection techniques are put to interesting use to sup-
port this combination. CPU inheritance scheduling
and H-PFQ are used as frameworks for hierarchical
scheduling of CPU time and network bandwidth, re-
spectively.

e Alta uses hierarchica resource management, which
makes processes responsible for (and gives them
the capability of) managing their subprocesses’ re-
sources. Direct sharing between sibling processes is
permitted because their parent is responsible for their
use of memory. The hierarchy also is a good match
for CPU inheritance scheduling.

e The JKernel disallows direct sharing between pro-
cesses, but uses bytecode rewriting to support indi-
rect sharing. Because it consists of Java code only, it
is portable across WMs. As aresult, though, the re-
source controls that the J-Kernel provides are approx-
imate. J-Kernel IPC does not involve a rendezvous:
a thread migrates across processes, which can delay
termination.

We also provide some low-level microbenchmark mea-
surements, which demonstrate that although our proto-
types are roughly comparable to the JKernel and to each
other in performance, they provide many opportunities for
improvement.

41 GVM

GVM'’s design loosdly follows that of a traditional
monolithic kernel. GVM is oriented toward complete re-
source isolation between processes, with the secondary
goal of allowing direct sharing. Asin atraditional operat-
ing system, each processis associated with aseparate heap,
and sharing occurs only through a special, shared system
heap. GVM providesfine-grained hierarchical control over
both CPU scheduling and network bandwidth, and pro-
vides accurate accounting for both resources.

GVM can run most JDK 1.1 applications without mod-
ification. It cannot run those that assume that they were
loaded by the system class loader.

411 System Model

A GVM process consists of a name space, a heap, and
a set of threads executing in that heap. GVM relies on
class loaders to provide different processes with separate
name spaces. Each processis associated with its own class
loader, which is logically considered part of the kernel.
GVM loads classes multiple times to provide different pro-
cesses with their own copies of classes that contain static
members. Unlike other IVMs, GVM dlows safe reload-
ing of al but the most essentia classes, such as Obj ect
or Thr owabl e. To reduce a process's memory footprint,



classes that do not contain shared data may be shared be-
tween processes, akin to how different processes map the
same shared library into their address spaces in a tradi-
tional OS. However, since al shared classes must occupy
asingle name space, sharing is a privileged operation.

Threads access kernel services by caling into kernel
code. The kernel returns references to kernel objects that
act as capabilities to such things as open files and sock-
ets. In order to support the stopping or killing of threads,
GVM provides aprimitive that defers the delivery of asyn-
chronous exceptions until awell-defined cancellation point
within the kernel is reached. This primitive does not auto-
matically solve the problems with thread termination, but
it enablesthe kernel programmer to safely cancel user pro-
cesses without compromising the integrity of the kernel.

Each GVM processis associated with its own heap. Ker-
nel objects, shared classes, and other shared data reside
in adistinct heap called the system heap. GVM supports
comprehensive accounting that takes interna allocations
by the VM into account. Because GVM controls inter-
heap references, it isableto support independent collection
of individual heaps and it is able to charge garbage collec-
tion time to the appropriate processes. The use of sepa-
rate heaps has the additional benefit of allowing GVM to
avoid priority inversions: it is not necessary to stop higher-
priority threads in other processes when performing a col-
lection.

4.1.2 Resource Management

Memory Management. The use of separate heaps sim-
plifies memory accounting because each heap is subject
to its own memory budget, and simplifies CPU account-
ing because each heap can be collected separately. In or-
der to preserve these benefits while still alowing for ef-
ficient process communication, GVM provides limited di-
rect sharing between heaps. If two processes want to share
an object, two criteria must be met. First, the processes
must share the type of the object. Second, the object must
be allocated in the system heap. The creation of a shared
object is a privileged operation, and all shared objects re-
side in the system heap. An object in a process heap can
refer to a shared object, and a shared object can refer to an
object in a process heap. However, GVM explicitly disal-
lows direct sharing between objects in separate processes
heaps and uses write barriers [52] to enforce this restric-
tion.

