Using Khazana to Support Distributed Application Development *

Sai Susarla

UU-CS-TR-99-008

Anand Ranganathan

Yury Izrailevsky John Carter

Department of Computer Science

University of Utah

Salt Lake City, UT 84112

Abstract

One of the most important services required by most
distributed applications is some form of shared data
management, e.g., a directory service manages shared
directory entries while groupware manages shared doc-
uments. Fach such application currently must im-
plement its own data management mechanisms, be-
cause existing runtime systems are not flexible enough
to support all distributed applications efficiently. For
example, groupware can be efficiently supported by a
distributed object system, while a distributed database
would prefer a more low-level storage abstraction. The
goal of Khazana is to provide programmer’s with config-
urable components that support the data management
services required by a wide variety of distributed appli-
cations, including: consistent caching, automated repli-
cation and migration of data, persistence, access con-
trol, and fault tolerance. It does so via a carefully de-
signed set of interfaces that support a hierarchy of data
abstractions, ranging from flat data to C++/Java 0b-
jects, and that give programmers a great deal of control
over how their data is managed. To demonstrate the
effectiveness of our design, we report on our experience
porting three applications to Khazana: a distributed file
system, a distributed directory service, and a shared
whiteboard.

*This research was supported in part by the Defense Ad-
vanced Research Projects Agency, monitored by the Department
of the Army under contract number DABT63-94-C-0058, and
the Air Force Research Laboratory, Rome Research Site, USAF,
under agreement number F30602-96-2-0269. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for Gov-
ernmental purposes notwithstanding any copyright annotation
hereon. Email: {sai,anand,izrailev,retrac}@cs.utah.edu
Khazana URL: http://www.cs.utah.edu/projects/khazana

1 Introduction

Distributed systems involve complicated applications
with complex interactions between disparate compo-
nents. The environment in which these applications
operate introduces additional challenges in terms of
fault tolerance and security. As a result, researchers
have developed a wide variety of systems to ease the
chore of building distributed applications. The ear-
liest distributed systems provided support for inter-
process communication via message passing [8, 27] or
remote procedure calls [3], but provided little sup-
port for transparent distribution of data and execu-
tion or for fault tolerance. More sophisticated systems
have provided such support via a variety of basic ab-
stractions, including distributed files [5, 12, 23, 9, 28],
distributed objects [20, 21, 19], and distributed shared
memory (DSM) [1, 7, 22, 24]. Each of these models is
useful for certain types of applications. For example,
systems like Petal [23] that support a flat persistent
storage abstraction are ideal for supporting distributed
file systems and distributed directory services, systems
with fairly simple persistent coarse-grained data struc-
tures. In contrast, distributed object systems such as
CORBA [19] are useful for hiding the complexities of
client-server systems, while distributed shared mem-
ory systems like Treadmarks [1] are useful for running
shared memory codes on top of distributed systems.

Currently, distributed applications must implement,
their own data management mechanisms, because no
existing runtime system can support the very different
needs of each application efficiently. This approach
has the advantage of allowing each system to optimize
its data management mechanisms to suit its specific
needs. However, it requires a great deal of redundant
programmer effort to develop and maintain each such
set of ad hoc mechanisms. It also makes it difficult to
share state between applications or reuse code devel-



