
TECHNICAL REPORT UUCS-99-013, DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF UTAH 1

Design and Validation of a Simultaneous
Multi-Threaded DLX Processor

Hans Jacobson

Abstract| Modern day computer systems rely on two
forms of parallelism to achieve high performance, parallelism
between individual instructions of a program (ILP) and par-
allelism between individual threads (TLP). Superscalar pro-
cessors exploit ILP by issuing several instructions per clock,
and multiprocessors (MP) exploit TLP by running di�erent
threads in parallel on di�erent processors.
A fundamental limitation of these approaches to exploit

parallelism is that processor resources are statically parti-
tioned. If TLP is low, processors in a MP system will be idle,
and if ILP is low, issue slots in a superscalar processor will
be wasted. As a consequence, the hardware cannot adapt
to changing levels of ILP and TLP and resource utilization
tend to be low.
Since resource utilization is low there is potential to

achieve higher performance if somehow useful instructions
could be found to �ll up the wasted issue slots. This pa-
per explores a method called simultaneous multithreading
(SMT) that addresses the utilization problem by letting
multiple threads compete for the resources of a single pro-
cessor each clock cycle thus increasing the potential ILP
available.

I. Introduction

To achieve high performance, modern day computer sys-
tems rely on two forms of parallelism in program execution.
Wide issue superscalar processors try to exploit instruction
level parallelism (ILP) that exists within a single program
and issue multiple instructions per cycle. However, even
aggressive superscalar implementations that use dynamic
hardware scheduling to extract parallelism cannot take full
advantage of the resources of a wide issue processor due to
inherent control and data dependencies between instruc-
tions of a single program. Since the resources in the su-
perscalar case are statically allocated to a single program,
resources (issue slots) are wasted when there is not suÆ-
cient ILP available in that program. Figure 1(a) illustrates
the vertical and horizontal issue slot waste that can take
place in a superscalar processor. Horizontal waste occurs
when the scheduling logic cannot �nd enough instructions
to issue to �ll up all issue slots this cycle, i.e. there is a lack
of ILP available. Vertical waste may occur when a cache
miss or data dependencies hinders the scheduling logic to
issue any instruction this cycle.
Multiprocessors (MP) try to exploit thread level par-

allelism (TLP) that exists either between parallel threads
derived from a single program, or between completely inde-
pendently executing programs. The individual processors
in the MP system can su�er from vertical and horizontal
issue waste as in the superscalar case. In addition, an MP
system can su�er from thread shortage which leaves some
processors without a program to execute. Resources in

The author is with the Department of Computer Science, University
of Utah, Salt Lake City, U.S.A. E-mail: hans@cs.utah.edu

these idle processors are thus wasted due to lack of TLP as
shown in Figure 1(b). A typical example of thread shortage
is when a program that has been parallelized into multiple
threads has to go through a sequential section of code.
Multithreaded (MT) processors [1] allow several thread

contexts to be active. Each cycle, one context is selected
and instructions from that thread are issued. MT pro-
cessors can thus address the problem of vertical issue slot
waste. Whenever a certain thread cannot issue any instruc-
tions this cycle, another thread that can issue is selected as
illustrated in Figure 1(c). While MT addresses the verti-
cal waste problem, the limitation that only one thread can
issue per cycle still leaves the problem of horizontal waste.
Simultaneously multithreaded (SMT) processors also al-

low several thread contexts to be active. Each cycle, in-
structions can be issued from multiple threads. SMT pro-
cessors thus address both vertical and horizontal waste.
Whenever a thread cannot issue any instructions during a
cycle, all other threads can still issue so vertical waste is
reduced. Whenever a thread cannot �ll all issue slots dur-
ing a cycle, instructions from other threads can compete
for and �ll up these slots thus reducing horizontal waste.
These situations are illustrated in Figure 1(d).
Statically partitioning processor resources puts a limita-

tion to how much parallelism can be exploited. The super-
scalar and MP processors statically partition the individual
processor resources to be used by only allowing one thread
to execute at a time. MT processors improve upon this
concept by allowing multiple threads to be on standby but
still only allow one thread to use the processor resources
per cycle. An SMT processor on the other hand has the
ability to dynamically adapt to varying levels of TLP and
ILP since each cycle multiple threads compete for avail-
able issue slots. By allowing multiple threads to issue in-
structions each cycle, TLP is e�ectively transformed into
ILP since there is no control or data dependency between
instructions belonging to di�erent threads. Subsequently,
given the same amount of resources, SMT has the potential
to do more useful work compared to the other approaches.
This has also been indicated by a comparative study of
SMT and MP architectures [2].

Project goals

The focus of this project has been the development, im-
plementation, validation, and evaluation of a simultaneous
multithreaded microprocessor architecture running DLX
native code. In this paper we will focus on the architecture
implementation and performance analyses of the processor.
We are mainly interested in �nding out how simultaneous
multithreading can help improve instruction throughput on