Acquiring areference to ashared object is only possible
by invoking the system, and GVM ensures that resources
allocated within the system heap on behalf of an process
are subject to a specific limit. For instance, each process
may only open a certain number of files, since the kernel
part of afile descriptor is allocated in system space. GVM
must be careful to not hand out references to objects that
have public members, or objects it uses for internal syn-

chronization.

Shared objects have a restricted programming model.
During their construction, they have the opportunity to al-
locate objects on the system heap. After the objects are
constructed, threads invoking methods on them are sub-
ject to normal segmentation: if athread attempts to use a
shared object to write a reference to aforeign heap into its
own heap, a segmentation violation error will be triggered.

To allow for separate garbage collection of individual
heaps, GVM implements a form of distributed GC [37].
For each heap, GVM keeps alist of entry itemsor objects
to which external references exist. An entry item consists
of a pointer to the local object and a reference count. The
reference count denotes the number of foreign heaps that
have links to that object. The garbage collector of a heap
treats all entry items as roots. For each heap, GVM also
keeps alist of exit itemsfor non-local objects to which the
heap refers. An exit item contains a pointer to the entry
item of the object towhichit refers. At theend of agarbage
collection cycle, unreferenced exit items are collected and
the reference counts in the corresponding entry items are
decremented. An entry item can be reclaimed if its refer-
ence count reaches zero.

Write barriers are used to automatically create and up-
date exit and entry items, as well as to maintain the hesp
reference invariants described previously. If a write bar-
rier detects areference that islegal, it will lookup and cre-
ate the corresponding exit item for the remote object. In
turn, the corresponding entry item in the foreign heap is
updated. The samewrite barrier isused to prevent the pass-
ing of illegal cross-heap references. If the reference that
would be created by awriteisillegal, a segmentation vio-
lation error isthrown. The use of awrite barrier is similar
to the use of write checks in Omniware [48]. Although it
may seem odd to use another protection mechanism (soft-
ware fault isolation) in a type-safe system, the motivation
IS resource management, not memory safety.

Finally, to improve the use of the JVM’s memory as a
whole, GVM does not reserve digoint, contiguous mem-
ory regions for each heap. Instead, memory accounting is
done on aper-block basis, with 4KB blocks. Heaps receive
new memory in blocks, and the garbage collector only re-
imburses aheap if it frees awhole block.

CPU Management. In traditional Java, each thread be-
longs to a thread group. Thread groups form a hierarchy
in which each thread group has a parent group. The ini-
tial thread group is the root of the group hierarchy. GVM
adapts the thread group classes such that al threads be-
longing to a process are contained in a subtree. Process
threads cannot traverse this tree past the root of this sub-
tree.

More importantly, GVM combines the thread group hi-
erarchy with CPU inheritance scheduling [22]. CPU in-
heritance scheduling is based on adirected yield primitive:



a scheduler thread donates CPU time to a specific thread
by yielding to it, which effectively schedules that thread.
Since the receiver thread may in turn function as a sched-
uler thread, scheduler hierarchies can be built. Each non-
root thread has an associated scheduler thread that is noti-
fied when that thread is runnable. A scheduler may use a
timer to revoke its donation, which preempts a scheduled
thread. Using CPU inheritance scheduling alows GVM to
do two things. First, GVM can provide each process with
its own scheduler that may implement any process-specific
policy to schedule the threads in that process. Second,
thread groups within processes may hierarchically sched-
ule the threads belonging to them.

Each thread group in GVM is associated with a sched-
uler, which is an abstract Java class in GVM. Different
policies are implemented in different subclasses. At the
root of the scheduling hierarchy, GVM uses a fixed prior-
ity policy to guarantee that the system heap garbage col-
lector is given the highest priority. At the next level, a
stride scheduler divides CPU time between processes. To
provide compatibility with traditional Java scheduling, the
root thread group of each process by default is associated
with afixed-priority scheduler that is a child of the stride
scheduler.

Network Management. GVM is intended to be used
as atestbed for research on active networks [45]. For that
reason, GVM incorporates a scheduling framework that is
hierarchical, supports link-sharing service, and has good
delay bound properties. GVM implements the H-PFQ [4]
algorithm, which allows packet schedulers to be stacked
on top of each other in a scheduling hierarchy.

4.1.3 Implementation Status

The GVM kerndl is composed of the modified VM,
based on Kaffe 1.0betal, supplemented by classes in bi-
nary format from JavaSoft's JDK 1.1.5, and a package of
privileged classes that replace part of the core java pack-
ages. GVM runs both as a stand-alone kernel based on the
OSKit [20] and in user mode with libraries that simulate
certain OSKit components such as interrupt handling and
raw device access. We have implemented separate heaps,
as well as write barriers, but per heap garbage collection
till needs to be debugged and tested. In addition, because
our underlying Kaffe VM does not support it, we cannot
currently garbage collect classes.

Although CPU inheritance scheduling isimplementedin
GVM viaanew, separable OSKit component, it currently
only support schedul ers implemented as native methodsin
C. We will eventually wrap the CPU inheritance API in
Java, which will allow schedulers to be implemented in
Java. We have implemented four different policies: fixed-
priority, rate-monotonic scheduling, lottery, and stride-
scheduling.

The current implementation of H-PFQ, another new,

separable OSKit component, only supports smallest start
time first (SSF) and smallest finish time first (SFF) sched-
ulers. However, more complicated policies should easily
fit in the framework. Standard TCP or UDP sockets use a
standard networking stack whose transmissions are subject
to a summary budget; this is accomplished by connecting
them asingle leaf node. GVM supports an aternate data-
gram socket implementation for unfragmented UDP pack-
ets, like those used for video or audio streams. We believe
this model is appropriate for active networks, which focus
on experimentation with non-traditional protocols.

414 Summary

GVM'’s design is oriented towards complete resource
isolation between processes, with the secondary goal of
alowing direct sharing. By giving each process a sepa-
rate heap, many memory and CPU management resource
issues become simpler. Sharing occurs through a shared
system heap, and distributed garbage collection techniques
are used to safely maintain sharing information.

4.2 Alta

Alta[47] is an extended Java Virtual Machine that pro-
vides a hierarchical process model and system APl mod-
eled after that provided by the Fluke microkernel. Fluke
supports a nested process modgl], in which a process
can manage al of the resources of child processesin much
the same way that an operating system manages the re-
sources of its processes. Memory management and CPU
accounting are explicitly supported by the system API.
“Higher-level” services such as network access and file
systems are managed by servers, with which applications
communicate via IPC. Capabilities provide safe, cross-
process references for communication.

Processesin Alta provide theillusion of adedicated vir-
tual machine to Java applications. Each process has its
own root thread group, its own threads, and private copies
of al static member data. Per-process memory account-
ing in Altais comprehensive: including Javaobjects, JT'd
methods, class objects, and VM-internal locks. For access
control purposes, Altaexpandsthe Fluke model by provid-
ing processes with the ability to control the classes used
by a sub-process. Alta also extends the Java class model
in that it allows a process to rename the classes that a sub-
process sees. As aresult, a process can interpose on all of
asubprocess’ interfaces.

The Alta virtual machine does not change any of the
interfaces or semantics defined by the VM specification.
Existing Java applications, such asj avac (the Java com-
piler), can run unmodified as processes within Alta.
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Communication in Altais done through an IPC system
that mimics the Fluke IPC system. Inter-process commu-
nication is based on a half-duplex, reversible, client-server



connection between two threads (which may reside in dif-
ferent processes). Additionally, Alta IPC provides imme-
diate notification to the client or server if its “other-half” is
terminated or disconnects.

Alta permits sibling processes to share objects directly.
Objects can be shared by passing them through IPC. Shar-
ing is only permitted for objects where the two processes
have consistent views of the class name space. Enforc-
ing this requirement efficiently requires that the classes
involved are al final. While this is somewhat restrictive,
all of the primitive types — such as byt e[] (an array of
bytes) and j ava. | ang. St ri ng — and many of the core
Alta classes meet these requirements.

4.2.2 Resource Management

The strongest feature of the nested process modd is the
ability to“nest” processes. every process can manage child
processes in the same way the system manages processes.
Resource management in Altais strictly hierarchical. Any
process can create a child process and limit the memory
allowance of that process.

Memory Management. The system supports memory
management explicitly, through a simple allocator-pays
scheme. The garbage collector credits the owning pro-
cess when an object is eventually reclaimed. Because Alta
allows cross-process references, when a process is termi-
nated, any existing objects are “promoted” into the parent
memory. Thus, it the responsibility of the parent process
to make sure that cross-process references are not created
if full memory reclamation is necessary upon process ter-
mination.

Memory reclamation is also simple if a process only
passes references to its children. In the nested process
model, when a process is terminated all of its child pro-
cesses are necessarily terminated also. Therefore, refer-
ences that are passed to a process children will become
unused. It isimportant to note that Alta enables a process
to prevent child processes from passing Java object refer-
ences through I PC.

To support clean thread and process termination, Alta
uses standard operating system implementation tricks to
prevent the problem of threads terminated while execut-
ing critical system code, just like in GVM. For example,
to avoid stack overflows while executing system code, the
entry layer will verify sufficient space is available on the
current thread stack. This is analogous to the standard
technique of pre-allocating an adequate size stack for in-
kernel execution in traditional operating systems. Addi-
tionally, Altais structured to avoid explicit memory alloca-
tions within “system code.” A system call can allocate ob-
jects before entering the system layer so that al allocation
effectively happensin “user mode.” Since the notion of the
system code entry layer is explicit, some system calls, for
example Thr ead. curr ent Thr ead() never need call the

system enter or exit routines.

CPU Management. CPU time will be controlled
through the CPU inheritance scheduling model [22]. Cur-
rently, Alta provides garbage collection as a “system ser-
vice” This leaves Alta open to denial-of-service attacks
that generate large amounts of garbage—which will cause
the garbage collector to run. Given the memory limits on
processes, and limits on the CPU usage of a process, GC
problems like this can be mitigated.

Network Management. Alta can provide access con-
trol to the network through a kernel-external server pro-
cess, but does not currently provide any specific support
for network bandwidth management.

4.2.3 Implementation Status

Alta’'s implementation is based on a JDK 1.0.2-
equivalent VM and core libraries (Kore[13] version 0.0.7
and Kaffe[46] version 0.9.2). The bulk of the systemisim-
plemented entirely in Java. The internals of the VM were
enhanced to support nested processes. A number of the
core library classes were modified to use Alta primitives
and to make class substitution more effective.? In addition
toj avac, Altasupports simple applications that nest mul-
tiple children and control their class name spaces, aong
with a basic shell and other simple applications.

In terms of code sharing, a processin Altais analogous
toastaticaly linked binary in atraditional systems— each
process has its own JT'd version of a method. We be-
lieve the Kaffe JIT could be modified to provide “process-
independent”, sharable code, just as compilers can gen-
erate position-independent code for shared libraries. Ad-
ditionally, like Kaffe, Alta does not yet support garbage
collection of classes.

Alta does not yet implement CPU inheritance schedul-
ing. Because Alta and GVM share a common code base,
the CPU inheritance scheduling that isimplemented in the
GVM should be easy to migrate to Alta. In addition, like
GVM, Altaruns as aregular process on a normal operat-
ing system, and will run on top of bare hardware using the
OsKit.

424 Summary

Alta implements the Fluke nested process model and
APl in a Java operating system. It demonstrates that the
nested process model can provide Java processes with flex-
ible control over resources. Because of the hierarchical
nature of the model, direct sharing between siblings can be
supported without resource reclamation problems.

4.3 J-Kernd
The J-Kernel [14, 29] is a Javamicrokernel. It supports
multiple protection domains that are called tasks. Names

2The Alta API is documented at http://www.cs.utah.edu/projects/-
flux/javalalta.



are managed in the J-Kernel through the use of resolvers
which map names onto Java classes. When atask createsa
subtask, it can specify which classes the subtask is allowed
to access. Class loaders are used to give tasks their own
name spaces.
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Communication in the J-Kernel is based on capabilities.
Java objects can be shared indirectly by passing a pointer
to a capability object through a“local RMI” call. The ca
pability is atrusted object containing adirect pointer to the
shared object. Because of the level of indirection through
capabilities to the shared object, the capabilities can be re-
voked. A capability can only be passed if two tasks share
the same class. Making a class shared is an explicit action
that forces two class |oaders to share the class.

All arguments to inter-task invocations must either be
capabilities, or be deep-copied. By default, standard Java
object serialization is used, which involves marshaling into
and unmarshaling from a linear byte buffer. To decrease
the cost of copying, a fast copy mechanism is aso pro-
vided. Specialized code for a class creates a direct copy
of an object’s fields. Both the specialized fast copy code
and the stubs needed for cross-domain calls are generated
automatically by dynamically creating bytecode.

The JKernel supports thread migration between tasks:
cross-task communication is not between two threads. In-
stead, a single thread makes a method call that logically
changes protection domains. Therefore, a full context
switch is not required. To prevent malicious callers from
damaging a callee’s data structures, each task is only al-
lowed to stop athread when it is executing code in its own
process. This choice of system structure requires that a
caller trust all of its callees, because a malicious or erro-
neous callee might never return.

4.3.2 Resource Management

The JKernel designers made the explicit decision not to
build their own JVM. Instead, the J-Kernel is written en-
tirely in Java. As a result of this decision, the J-Kernel
designers limited the precision of their resource control
mechanisms. The lack of precision occurs because the
JVM that runs under the JKernel cannot know about pro-
cesses. Asaresult, it cannot account for the resources that
it consumes on behalf of a process.

Memory Management. In order to account for mem-
ory, the JKernel rewrites the bytecode of constructors and
finalizers to charge and credit for memory usage. Such a
scheme does not take fragmentation into account. In addi-
tion, memory such as that occupied by just-in-time com-
piled code is hard to account for.

CPU Management. The NT version of the J-Kernel
uses a kernel device driver to monitor the CPU time con-
sumed by a thread. This mechanism is reactive: threads

10

can only be prevented from consuming further resources
after they already exceeded their limits. In addition, it is
difficult to add custom scheduling policies for tasks.

Network Management. To account for network usage,
the NT version of the JKerne uses a custom WinSock
DLL. This DLL counts the number of bytes transmitted
by a particular socket.

4.3.3 Implementation Status

A version of the J-Kernel that does not support resource
controls is fredy available from Cornell’s Web site. The
advantage of their implementation approach is a high de-
gree of portability: the J-Kernel can run on most JVMs.
Since it uses class reloading, there are some dependen-
cies on the specific interpretation of gray areasin the Java
language specification. In fact, the recent introduction of
application-specific class loaders in IDK 1.2betad breaks
the J-Kernel’s loading mechanism.

The JKernd is distributed with two additional pieces
of software. The first is JOS, which uses the J-Kernel to
provide support for servers. The second is JServer, a Web
server that safely runs client-provided Java code.

434 Summary

The J-Kernel adopts a capability-based model that disal-
lows direct sharing between tasks. As aresult, its capabili-
ties are directly revocable, and memory can be completely
reclaimed upon task termination. In addition, the J-Kernel
explaits the high-level nature of Java's bytecode represen-
tation to support the automatic creation of communication
channels.

4.4 Performance Evaluation

We ran severa microbenchmarks on our two prototype
systems, Altaand GVM, and aport of the J-Kernel to Kaffe
to measure their baseline performance. These benchmarks
demonstrate that no undue performance penalties are paid
in any of these systems for supporting processes. In addi-
tion, they show that the IPC facilities and Java processes
are lightweight (and comparable) in all three systems.

The Alta, J-Kernel, and basic Kaffe tests were per-
formed on a300MHz Intel Pentium Il system with 128MB
of SDRAM. The system ran FreeBSD version 2.2.6, and
was otherwise idle. The GVM tests were performed on
the same machine, but GVM was linked to the OSKit and
running without FreeBSD.

Table 1 shows the average time for a simple null in-
stance method invocation, the average cost of allocating
aj ava. |l ang. bj ect, the average overhead of creating
and starting a Thread object, and the average cost of creat-
ing a Throwable object. All of the benchmarks were writ-
ten to avoid invocation of the GC (intentional or uninten-
tional) during timing. For GVM and Alta the benchmarks
were run as the root task in the system. For the J-Kernel,



Virtual Machine | Method Invocation | Object Creation | Null Thread Test | Exception Creation
Kaffe 1.0betal 0.16us 1.9us 480us 12us
GVM 0.16us 3.1us 725us 18us
Alta 0.16us 2.5us 1030us 15us
Kaffe 0.10.0 0.17us 1.8us 470us 10us
JKernel 0.17us 1.8us 480us 29us

Table 1: Despitethe fact that we have five distinct Javavirtual machines based around different versions of the Kaffe virtual machine,
base performance of the versions are not very different. The JKernel is run on Kaffe 0.10.0, because of deficiencies in object

serialization in Kaffe 1.0betal.

the benchmarks were run as children of the J-Kernel Root-
Task, cornel | . sl k. j kernel . std. Mai n.

None of the systems significantly disrupt any of the ba-
sic features of the virtual machine. (Previously published
results about the J-Kernel [29] used Microsoft's Java vir-
tual machine, which issignificantly faster than Kaffe.) The
Alta null thread test is significantly more expensive than
the basic Kaffe test because Alta threads maintain addi-
tional per-thread state for |PC, process state, and blocking.

Table 2 measures the two critical costs of adding a pro-
cess mode to Java. The first column lists the overhead of
creating a new process, measured from the time the par-
ent creates the new process to the time at which the new
process begins its mai n function. The Kaffe row lists the
time required for Kaffe to fork and exec a new Kaffe pro-
cess in FreeBSD. The J-Kernel supports a more limited
notion of process—J-Kernel processes do not require an
active thread—so the J-Kernel test simply creates a pas-
sive Task and seeds it with asimple initial object.

The subsequent columns of Table 2 show the time re-
quired for cross-task communication. Alta IPC is sig-
nificantly slower because it is a rendezvous between two
threads, whereas JKernel IPC is simply cross-process
method invocation. GVM IPC is implemented using a
shared rendezvous object and is based on wait/notify. The
weaker times reflect its unoptimized thread package that is
different than the thread package in the other four JVMs.

Our performance results indicate that our systems need
substantial optimizationin order to realize the performance
potential of language-based operating systems. The per-
formance benefits from fine-grained sharing in software
can be dominated by inefficiencies in the basic VM im-
plementation. As the difference to previously published
JKernel results demonstrates, the future performance of
Java systems will likely be spurred by advances in just-
in-time compilation, which is orthogonal to the research
issues we are exploring.

To analyze the implementation costs of our decision to
build our own VM, we examined each system in terms of
useful lines of code (i.e., non-blank, non-comment lines of
source). As areference point, the original version of Kaffe
v0.9.2 contains 10,000 lines of C, while Kaffe v1.0betal is
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comprised of just over 14,000 lines of C and 14,000 lines
of Java. (Much of this increase is due to the move from
JDK 1.0 to JDK 1.1)) Altais comprised of 5,000 lines
of Java and adds approximately 5,000 lines of C to Kaffe
v0.9.2 (asignificant fraction of this C code consists of fea-
tures from later versions of Kaffe that we ported back to
Kaffe v0.9.2). GVM adds approximately 1,000 lines of C
code to the virtual machine and almost 2,000 lines of Java
codeto the basic libraries. The additional C code consisted
of changes to the garbage collector to support GVM’s sep-
arate heaps.

In comparison, the J-Kernd consists of approximately
9,000 lines of Java. Building the JKernel as a layer on
top of a VM was probably an easier implementation path
than building anew JVM. The primary difficulty in build-
ing the JKernel probably lay in building the dynamic stub
generator.

5 Related Work

Several lines of research are related to our work. First,
the development of single-address-space operating sys-
tems — with protection provided by language or by hard-
ware — is a direct antecedent of work in Java. Second, a
great deal of research today is directed at building operat-
ing system servicesin Java.

5.1 Prior Research

A great deal of research has been done on hardware-
based single-address-space operating systems, such as
Opal [12]. In Opa communication was accomplished by
passing 256-hit capabilities among processes. a process
could attachamemory segment to its address space so that
it could address the memory segment directly. Because
Opal was not based on atype-safe language, resource allo-
cation and reclamation was coarse-grained, and based on
reference counting of segments.

Several operating systems projects have focused on
quality-of-service issues and real-time performance guar-
antees, such as Nemesis and Eclipse. Nemesis [30] is a
single-address-space OS that focuses on quality-of-service
for multimedia applications. Eclipse [10], a descendant



Virtual Machine | Process Creation | Null IPC | 3-integer request | 100-byte String request
Alta 120ms 10us 12us 22us

GVM 89ms 57us 57us 183us
JKernel 235ms 2.7us 2.7us 27us

Kaffe 300ms N/A N/A N/A

Table 2: Process Tests. Note that numbersin the first column are reported in ms, while the other columns are reported in us. Altaand
GVM IPC is between separate threads while the J-Kernel | PC uses cross-process thread migration. The 3-integer request and 100-byte
String request operations include the time to marshal and unmarshal the request. The JKernel uses object serialization to transmit a

String while GVM and Alta use hand-coded String marshal and unmarshal code.

of Plan9 [38], introduced the concept of areservation do-
main which isapool of guaranteed resources. Eclipse pro-
vides a guarantee of cumulative service, which means that
processes execute at a predictable rate. 1t manages CPU,
disk, and physical memory. Our work is orthogonal, be-
cause we are examining the low-level mechanismsthat are
necessary to manage resources in a Java operating system.

Many research projects have explored operating systems
issues within the context of programming languages. For
example, Argus [33] and Clouds [15] explored the use
of transactions within distributed programming languages.
Other important systems that studied issues of distribution
include Eden[2], Emerald [9], and Amber [11]. Thesesys-
tems explored the concepts underlying object migration,
but did not investigate resource management.

Language-based operating systems have existed for
many years. We describe a number of these systems. Most
of them were not designed to protect against malicious
users, athough a number of them support strong security
features. None of them, however, provide strong resource
controls.

Pilot [39] and Cedar [44] were two of the earliest
language-based systems. Their development at Xerox
PARC predates a flurry of research in the 1990's on such
systems.

Oberon [53] is a language-based system that shares
many of Java'sfeatures (such as garbage collection, object-
orientation, strong type-checking, and dynamic bind-
ing). Oberon is a non-preemptive, single-threaded sys-
tem. Background tasks like the garbage collector are im-
plemented as calls to procedures, where “interruption” can
only occur between top-level procedure calls.

A related project, Juice [23] provides an execution envi-
ronment for downloaded Oberon code (just asa VM pro-
vides an execution environment for Java). Juiceisavirtual
machine that executes “binaries’ in its own portable for-
mat: it compiles them to native code during loading, and
executes the native code directly. The advantage of Juice
is that its portable format is faster to decode and easier to
compile than Java's bytecode format.

SPIN [7] is an operating system kernel that lets appli-
cations load extensions written in Modula-3 that can ex-
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tend or specialize the kernel. Aswith Java, the type safety
of Modula-3 ensures memory safety. SPIN supports dy-
namic interposition on names, so that extensions can have
different name spaces.

Inferno [17] is an operating system for building dis-
tributed services that has its own virtual machine called
Dis and its own programming language called Limbo. In-
ferno is a small system that has been ported to many ar-
chitectures: it has been designed to run in resource-limited
environments, such as set-top boxes. In order to minimize
garbage collection pauses, Inferno uses reference counting
to reclaim memory.

VINO is a software-based (but not language-based) ex-
tensible system [41] that addresses resource control issues
by wrapping kernel extensions within transactions. When
an extension exceeds its resource limits, it can be safely
aborted (even if it holds kernel locks), and its resources
can be recovered.

5.2 Java-Based Research

Besides Alta, GVM, and the J-Kernel, anumber of other
research systems have explored (or are exploring) the prob-
lem of supporting processesin Java.

Balfanz and Gong [3] describe a multi-processing VM
devel oped to expl ore the security architecture ramifications
of protecting applications from each other, as opposed to
just protecting the system from applications. They identify
several areas of the JDK that assume a single-application
model, and propose extensions to the JDK to alow mul-
tiple applications and to provide inter-application secu-
rity. The focus of their multi-processing VM is to ex-
plore the applicability of the JDK security model to multi-
processing, and they rely on the existing, limited JDK in-
frastructure for resource control.

E [19] is aset of extensions to Java that support the use
of object references as capabilities. They check these ca
pabilities at load-time. Hagimont and Ismail [27] describe
adifferent implementation of capabilitiesthat usesan IDL
to define protection views on objects. The implementation
of capabilitiesintheir designissimilar tothat usedinthe J
Kernel. The Echidnasystem [25] isafreely available class
library that supports multiple processesin Java. It does not



support resource controls in general, but it does support
registration of resources so that they can reclaimed upon
process termination.

One approach to resource control is to dedicate an en-
tire machine to the execution of client code. For instance,
AT&T's “Java Playground” [34] and Digitivity’s “CAGE”
Applet Management System [16] define special Java ap-
plet execution models that require applets to run on ded-
icated, specially protected hosts. This execution model
imposes extremely rigid limits on mobile code, by quar-
antining applets on isolated hosts. As a result, richer ac-
cess is completely disallowed. Also, note that although
the above-mentioned systems guarantee the integrity of the
JVM, protecting it from foreign code, they do not pro-
vide any inter-applet guarantees, with respect to security
or resources, beyond that offered by the underlying nearly
“stock” JDK. In this way, these systems are similar to
Kimera [42], which uses dedicated servers to protect crit-
ical virtual machine resources (e.g., the bytecode verifier)
but not to protect applications from each other.

Sun’s origina JavaOs [43] was a standalone OS written
almost entirely in Java. It is described as a first-class OS
for Java applications, but appears to provide asingle VM
with little separation between applications. It is being re-
placed by a new implementation termed “ JavaOS for Busi-
ness’ that also only runs Java applications. “JavaOS for
Consumers’ is built on the Chorus microkernel OS [40] in
order to achieve real-time properties needed in embedded
systems. Both of these systems require a separate VM for
each Java application, and all run in supervisor mode.

Joust [28], a VM integrated into the Scout operating
system [35], provides control over CPU time and network
bandwidth. To do so, it uses Scout's path abstraction.
However, it does not provide control over memory.

Severa projects support real-time performance guar-
antees in Java, which is beyond the scope of our re-
search. The Open Group's Conversant system [5] is an-
other project that modifies a VM to provide processes.
It provides each process with a separate address range
(within asingle Mach task), a separate heap, and a separate
garbage collection thread. Conversant does not support
sharing between processes, unlike our systems and the J-
Kernel. Since its threads are native Mach threads support-
ing POSIX real-time semantics augmented with an adap-
tive mechanism, Conversant provides some real-time ser-
vices. Another real-time system, PERC [36], extends Java
to support rea-time performance guarantees. The PERC
system analyzes Java bytecodes to determine memory re-
quirements and worst-case execution time, and feeds that
information to a real-time scheduler.
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6 Conclusions

In order to support multiple applications, a Java oper-
ating system must control computational resources. We
have outlined the major technical challenges that must be
addressed in building such asystem: in particular, the chal -
lenges of managing CPU usage, network bandwidth and,
most importantly, memory. Some of these challenges can
be dealt with by importing techniques from conventional
systems into language-based systems. For example, we
have shown that the Fluke nested process model and CPU
inheritance scheduling can be implemented in Java. Other
challenges can be dealt with by adapting language tech-
nology, such as garbage collection, to fit into an operating
system framework.

We have described two prototype Java operating sys-
tems that are being built at Utah: Altaand GVM. These
two prototypes and Cornell’s J-Kernel represent different
choicesin the design space and illustrate the tradeoffs that
can be made in terms of system structure, resource man-
agement, and implementation strategies. We have shown
that many design issues from conventional operating sys-
tems resurface in the structural design of Java operating
systems. Java operating systems can be built with mono-
lithic designs, as GVM; or they can be built with micro-
kernel designs, as Alta or the J-Kernel. Finaly, we have
shown how garbage collection techniques can be used to
support resource management for Java processes.
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