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Abstract

One of the most important services required by most
distributed applications is some form of shared data
management� e�g�� a directory service manages shared
directory entries while groupware manages shared doc�
uments� Each such application currently must im�
plement its own data management mechanisms� be�
cause existing runtime systems are not �exible enough
to support all distributed applications e�ciently� For
example� groupware can be e�ciently supported by a
distributed object system� while a distributed database
would prefer a more low�level storage abstraction� The
goal of Khazana is to provide programmer�s with con�g�
urable components that support the data management
services required by a wide variety of distributed appli�
cations� including� consistent caching� automated repli�
cation and migration of data� persistence� access con�
trol� and fault tolerance� It does so via a carefully de�
signed set of interfaces that support a hierarchy of data
abstractions� ranging from �at data to C��	Java ob�
jects� and that give programmers a great deal of control
over how their data is managed� To demonstrate the
e
ectiveness of our design� we report on our experience
porting three applications to Khazana� a distributed �le
system� a distributed directory service� and a shared
whiteboard�
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� Introduction

Distributed systems involve complicated applications
with complex interactions between disparate compo�
nents� The environment in which these applications
operate introduces additional challenges in terms of
fault tolerance and security� As a result� researchers
have developed a wide variety of systems to ease the
chore of building distributed applications� The ear�
liest distributed systems provided support for inter�
process communication via message passing ��� ��� or
remote procedure calls ���� but provided little sup�
port for transparent distribution of data and execu�
tion or for fault tolerance� More sophisticated systems
have provided such support via a variety of basic ab�
stractions� including distributed �les �	� 
�� ��� �� ����
distributed objects ���� �
� 
��� and distributed shared
memory 
DSM� �
� �� ��� ���� Each of these models is
useful for certain types of applications� For example�
systems like Petal ���� that support a �at persistent
storage abstraction are ideal for supporting distributed
�le systems and distributed directory services� systems
with fairly simple persistent coarse�grained data struc�
tures� In contrast� distributed object systems such as
CORBA �
�� are useful for hiding the complexities of
client�server systems� while distributed shared mem�
ory systems like Treadmarks �
� are useful for running
shared memory codes on top of distributed systems�

Currently� distributed applications must implement
their own data management mechanisms� because no
existing runtime system can support the very di�erent
needs of each application e�ciently� This approach
has the advantage of allowing each system to optimize
its data management mechanisms to suit its speci�c
needs� However� it requires a great deal of redundant
programmer e�ort to develop and maintain each such
set of ad hoc mechanisms� It also makes it di�cult to
share state between applications or reuse code devel�
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oped for one distributed application when implement�
ing another�

We have built Khazana to demonstrate that a single
distributed runtime system can support a wide range
of applications with reasonable performance� Khazana
is designed to make it easy to implement distributed
applications quickly and then gradually improve their
performance by re�ning the underlying consistency
protocols and communication mechanisms� Program�
mers can access and manipulate shared data at a level
of abstraction and with consistency mechanisms ap�
propriate for their application�s needs� Any specialized
consistency protocols� fault tolerance mechanisms� etc��
that are developed to support one application can be
used to manage data for other applications with similar
needs�

Khazana�s internal structure is illustrated in Fig�
ure 
� It consists of three layers� 
i� a base layer that
exports a �at global address space abstraction� 
ii�
a language�independent distributed object layer� and

iii� a collection of layers that export language�speci�c
distributed object abstractions 
e�g�� C�� and Java��

The base layer is intended to directly support appli�
cations with fairly simple ��at� data structures� such
as �le systems and directory services� It also exports
su�cient �hooks� to the two upper layers for them to
support a variety of object abstractions e�ciently� For
example� unlike Petal ����� Khazana�s base layer pro�
vides mechanisms that give applications or other run�
time layers control over how data is kept consistent�

The object layers provide functionality� such as au�
tomatic reference swizzling and remote method invo�
cation� appropriate for applications with complex data
structure like shared whiteboards� This functionality
is unnecessary for applications like �le systems or di�
rectory services� where its presence would only hurt
performance� The di�erence between the two object
layers is that the language�independent layer exports
�raw� pointers and objects� while the language�speci�c
layers hide the details of Khazana�s object model be�
hind that of an existing object�oriented language like
C�� or Java�

To demonstrate that a variety of applications with
quite di�erent needs can be supported e�ectively by
Khazana� we have built a distributed �le system� a
distributed directory service� and a shared whiteboard
that use Khazana to manage their shared state� The
base layer�s persistent �at address space abstraction
proved to be well�suited for the distributed �le system
and distributed directory service� both of which em�
ploy fairly �at data abstractions� However� depending
on the mix of lookup and update operations on the
directory service� it sometimes made sense to migrate
the directory data to the clients 
like a DSM system��
while at other times it made sense to migrate the op�
eration to the data 
like an RPC system�� Khazana�s
layered design and �exible interfaces made it easy to
support both models� even to the extent of letting the
application decide dynamically which model to use for
each operation� The shared whiteboard program ex�
ploits the object layers� smart pointer and automatic
swizzling capabilities to create pointer�rich data struc�
tures that can be shared between whiteboard instances
and stored on disk� Manipulating its pointer�rich data
structures via the core layer would have imposed a sig�
ni�cant burden on the programmer�

Combining elements of distributed shared memory�
distributed �le systems� and distributed object systems
into a uni�ed runtime system for distributed applica�
tions had a number of bene�ts� First� we do not impose
the performance overheads of an object system on ap�
plications and services where it is not warranted� such
as a �le or directory service� Second� we are able to
exploit the location management� communication� con�
sistency� and security mechanisms present in the core
layer� thereby avoiding redundant development� Kha�
zana�s core layer provides a facility to deliver arbitrary
�update� messages to one or all applications using a
particular piece of data� The object layers use this fa�
cility to support location�transparent remote method
invocations 
RMI�� whereby computation migrates to
the data rather than vice versa� This facility could be
used to support application�speci�c consistency mech�
anisms� such as employing a reliable multicast proto�
col �
�� to manage updates to streaming multimedia
images� Also� since the base layer tracks the locations
of objects in the system and knows which ones are cur�
rently instantiated� there is no need for a separate ob�
ject request broker 
ORB�� as in CORBA� Finally� if an
object migrates� or one instance fails� the underlying
consistency management routines will simply forward
the update message 
method invocation� to a di�erent
node that has registered its willingness to handle such
operations� Thus� the Khazana object layer is inher�
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ently fault tolerant� due to the fault tolerance support
in the core layer�

The remainder of this paper is organized as follows�
We present the organization of a Khazana system in
Section �� We then describe the design and implemen�
tation of the core Khazana layer 
Section ��� followed
by the object layers 
Section ��� Section 	 contains a
description of our experience porting three test applica�
tions to Khazana 
a distributed �le server� a directory
server� and a shared whiteboard� and the lessons that
we derived from this e�ort� We then compare Khazana
to previous and contemporary systems in Section � and
draw conclusions in Section ��

� Organization of a Khazana

System

Khazana is designed with the premise that most dis�
tributed applications and services at their core do
roughly the same thing� manage shared state� What
di�ers dramatically is what this shared state represents

e�g�� �les� database entries� game state� or interactive
video images� and how it is manipulated 
e�g�� broad�
cast to a collection of cooperating applications� queried
from a �central� server� or modi�ed frequently in re�
sponse to changes in the environment�� We developed
Khazana to explore the extent to which a carefully de�
signed and su�ciently �exible runtime system can sup�
port the data management needs of a wide variety of
applications�

Figure � presents a high�level view of a 	�node
Khazana�based distributed system� The cloud in the
center of the picture represents the globally shared
storage abstraction exported by Khazana� The stor�
age that Khazana manages consists of an amalgam of
RAM and disk space spread over the nodes that partic�
ipate in the Khazana system� Nodes can dynamically
enter and leave Khazana and contribute�reclaim local
resources 
e�g�� RAM or disk space� to�from Khazana�
In this example� nodes 
� �� and 	 are providing the
disk space for storing persistent data� nodes � and �
can access regions and cache them in local DRAM�
but do not store them on the local disk� Each object
in the �gure� e�g�� the square� represents a single piece
of data managed by Khazana� In this example� node

 is caching a complete copy of the �square� object�
while nodes � and 	 are each caching a part of it�

Khazana�s global shared storage abstraction is im�
plemented by a collection of cooperating daemon pro�
cesses 
BServers� and client libraries� BServers run
on some 
not necessarily all� machines of a potentially

Node 1

Node 5

Node 4

Node 2

Node 3

Khazana

Figure �� Typical Khazana�Based Distributed System�
The cloud represents Khazana�s global shared storage
abstraction� Applications on any of the �ve nodes can
manipulate shared objects� represented by the various
shapes� The highlighted �square� object is currently
being accessed by three nodes� a complete copy resides
on Node 
� while nodes � and 	 combine to store a
second replica�

wide�area network� Each node running a BServer is
expected to contribute some portion of its local disk
space to the global storage� Note that although we use
the term �server�� these daemon processes are in fact
peers that cooperate to provide the illusion of a uni�ed
resource�

Khazana is designed to scale to a WAN environ�
ment� with nodes within a single LAN forming a clus�
ter� Each such cluster designates a single node as the
cluster manager� which maintains hints about what
data is cached in the local cluster� a set of free address
ranges from which local nodes can allocate storage� and
other such non�critical information� The cluster man�
ager is selected using a voting scheme based on process
ids� If the cluster manager fails� the remaining nodes
vote on a replacement�

Khazana is free to distribute state across the net�
work in any way it sees �t� subject to resource limita�
tions� perceived demand� and the speci�ed replication
and consistency policies for the object� Portions of re�
gions can be stored on di�erent nodes� as illustrated
in Figure �� Presumably Khazana chooses these nodes
because they access the region most frequently� are the
most stable� or have the most available resources� Cur�
rently� our data placement schemes are quite simplis�
tic 
�rst touch� replicate on demand�� but a goal of
the project is to develop caching policies that address
the needs for load balancing� high performance� high
availability� and constrained resources�
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� Khazana Core Layer

The core Khazana layer exports the abstraction of a
persistent globally shared storage space addressed by

���bit global addresses� The basic storage abstraction
is that of a region� which is simply a contiguous range of
global addresses managed using common mechanisms

e�g�� coherence protocol� minimum storage granular�
ity� security key� and replication policy�� To the core
layer� regions are simply a range of bytes � it is up to
higher level software 
e�g�� the object layers or appli�
cation code� to interpret the contents of a region� The
minimum unit of storage managed by the core layer
is speci�ed on a per�region basis and is referred to as
a page� The default page size is ��kilobytes� which
matches the most common machine virtual memory
page size�

In e�ect� the core layer can be thought of as a glob�
ally accessible disk against which distributed applica�
tions read and write data� similar to Petal����� As will
be described below� however� Khazana provides a �ner
level of control over how individual regions are man�
aged than Petal� and Khazana�s address�based nam�
ing scheme allows applications to embed references to
other structures in their data� The core layer is de�
signed to handle the common problems associated with
sharing generic state between applications� including
replicating and caching data� keeping copies of the data
coherent� tracking the location
s� of data� avoiding loss
of data due to node or network failures� managing dis�
tributed system resources� and enforcing security re�
strictions on data access�

The basic operations supported by the core layer
are�

kh reserve���kh unreserve��� These operations
reserve 
unreserve� a region of Khazana�s 
���bit
address space� without allocating physical storage
for it�

kh allocate���kh free��� These operations allo�
cate 
free� physical storage for the speci�ed region�
or portion thereof� A region cannot be accessed
until physical storage is allocated for it�

kh lock���kh unlock��� Once storage for a region
has been allocated� an application gains access to
its contents by locking it� Applications can specify
a number of locking modes � including read� write�
and read�with�intent�to�overwrite� Khazana en�
forces particular lock modes in di�erent ways de�
pending on the consistency protocol used to man�
age the region�

kh read���kh write��� Once an application has
locked a region� it can access its contents via
explicit read and write operations� Our design
calls for clients to be able to �map� parts of
global memory to their virtual memory space and
read and write to this mapped section 
akin to
a memory�mapped �le or conventional DSM sys�
tem�� but this functionality has not yet been im�
plemented�

kh register���kh update��� Khazana lets applica�
tions register to be noti�ed of various Khazana in�
ternal events by supplying a callback routine and
an event type as parameters to kh register���
The callback routine is called on occurrence of the
speci�ed event� One useful event is an �object�
update� initiated implicitly by kh unlock�� or ex�
plicitly via kh update���

kh getattr���kh setattr��� Applications can
query and modify each region�s attributes�
Among the attributes currently supported are
the number of persistent replicas of the region
maintained by Khazana� the coherence protocol
used by Khazana to keep the region consistent�
and a security key used to control access to the
region�

The �rst two sets of functions give applications the
ability to allocate large contiguous pieces of the shared
address space from which they can later allocate subre�
gions of storage� For example� a distributed �le system
might kh reserve�� enough address space to contain
an entire �le system� but only kh allocate�� the disk
space to back �les as the �le system �lls� We found that
the separation of address space allocation and storage
allocation made it easier for applications and library
routines to manage their own storage at a �ne grain�

Applications can use kh register�� to register call�
back routines to be invoked whenever certain events oc�
cur� For example� callback functions can be set up to
respond when a remote node performs a kh unlock��

or kh update�� operation� kh unlock�� causes a
Khazana�created update message to be sent to regis�
tered listeners� while kh update�� takes as input an
arbitrary �update� message to be sent� Khazana does
not interpret the contents of these update messages� so
they can be used to support application�level consis�
tency protocols or to send arbitrary messages to regis�
tered listeners�

Figure � illustrates how the core layer functionality
is decomposed into �ve major components� the Kha�
zana core API� the location service� the consistency
management service� the RAM bu�er cache� and the
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disk bu�er cache� These functions are divided between
client libraries and BServers as follows�

Client Libraries� We provide two client core li�
braries� referred to as the thin client and the smart
client� The thin client simply bundles up client re�
quests and forwards them to a nearby BServer� which
implements all of the Khazana core functions� The thin
client is� in essence� simply an RPC client stub�

The smart client� in contrast� actually implements
most core Khazana functions and protocols� In par�
ticular� it aggressively caches data and locks associ�
ated with this data locally in its internal bu�er cache
and consistency manager� To keep this data consis�
tent with copies stored elsewhere in the system� the
smart client exchanges consistency protocol messages
with BServers and remote smart clients� In most ways�
the smart client is a peer to the BServers for regions
its client is accessing� However� smart clients do not
manage a disk cache� because they only execute as long
as their client application does� Also� for security pur�
poses� smart clients are not given access to Khazana�
internal metadata� so they must contact a BServer to
perform address space range lookups� examine or mod�
ify attributes of reserved regions� reserve�free address
space� or allocate�free space in the global storage hier�
archy�

The smart client interface has been carefully de�ned
to isolate bu�er management from Khazana consis�
tency management functionality� Thus the smart client
can be used both to manage consistency of application�
level bu�ers or to provide a default bu�er cache im�
plementation that can physically share pages with a
Khazana server running on the local machine� One
motivation for this was the observation that some ap�
plications 
e�g�� �le systems and databases� prefer to
handle their own bu�er cache management issues like
cache size and replacement policy�

Consistency Management� The core layer sup�

ports a DSM�style programming interface that allows
di�erent applications to communicate in much the
same way that di�erent threads of a shared memory
program communicate� When an application wishes
to access a piece of shared state� it must lock a range
of global addresses region in an appropriate mode� e�g��
obtaining a read lock prior to reading it and a write
lock prior to modifying it� The application can then
explicitly read or write the data� and when it is done
accessing the data� unlock it�

The semantics of the various lock modes 
read�
write� etc�� are entirely dependent on the coherence
protocol being used to manage the region� A default
coherence protocol is provided that enforces conven�
tional mutual exclusion semantics on regions� but an
important feature of Khazana�s core layer design is
that it exports consistency management operations to
program modules called Consistency Managers 
CMs�
running in the BServers and smart clients� CMs are
somewhat independent from the rest of a BServer or
smart client� and are free to interpret �read lock� and
�write lock� events as they see �t� Their only role
is to determine when locks can be granted and when
data needs to be updated or invalidated� They do not
perform the actual data or lock transfers � that is left
to the Khazana communication services� They coop�
erate to implement the required level of consistency
among the replicas using Brun�Cottan�style decompos�
able consistency management ����

A lock request represents a request for permission
to perform a certain operation on a region 
or portion
thereof�� The application encapsulates all semantics
of the requested operation a�ecting consistency in an
application�de�ned object called an intent 
following
Brun Cottan�s terminology ����� When a CM receives
a lock request and intent� it checks to see if the request
con�icts with ongoing operations given the semantics
of the particular coherence protocol�

An application can de�ne a set of functions that the
CM can invoke to make decisions a�ecting consistency�
such as whether two operations con�ict or whether two
operations can be applied to di�erent copies in di�erent
order� If necessary� the CM delays granting the lock
request until the con�ict is resolved�

Once a lock is granted� Khazana performs the sub�
sequent permitted operations 
e�g�� reads and writes�
on the local replica itself� notifying the CM of any
changes� The CM then performs consistency�protocol�
speci�c communication with CMs at other replica sites
to inform them of the changes� Eventually� the other
CMs notify their Khazana daemon of the change� caus�
ing it to update its replica�

	



Several bene�ts result from decomposing the entity
that determines when consistency operations must oc�
cur 
the CM� from the rest of the system� Khazana�s
consistency management mechanism is highly �exible�
so applications can tune their consistency manage�
ment protocols based on speci�c application character�
istics� More importantly� the hooks exported by this
decomposed consistency management scheme can be
exploited by the object layers in a number of ways� For
example� one �consistency protocol� allows an applica�
tion to register functions to handle particular events�
This protocol allows the object layer to detect when an
object is �rst loaded and transparently swizzle it� It
also can be used to support remote method invocation

RMI�� as will be described in detail in Section ��

Location Management� Khazana�s core layer
maintains two primary data structures� a globally dis�
tributed address map that maintains global informa�
tion about ranges of Khazana addresses and a collec�
tion of per�region region descriptors that store each
region�s attributes 
i�e�� security attributes� page size�
and desired consistency protocol�� A particularly im�
portant attribute associated with each region is its
home node� A region�s home node is responsible for
maintaining a current copy of its region descriptor and
tracking the set of nodes maintaining copies of the re�
gion�s data� The address map also contains informa�
tion regarding what regions of address space are re�
served� allocated� and free�

Khazana daemon processes maintain a pool of lo�
cally reserved� but unused� address space� which they
obtain in large chunks 
multiple gigabytes� from their
local cluster manager� Whenever a client request uses
up the locally reserved address pool� the local BServer
pre�reserves another large region to be locally subdi�
vided� Once space is located to satisfy the reserve re�
quest� reserving a region amounts to modifying address
map tree nodes so that they re�ect that the region is
allocated and where� Deallocating a region involves
reclaiming any storage allocated for that region� For
simplicity� we do not defragment 
i�e�� coalesce adjacent
free� ranges of global address space managed by di�er�
ent Khazana nodes� We do not expect this to cause
address space fragmentation problems� as we have a
huge 

���bit� address space at our disposal and do
reclaim storage�

To initiate most operations� Khazana must obtain
a copy of the region descriptor for the region contain�
ing the requested range of addresses� There are three
methods by which Khazana can locate the region de�
scriptor� each of which it tries in turn� 
i� by examining
a node�local cache of recently used region descriptors�


ii� by querying the local cluster manager� and� when
all else fails� 
iii� by performing a distributed tree walk
of the address map data structure�

To avoid expensive remote lookups� Khazana main�
tains a cache of recently used region descriptors called
the region directory� The region directory is not kept
globally consistent� but since regions do not migrate
home nodes often� the cached value is usually accu�
rate� If this cached home node information is out of
date� which will be detected when the queried node
rejects the request� or if there is no local cache entry�
Khazana queries the local cluster manager�

If neither the region directory nor the cluster man�
ager contain an up to date region descriptor� Khazana
resorts to searching the address map tree� starting at
the root tree node and recursively loading pages in
the tree until it locates the up to date region descrip�
tor� The address map is implemented as a distributed
tree itself stored in Khazana� where each subtree de�
scribes a range of global address space in �ner detail�
If the region descriptor cannot be located� the region
is deemed inaccessible and the operation fails back to
the client� This distributed tree walk is expensive� and
thus avoided whenever possible�

Storage Management� Node�local storage in the
form of both DRAM and secondary storage is treated
as a cache of global data indexed by global addresses�
Each node�s local storage subsystem maintains a page
directory� indexed by global addresses� that contains
information about global pages cached locally� includ�
ing their local location 
DRAM page or �le location�
and a list of other nodes caching the page� Like the re�
gion directory� the page directory is node�speci�c� not
stored in global shared memory� and the list of nodes
caching a page is only a hint� The local storage sys�
tem provides raw storage for pages without knowledge
of global memory region boundaries or their seman�
tics� There may be di�erent kinds of local storage 
e�g��
main memory� disk� and tape� organized into a storage
hierarchy based on access speed� as in xFS���� In re�
sponse to data access requests� the local storage system
simply loads or stores the requested data from or to its
local store 
either RAM or disk��

Fault Tolerance� Khazana handles partial system
failures by 
optionally� replicating regions of data� In
particular� address map pages are always replicated on
at least two distinct nodes� The use of a local region di�
rectory cache and a cluster�level directory cache make
Khazana less sensitive to the loss of address map nodes�
but if a tree search is unavoidable� a region�s avail�
ability depends on the availability of the address map
tree nodes in the path of the tree search� Should all

�



copies of an address map tree node become unavailable
for an extended period of time� the address map can
be recreated via a 
slow� global recovery algorithm in
which each node forwards a summary of the contents of
its local storage system to a designated recovery node�
which uses this information to rebuild the global ad�
dress map� Similarly� Khazana allows clients to specify
a minimum number of primary replicas that should be
maintained for each page in a Khazana region� which
allows them to trade o� availability for performance
and resource consumption�

To make it easier to recover locks when nodes fail or
network partitions occur� we are modifying Khazana to
implement locks as leases� Currently clients can hold
locks inde�nitely� so we cannot automatically recover
locks lost due to node failures unless we are sure that
the problem is not a temporary network partition� Us�
ing leases to implement locks would simplify lock token
recovery immensely � you simply refuse to reissue the
lock token until the lease expires� at which time you
can reissue it safely� We will need to experiment with
various default lease times to tradeo� failure�free per�
formance� when long leases are preferable� against fault
recovery time� when short leases are preferable�

Security� Since we envision Khazana being used
to store sensitive system state� it provides a simple ac�
cess control mechanism on which higher�level software
can enforce a variety of access control mechanisms� Al�
though a 
���bit address space might itself seem to be
su�ciently large that addresses would make good capa�
bilities� Khazana addresses are not allocated randomly
and thus make poor capabilities� Khazana�s built�in
access control mechanism is based on secret keys �
when a client creates a region� it can specify a 
���
bit key that must be presented as part of any future
kh lock�� operation on the region� Khazana provides
no key management support � we assume that services
manage their own keys� The key distribution services
can� of course� themselves be built on top of Khazana�
BServers never exports keys to clients� so a key cannot
be compromised by insecure applications�

In a secure environment� we assume that authen�
tication and encryption mechanisms will be available�
Using such services� BServers will be able to authenti�
cate themselves to one another� thereby ensuring that
they are not exporting Khazana metadata to clients
masquerading as a BServer� In addition� all inter�node
communication between BServers and clients could be
encrypted to make physical packet sni�ng ine�ective�
The current Khazana prototype enforces the basic ac�
cess control mechanism� but is not integrated with an

addr�t put�in�global�buf� sz� key�

char �buf� �� Data to be stored ��

size�t sz� �� Size of data ��

key�t key� �� Security key ��

�

addr�t addr�

lock�context�t lock�

�� Reserve address space for �buf	 ��

�� and specify write
invalidate prot� ��

kh�reserve��addr� sz� key� WT�INV��

�� Allocate physical storage ��

kh�allocate�addr� sz��

�� Get exclusive �write� access ��

kh�lock�addr� sz� WRITE� �lock� key��

�� Store �buf	 in allocated region� ��

kh�write�addr� lock� buf��

�� Unlock region� which pushes data ��

�� to persistent storage� ��

kh�unlock�lock��

return�addr��




Figure �� Simple Khazana Programming Example�
Stores buf in Khazana and returns 
���bit address of
where it was stored�

authentication service nor does it encrypt its commu�
nications�

Using Khazana�s Core Layer Directly� Pro�
gramming directly on top of Khazana�s core layer is
similar to programming on top of a DSM system� Data
structures that an applications wishes to share with
other applications or other instances of itself running
on other nodes are allocated and stored in Khazana re�
gions� A clustered application� such as the �le system
described in Section 	��� can start multiple instances of
itself� each of which independently can access and mod�
ify the same application �objects� by mapping� lock�
ing� accessing� and unlocking the objects� constituent
Khazana regions� Depending on the consistency pro�
tocol selected for the region
s�� Khazana can enforce
strict mutual exclusion�style locking semantics� such as
is required by a �lesystem or a loosely coherent update
protocol� such as is appropriate for interactive group�
ware applications�

Figure � presents a bare bones example of using the
basic Khazana operations� In this example� the appli�
cation wishes to store a bu�er into Khazana space� and
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protect it with a particular secret key� It �rst must re�
serve enough address space and allocate enough phys�
ical storage to hold the data� As part of the reserve
operation� it speci�es the secret key that must be used
to access the region in the future� as well as indicat�
ing that the region should be managed using the write
invalidate protocol 
WT INV�� The application then ac�
quires exclusive access to the region� initializes its con�
tents� and signals completion of the write operation by
unlocking the region� In this case� locking the data is
super�uous� since no other node knows of the region�s
existence and thus there can be no data races on ac�
cess to it� However� it is also true that the lock will be
held in the application�s address space 
in the smart
client�� so the overhead of executing these super�uous
operations is small�

Once data is placed in Khazana space� any num�
ber of clients can access it� They only need to know
its address and access key� They coordinate access to
the data using fairly conventional locking mechanisms�
which enforce the speci�ed level of concurrency control�
In the case of the write�invalidate protocol� locking is
strict� meaning that either one node can hold a write
lock or an arbitrary number of nodes can hold a read
lock� Clients need not concern themselves with how
many other nodes are accessing the region 
or portion
of a region� nor where the data is physically stored or
cached� As long as they obey the locking semantics as�
sociated with their selected consistency protocol� they
are guaranteed correct behavior� It is up to Khazana�s
caching policies to provide e�cient performance� for
example by automatically replicating or migrating data
to nodes where it is being accessed frequently or that
historically respond to requests most quickly�

� The Khazana Object Layers

Khazana�s �at shared storage abstraction works well
for some services 
e�g�� �le systems and directory ser�
vices�� but it is a poor match for applications that use
�reference�rich� data structures or legacy applications
written in object�oriented languages� The Khazana ob�
ject layers are intended to simplify the use of Khazana
for building these kinds of applications� Its design
evolved as we gained experience converting the xfig

drawing program into a groupware application built
on Khazana� We found that the �at storage abstrac�
tion exported by the core Khazana layer needed to be
extended in a number of ways to support a broader set
of applications�

First� applications with complex data structures
need to be able to embed references within their shared

data� Khazana�s address space is much larger than a
single machine�s virtual address space� so references
to Khazana data cannot be mapped to virtual ad�
dresses� Without some level of runtime support� ap�
plications must swizzle Khazana addresses into local
virtual memory addresses� and vice versa� by hand � a
tedious chore that can be automated�

Second� a purely pull�based coherence model� where
changes to data are only detected when a client locks
the data� is a poor match for interactive applications
that wish to be noti�ed when state that they care
about changes� In a shared memory system� this is
equivalent to needing signals in addition to locks� In
general� such applications can bene�t from some form
of signaling or push�based coherence�

Third� applications like xfig tend to have a large
number of objects of varying sizes� many of which are
�ne�grained� As such� a ��kilobyte page may hold
many individual objects� Implementing �ne�grained
variable�sized objects on a page�based system without
adequate support for �ne�grained sharing can lead to
ine�cient space utilization and false sharing� which can
result in poor performance�

Finally� moving data to the computation is not al�
ways the right execution model� When an application
wants to make a small change to a large data structure�
or when it will not reuse a data structure and thus
would get no bene�t from maintaining a local cached
copy of it� it is better to move the computation to an
existing instance of the data rather than replicating it�
Thus� some form of transparent RPC or RMI support
is needed�

Khazana�s object layer addresses these problems by
providing an e�cient and largely transparent environ�
ment for manipulating persistent objects that are then
stored and shared via Khazana�s shared address space�
It layer consists of two parts� a language�independent
layer and a language�speci�c layer � The language�
independent layer supports basic operations to manip�
ulate arbitrary�sized 
not just page�sized� data objects�
These operations include mechanisms to allocate�free
persistent objects� retrieve objects into virtual memory
in a synchronized way� store them persistently� con�
vert persistent references from�to in�memory virtual
addresses� and manage an in�memory cache of objects�
The language�independent layer does not address such
vital issues as dynamic type identi�cation and check�
ing� object access detection and loading� class inheri�
tance� or transparent concurrency control 
via locking��
Instead� these issues are handled by each language�
speci�c layer�

At the core of our current C�� object�layer is a
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struct Emp�Record �

Date Start� Finish�

int Salary� 
�

class Person �

string Name� Address�

Date DOB�

��� 
�

class Employee� public Person �

Emp�Record My�Record�

�� Smart pointer that refers ��

�� to a �persistent� object� ��

Ref �Person� Supervisor�

��� 
�

Figure 	� Simple Khazana C�� Type Declara�

tions� The Emp Record and Person classes are normal
C�� class declarations� Employee� however� contains
a reference to a persistent object� Supervisor� When�
ever the program traverses such a reference� e�g�� via
emp��Supervisor� the object is loaded from Khazana
automatically� if necessary�

preprocessor that parses conventional class declara�
tions and augments them with overloaded new and
delete operators� special constructors� and synchro�
nization methods� Objects created from these aug�
mented classes can then be stored and retrieved trans�
parently to�from the shared store� In addition� the
preprocessor generates support libraries that imple�
ment class metadata reinitialization and maintain a
static cache for information relevant to the objects�
state of consistency 
e�g� their lock contexts and in�
tents�� Changes introduced by the preprocessor do not
modify object layout and thus can be integrated trans�
parently to other modules of the program that are not
converted by the preprocessor�

Writing a Khazana�based C�� Program� To
write a Khazana C�� program� a programmer �rst
declares the classes whose objects will be stored and
manipulated by Khazana� Figure 	 contains an exam�
ple of such class declarations� In this example� there
are three persistent types 
Emp Record� Person� and
Employee�� Emp Record and Person contain only sim�
ple data that can be loaded and stored directly from
the Khazana store without interpretation� Employee

objects� on the other hand� contain a reference to an�
other persistent object� Supervisor� which must be
handled carefully�

Running this header �le through our C�� prepro�
cessor produces a set of header and C�� �les that are
used to support these classes� In addition� the prepro�

class Employee� public Person �

���

Employee �KhClass kh��

Person�kh��

MyRecord �kh��

Supervisor�kh�

����
�

Bool lock�op�mode�t opmode��

Bool unlock���

void� operator new�size�t size� KhClass kh��

void� operator new�size�t size� void �mem��

void� operator new�size�t size��

void operator delete�void� local�ref��

���




Figure �� Methods added to Employee class by

Khazana C�� preprocessor� The new construc�
tor� Employee�KhClass kh�� is called when loading an
existing persistent instance of class Employee into the
local memory� The lock and unlock operations are for
Khazana synchronization� The three added new oper�
ators are used to create a new persistent object� to
load 
reinitialize� an existing persistent instance of an
Employee object� and to create a new local instance of
an Employee object� respectively�

cessor adds several non�virtual methods to the classes
that have been declared� Figure � shows the meth�
ods that the preprocessor adds to the Employee class�
Some of these methods� like the ones used to load and
reinitialize the data� are transparent to the program�
mer� Others� like the lock and unlock methods� are
provided for programmers to insert in their code to
implement concurrency control� when and where ap�
propriate�

The set of support �les produced by the prepro�
cessor extends a number of object�oriented features of
C�� to the persistent distributed environment of Kha�
zana� It supports automatic class loading� which is ac�
complished statically� Persistent object creation and
management is done transparently by utilizing spe�
cial constructors� overloaded new and reimplemented
delete operators� The C�� layer appends a spe�
cial type information tag to each instance of an object
stored in Khazana� and uses it for object loading and
dynamic type checking� Persistent references 
Object
IDs� or oids� are generally hidden from the programmer
and are swizzled and unswizzled automatically through
the use of smart pointers� Concurrency control han�
dlers are generated by the preprocessor for each class�
Finally� the preprocessor generates additional code to
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int kh�object�swizzle �void� obj� int type� �

KhClass kh�

switch �type�id� �

case TYPE�CLASS�A �

obj � new�obj� A�kh�� break�

case TYPE�CLASS�B �

obj � new�obj� B�kh�� break�

���


return ��




Figure �� Object initialization� When a persistent
object is �rst loaded into memory� it is automatically
initialized using the special new operator added by the
C�� preprocessor� The type of the object is stored in
a special tag with each persistent object instance�

support RMI� The details of these mechanisms are de�
scribed below�

Class loading� Class usage detection and loading
occurs at compile time� Instead of storing the class
metadata 
including the member and reference lay�
out� method information� and class type and hierar�
chy information� as a separate persistent schema ob�
ject� classes are linked at compile time� The C�� pre�
processor parses user�speci�ed class declarations and
adds several methods that allow transparent object
loading and synchronization�

Object loading� Objects are brought in from Kha�
zana to virtual memory at the time of �rst access� Ob�
jects in Khazana are addressed by a unique Object�
ID 
oid�� Currently� an oid is the same as the 
���
bit Khazana address where the object has been stored�
However� the language�independent layer may choose
to prefetch objects in addition to the one requested�
All objects that are brought in to local memory must
be initialized� which is done via a callback mechanism�
An example of how this is done is given in Figure ��
The language�speci�c layer registers a callback func�
tion� kh object swizzle��� that is called any time a
new object is mapped into local memory� This function
reinitializes the object 
e�g�� setting up vtbl pointers�
so that it resembles an object of the same class that
has been created locally� Similarly� the C�� layer pro�
vides a callback that is called every time an object is
�ushed� This design allows any conversion between the
in�memory representation and the persistent 
unswiz�
zled� Khazana representation to be made as lazily as
possible�

Reference swizzling� We implement references to
persistent objects using a smart point template class�

called Ref�T�� where T is the type of the object to
which the reference points� The Supervisor reference
in the Employee class is an example use of this facil�
ity� Smart pointers have been discussed previously� so
we will not go into the details of the implementation
here �
��� The overloaded dereference operators enable
us to trap object access and thereby transparently con�
vert the oid into a local memory reference� This may
involve fetching and reinitializing the object�

While smart pointers ensure that programmers can
use pointers to Khazana objects just as they would use
pointers to regular objects� there is some performance
overhead� In particular� every smart pointer access
involves a table lookup� Programmers can avoid this
problem by caching the pointer to the local copy of
the object� rather than always accessing the object�s
contents via its persistent reference 
smart pointer��
While an object is locked� it is guaranteed not to move
in local memory� so during this time the pointer value
may be cached and a per�access table lookup can be
avoided�

Remote method invocation� The object layers
build on the underlying Khazana coherence manage�
ment hooks� described in Section �� to implement RMI�
Recall that the kh register�� interface lets applica�
tions register a callback function to be invoked when
certain events occur� while kh update�� allows a pro�
gram to send an arbitrary application�level �update�
message to one or more remote instances of an object�
For each class that has been annotated to be �immo�
bile�� meaning that operations on it should be per�
formed via RMI� the C�� preprocessor generates two
classes� �stubs� and �real classes�� similar to a nor�
mal RPC stub generator� Which sets of routines 
stub
or real classes� gets linked to an application depends
on whether or not it indicated that the objects were
immobile 
stubs� or normal 
real classes�� To support
RMI� server stubs register interest in �updates� to the
object using the kh register�� interface� The client
stub on the sending side of the RMI marshals param�
eters into a packet and hands it over to Khazana CM
via the kh update interface� To the CM� it looks like
a regular object update� which it propagates to the re�
ceiving node and passes up to the registered callback
function of the application running there � the server
stub� The roles are reversed for propagating responses�
In this way� Khazana is able to support both DSM�like
�migrate the data� style distributed computing and
RPC�like �migrate the computation� style distributed
computing on top of a common storage management
platform�

Event noti�cation� Khazana allows applications
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to register interest in Khazana�internal events� In ad�
dition to supporting RMI� this facility can be used to
signal applications in response to modi�cations to spe�
ci�c regions� changes to region attributes such as the
security token� and changes to the set of nodes caching
a particular region copy location� This facility is used
by the shared whiteboard program described in Sec�
tion 	��� Each instance of the whiteboard application
is noti�ed when another node modi�es the drawing�
so it can redraw the screen without having to poll� an
expensive operation across a network� Noti�cation ser�
vices like this have proven useful in a variety of interac�
tive� groupware�style applications �

�� Currently our
update and noti�cation mechanisms are serial� but we
are considering exploiting a lightweight reliable mul�
ticast protocol� such as SRM �
��� to make it more
e�cient�

Operations not supported� The language�
independent layer does not provide certain services
that might be expected from a full blown distributed
object system� In particular� it provides no level of au�
tomatic garbage collection nor any form of automated
data format conversion to support heterogeneous exe�
cution environments� We also do not currently support
atomic transactions as primitive operations at either
the core or object layers� assuming instead that when
necessary they will be built as part of a higher level
library� These decisions may change as we gain more
experience using Khazana�

� Evaluation

In this section� we describe a series of experiments we
have performed on Khazana to determine how e�ective
it is at making distributed application development 
or
porting� easy� In Section 	�
� we report the perfor�
mance of fundamental Khazana operations 
e�g�� the
time to lock and access regions of data under varying
circumstances�� We also present the results of three
whole application experiments� the Khazana �le sys�
tem 
Section 	���� a Khazana�based name service 
Sec�
tion 	���� and a port of the xfig drawing program to
Khazana�

We ran all experiments on dedicated ���MHz Pen�
tiumPro workstations running FreeBSD� connected by
a 
��Mbps Ethernet� All the benchmarks were per�
formed on regions with ��kilobyte pages�

The bu�er caches in the smart clients were con�g�
ured to be large enough to hold all of the experimental
data� By con�guring the bu�er cache so� we avoid
spurious con�ict misses and can easily control when a

request would hit in the local client bu�er cache and
when it would be required to invoke a remote server�

��� Microbenchmark Performance

Table 
 presents the results of a series of microbench�
marks performed on Khazana� The Null RPC and
Send Page times were measurements of the IPC sub�
system underlying� with no Khazana operation is in�
volved� Thus� they represent the raw performance
lower bound�

The �rst set of numbers reported in Table 
 are for
a single client and a single BServer running on a dif�
ferent node� kh reserve requires little more than a
null RPC time� The time to kh allocate storage for
a region� however� increases with the number of pages
to be allocated� This is because this operation must
perform disk I�O� The Cold fetch numbers refer to the
time taken by kh read to fetch data stored in the re�
mote BServer� These results are consistently close to
double the raw data transfer times� indicating that the
performance of large data transfers needs to be im�
proved� The di�erence between the Cold fetch results
and the raw data transfer times represents the over�
head of receiving and manipulating the data in page�
sized chunks� kh unlock takes very little time because
it is a local operation in the �smart client�� The smart
client will normally keep the data in its local cache
in the expectation that the local client will access it
again soon� It does periodically �ush its cache� but
this is an asynchronous operation� and thus its impact
is not re�ected in these results� kh flush operations
take slightly longer than the corresponding �cold fetch�
owing to the extra overhead of ensuring that all the
data is reliably �ushed to the server�

Warm fetch refers to a kh lock�kh write pair that
does not need to fetch the data from the server� In
this case� the client already has the data read locked�
and wishes to upgrade the lock to a write lock� In
that case� the client merely upgrades its lock with the
parent and does not incur the overhead of fetching the
data since it is already cached locally� It is in the case
of the �warm fetch� and kh unlock that the smart
client�s complexity results in signi�cant performance
wins compared to the thin client library� Recall that
all data fetch operations translate into a data send over
the network in the thin client� since the library does
not o�er any caching� The smart client thus e�ectively
exploits locality in data access to improve performance�

The bottom of Table 
 presents our measurements
for the same operations when they are spread over two
servers by the same client� In particular� the client
performs the kh reserve at one server and approaches







the other server for all other operations� This is anal�
ogous to the case of applications like the �le server
where one instance of the application kh reserve�s an
entire region and individual instances of the program
kh allocate and access parts of that region as the
need arises� All of the numbers match those of the sin�
gle client and server case except for the time taken by
kh allocate� In this case� the additional delay may be
ascribed to the fact that Khazana attempts to allocate
storage for a region as close as possible to the request
for storage� As a result� the kh allocate operation
is implemented similar to a ��phase protocol with the
home node where the region was reserved acting as the
coordinator�

��� Clustered File Service

In this section we describe our experience porting the
Linux �le system 
ext�fs� to use Khazana for its per�
sistent storage� Our goal was to evaluate how easily
an existing single�machine service could be ported to
Khazana� thereby creating a distributed version of the
service� We also wanted to evaluate how well the re�
sulting clustered �le service performed under load�

We started out with an OSkit �
�� port of ext�fs
that implements ext�fs as a user�level library� We
modi�ed ext�fs�s bu�er cache to use the smart client�s
kh lock operation to lock each bu�er cache entry in ex�
clusive mode before accessing it and to use kh unlock

when it was through with the cache entry� Since the
smart client caches page locks� lock requests after the
initial copy of a �le system block is fetched from a
BServer can be handled locally� We modi�ed ext�fs

to fetch the superblock in read�only mode except when
modifying� We refer to the modi�ed user�mode �le sys�
tem as BFS�

We used the userfs ��	� public domain library pack�
age to allow BFS to be mounted via the Linux kernel�s
VFS 
virtual �le system� interface via the mount sys�
tem call� We also modi�ed the Linux mke�fs program
to reserve� allocate and format a Khazana region as
an ext� �lesystem� By running multiple instances of
BFS on di�erent nodes in the system� we get what is
in e�ect a clustered �le server� After making these
fairly modest changes to the ext�fs library� we had a
working clustered version of ext�fs��

Unfortunately� the initial implementation su�ered
serious performance problems because it always locked
bu�er cache blocks in exclusive mode� Since ext�fs

was written as a single�node �le system� there was

�We also found and removed quite a few bugs in the ext�fs

and userfs sources� which took far more time to handle than

the changes required to Khazana�ify them�

no reason for it to distinguish between read locks and
write locks� So� despite the fact that most bu�er cache
accesses only involve reading the data� cache entries
were write locked� which led to extensive shuttling of
�le system blocks between the BFS instances� To at�
tack this problem� we hand modi�ed ext�fs to indicate
the mode of access explicitly while fetching blocks from
the bu�er cache� Thus� in the common case� when the
�le system operation merely needed to read the con�
tents of the bu�er cache� we only needed to acquire
a shared lock� which signi�cantly reduces the amount
of communication Khazana needed to perform to keep
data consistent�

To evaluate the performance of our clustered version
of ext�fs� we ran the Andrew benchmark suite on a
number of con�gurations of the system� First� to give
us a baseline to compare against� we ran a single�client
version of the Andrew benchmark against a single�node
instance of ext�fs running directly on top of Linux�
This experiment took 
���	� seconds to complete�

After determining a baseline for our performance�

we varied the number of clients from one to four� On
each client node we ran an instance of the Khazana�
i�ed version of ext�fs� which the client used as the
�le server for its run of the Andrew benchmark� In
this experiment� the clients can exploit the caching
ability of the Khazana smart client to avoid commu�
nicating with the 
logically remote� ��le server� when
possible� The results of this set of experiments can be
found in Figure �� From this experiment we can see
that Khazana�ifying ext�fs adds about ��� overhead
compared to the non�Khazana version when running a
single client and server 
������ seconds versus 
���	�
seconds�� However� performance is quite stable as we
increase the number of clients running the benchmark�
Even when the load is increased by a factor of four� per�
formance only degrades by ��� 
from ������ seconds
to as much as ������ seconds��

In summary� porting single�machine ext�fs to run
as a clustered �le system on top of Khazana was rela�
tively simple and involved very localized modi�cations
to ext�fs� The set of modi�cations needed to re�
duce communication overhead� viz� changing ext�fs

to specify access modes during block access� though
more extensive� was conceptually straightforward� Our
initial performance results showed that this port re�
sulted in a version of the �lesystem that was approx�
imately ��� slower than the initial version� but with
good scaling� We believe these results are quite con�
servative� since we have not yet put great e�ort into
making Khazana highly e�cient�
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Con�guration Operation Number of �kB Pages

 � 
� �	

null RPC �����
Send page 
�
�
 ��	�� 	���� 
�����

One kh reserve �����
Server kh allocate ���	� ����� 
���� �����
One Cold fetch 
�
�
 ����
 

�	�� ������
Client kh unlock ���
	 
���� ����
 
�����

kh flush 
���� ���

 
����� n�a
Warm Fetch 
���� 
���	 
���� 
����

Two Servers kh reserve 
�
��
One Client kh allocate ���
� ��	�� ����
 �����

Table 
� Khazana Microbenchmark Results 
All times are in milliseconds�

Client 
 Client � Client � Client �

 client ������ � � �
� clients ����
	 �
�	��
� clients �	���
 ���	�� ������
� clients ������ ���	�� �	���	 ������

Table �� Khazana Clustered File Server Results 
All times are in seconds�� In this experiment� we ran the Andrew
benchmark on from one to four nodes� We ran one BServer� on Client 
� one instance of ext�fs with the smart
client per benchmark client� The baseline performance of a single Andrew benchmark client running directly on
top of a user�level ext�fs �le system is 
���	� seconds�

��� Directory Service

The Khazana directory server is a B��tree of �xed�
page�size nodes that maps a key that includes a vari�
able length symbolic name to a set of values� The B��
tree is an e�cient data structure for indexing a set of
tuples based on a key value� For instance� it is used ex�
tensively in databases� It is often used as the primary
data structure when implementing a centralized direc�
tory�name service that maintains mappings from sym�
bolic names to directory information 
e�g�� mappings
from machine names to IP addresses� as in DNS��

Typical directory services are characterized by fre�
quent lookups� but relatively infrequent updates� To
evaluate the performance of a directory service with a
B��tree as its central data structure on Khazana� we
took a straightforward single node B��tree implemen�
tation and ported it to run on Khazana using the smart
client interface�

In our implementation� every B��tree operation
locks two levels worth of B��tree nodes at a time in
exclusive mode as it descends the tree� The tests we
ran on the B��tree were deliberately designed to gen�
erate high contention for locks to test the worst�case
performance of Khazana�

Table � shows the average and total times to in�
sert 
name� value� pairs into an empty B��tree imple�
mented using a �le on a Unix �lesystem and the same
B��tree implemented on top of Khazana� To obtain
the numbers in the �rst two rows� ��
 names were in�
serted into a B��tree of node�size 	
� bytes� The Kha�
zana version of the test was run with a BServer pro�
cess and B��tree process on the same machine� The
B��tree running on top of Khazana is approximately
� times slower than the local �lesystem version� This
is mainly due to the context switch overhead between
the B��tree and Khazana server processes�

To obtain the next three rows of results� �fty 
name�
value� pairs were randomly picked up from a static
�le with ��
 entries and inserted into an empty B��
tree by each of one� two� and three B��tree processes
respectively� The unusually high average insert time on
some of the entries was due to the transient starvation
for exclusive locks on B��tree nodes�

��� Shared Whiteboard

xfig is a freely available drawing tool for X Windows
on Unix written to run on a single processor machine�
Our port of xfig to Khazanaallows users on multiple
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Client 
 Client � Client �
Average Total Average Total Average Total
Time Time Time Time Time Time

Non�Khazana Local �lesystem ���� ��	��

 Client ��	� �����

Khazana � Clients ����� 
���� ���	 
�	��
� Clients 	���� ����
 ���	 ����� ���� �����

Table �� Directory Service Performance 
milliseconds�

machines to share and collaboratively edit a drawing�
This shared whiteboard example di�ers from the dis�
tributed �le service and distributed directory service
examples in the following ways�

� It is a collaborative �groupware� application that
makes extensive use of pointers in its data struc�
tures�

� It manipulates objects at a �ner grain than the
page size of the regions involved� In fact since the
objects that it manipulates vary in size from as
small as � bytes to about 
�� bytes� there is no
common object size that one may choose as the
region page size�

The di�culties we faced in our port of xfig to run
directly atop the core layer of Khazana motivated the
design of object layers� as described earlier�

xfig maintains linked lists of objects 
lines� arcs�
points� etc�� Every time an object is created or mod�
i�ed� these lists are modi�ed to re�ect the change�
While this design works well as a uniprocessor pro�
gram� it presents several challenges when converted
into a distributed application� Persistent references to
shared graphical objects must be swizzled into virtual
memory pointers prior to their use� In addition� since
objects are no longer modi�ed by just one instance of
the program� there must be a way for remote instances
of the program to determine when the object list is
changed that they will update their display� Finally�
since many small objects usually reside on the same
page� care must be taken to ensure that false sharing
does not ruin performance�

To create a distributed version of xfig� we made a
series of source�level changes to the original program�
First� we converted all object references in shared data
structures into Khazana smart pointers� which auto�
mated the process of swizzling and unswizzling these
references� Next� we overrode the default versions of
malloc and free with versions that allocated objects
from a persistent Khazana region� Then� to enforce

concurrency control when multiple clients attempt to
modify the drawing� we surrounded all accesses to
shared data structures with locks � setting the mode

read or write� appropriately� This part of the port�
ing e�ort could not be handled automatically by our
object layer support� Normally� all pages were locked
in �listen� mode� In this mode clients are informed�
via an upcall� whenever there is a change 
update� to
the page� Read locks were used when the program
navigated the data structure 
e�g�� when it was updat�
ing its display� and write locks were used when the
drawing was being changed� All data structure navi�
gation has to be done with a read lock on the data�
As in our distributed �le service� the determination of
what lock operation was appropriate at any given use
of the shared data was determined manually The �nal
change involved adding a callback routine that invokes
the generic redisplay canvas�� function whenever a
change event occurs� One can imagine more sophis�
ticated upcalls being written that act appropriately
based on the change itself�

The original port of xfig to Khazana�s core
layer involved changes to almost all the source
�les to ensure that pointers are swizzled and
kh lock���kh unlock�� statements inserted� and 	��
lines of new code for the allocator and the glue code
between Khazana and xfig� The object layer support
signi�cantly reduced the amount of work required to
handle the object issues� although we had to spend
considerable time and e�ort to port xfig� a C pro�
gram� to C�� so that our preprocessor could handle
it�

The results of the port are encouraging� As Table �
shows� the time taken for a change on one whiteboard
screen to be propagated is tiny compared to the time
required to update the display� The numbers reported
here are for modifying a single object� but the results
will not change signi�cantly with a change in the num�
ber of objects since the overhead is so small compared
to the rate of display updates� Additionally� since Kha�
zana only transmits the changed object to all sharers�
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the number of objects on the screen would not impact
the time required for data to be available to all par�
ticipants� Overall� the performance impact of porting
xfig to Khazana is an increase in redisplay time of
about 	��� We expect that those numbers would re�
main largely constant for all drawing sizes� Users also
do not experience any unreasonable delay in reading a
saved picture from Khazana as opposed to that from a
�le�

� Related Work

The goal of Khazana closely resembles that of the
Apollo Domain system from over a decade ago ���� �
a universal distributed storage infrastructure on which
large classes of applications and services can be built�
Domain provided a system�supported abstraction of a
shared address space spanning multiple workstations
that could be used to communicate between appli�
cations� For example� clients could invoke �le sys�
tem operations by mapping the appropriate �le sys�
tem metadata into their address space and operating
on this metadata themselves� A number of lessons
were learned from this e�ort� In particular� directly
exposing the internal representations of operating sys�
tem data structures made it di�cult to evolve the sys�
tem over time � some form of data hiding� such as is
present naturally in object systems� is useful� We ad�
dress this problem by not requiring that all distributed
services use Khazana�s shared storage abstraction� For
example� Khazana�s core layer abstractions can be used
to support inter��leserver clustering and client data
caching� but directory operations could be buried in�
side of library routines or performed via RPC opera�
tions�

Distributed object systems 
e�g�� Emerald��
�� Mon�
ads ����� CORBA�
��� and Legion �
��� provide uni�
form location�transparent naming and access to het�
erogeneous networked objects� In these systems� ser�
vices can export a well�typed set of object interfaces
to clients� which can invoke operations on service ob�
jects by binding to a particular instance of a service
interface and invoking said service� The addition of
object brokers � such as are present in CORBA �
���
provided a degree of location transparency� and the ad�
dition of an object veneer made it easier for servers to
change their internal implementation without impact�
ing their clients� However� these systems proved to
be e�ective primarily when used to support the same
type and granularity of services previously supported
by ad hoc client�server systems� large servers export�

ing coarse grained operations on large datasets 
e�g��
mail daemons and �le servers��

Building distributed applications and services on
top of Khazana is analogous to building shared memory
parallel applications on top of a software distributed
shared memory system� DSM systems provide a purely
shared memory abstraction ���� �� 
�� which can sup�
port the e�cient execution of shared memory parallel
programs �
��� However� these systems are not well�
suited for supporting distributed systems applications�
such as �le systems and name servers� They do not
support a number of elements critical to such appli�
cations� data persistence beyond the execution of a
single program� security� e�cient high availability� and
the ability for multiple independent applications to ac�
cess and modify shared data�

Many contemporary projects closely resemble Kha�
zana � we can only touch on a few of them here�

Khazana is closest in spirit and design to Perdis �
	�
and Globe����� Both provide functionality similar to
Khazana but use distributed shared objects as their
base abstraction� Like Khazana� however� both sys�
tems expose the lower level storage layer to applica�
tions that wish to avoid the overheads associated with
a strictly object�based model� Their reasons for em�
ploying a multi�layer design is based on similar expe�
rience to our own � forcing all applications to use a
single abstraction 
in this case� objects� is ine�ective
and ine�cient� We �nd it interesting that they came to
the same conclusion despite starting from the opposite
abstraction 
distributed objects� as we did 
distributed
virtual disk��

Petal���� exports the notion of a distributed virtual
disk� It has been used to implement Frangipani�����
which is similar to our clustered userfs�based �le sys�
tem� Petal works at a lower level than Khazana� in
particular it provides no means of consistency manage�
ment� Petal was conceived as a globally accessible� dis�
tributed storage system� On the other hand� Khazana
attempts to provide infrastructure for the development
and deployment of distributed services� In general�
many distributed services with �ne�grained objects are
likely to �nd the �le abstraction to be too heavyweight�

GMS�
�� allows the operating system to utilize
cluster�wide main memory to avoid disk accesses�
which could support similar single�cluster applications
as Khazana� However� GMS was not designed with
wide area scalability� persistence� security� high avail�
ability� or interoperability in mind� which limits its ap�
plicability�

Bayou�
�� is a system designed to support data shar�
ing among mobile users� Bayou focuses on providing


	



Client A Client B Client C Original x�g
Data available 
ms� ��
�� ����
 ����

Redisplay time 
ms� ���	 ������ ������ 	���
�

Table �� Shared Whiteboard Performance 
milliseconds�

a platform to build collaborative applications for users
who are likely to be disconnected more often than not�
It is most useful for disconnected operations and uses a
very specialized weak consistency protocol� In the cur�
rent implementation� Khazana does not support dis�
connected operations or such a protocol� although we
are considering adding a coherence protocol similar to
Bayou�s for mobile data�

Like Khazana� xFS��� rejects the use of servers and
instead use a collection of peer processes to support a
distributed system service� However� like Bayou�
���
xFS was designed to meet the restricted goals of a
�lesystem� and as such is inappropriate for support�
ing general system services and applications�

Finally� object databases ��� ��� provide the neces�
sary distributed storage abstraction� but most are im�
plemented in a client�server environment and the sys�
tems we know of were not implemented with wide�area
networks and high scalability in mind� Therefore� they
do not have the degree of aggressive caching and repli�
cation provided by Khazana�

� Conclusions

Currently� distributed applications must implement
their own data management mechanisms� because no
existing runtime system can support the very di�er�
ent needs of each application e�ciently� We have
built Khazana to demonstrate that a single distributed
runtime system can support a wide range of applica�
tions with reasonable performance� Khazana consists
of three layers� 
i� a base layer that exports a �at global
address space abstraction� 
ii� a language�independent
distributed object layer� and 
iii� a collection of lay�
ers that export language�speci�c distributed object ab�
stractions 
e�g�� C�� and Java�� Khazana provides
programmer�s with con�gurable components that sup�
port the data management services required by a wide
variety of distributed applications� including� consis�
tent caching� automated replication and migration of
data� persistence� access control� and fault tolerance�

We reported on our experience porting three appli�
cations to Khazana� a distributed �le system� a dis�
tributed directory service� and a shared whiteboard�

As we showed via our experience porting ex�fs and
building a directory service from scratch to run atop
Khazana� the base layer�s simple ��at� data abstrac�
tion is a good match for certain types of applications�
such as �le systems and directory services� For exam�
ple� when we ran the Andrew �lesystem benchmark
on the Khazana version of ext�fs� it was only ���
slower on four nodes than on one node despite qua�
drupling the workload� The directory service demon�
strated similarly solid performance� What makes these
results particularly heartening is that Khazana is still
fairly untuned� and we should be able to improve the
performance of the core system substantially when it
becomes a major focus�

While porting xfig to Khazana to create a shared
whiteboard program� however� we found that an
object�like extension to Khazana could bene�t ap�
plications with small data structures interconnected
via pointers� In particular� manually swizzling every
pointer to a �shared� graphical object was very tedious
when done by hand� This problem motivated Kha�
zana�s support for objects� The object layers provide
functionality� such as automatic reference swizzling
and remote method invocation� appropriate for appli�
cations with complex data structure like our shared
whiteboard program� When we reimplemented xfig

using our object layer support� performance remained
the same as in the original hand�coded version� easily
within the bounds of tolerance for human perception�
In general� we believe that we have demonstrated that
Khazana can be used to quickly implement a variety
of distributed applications at a reasonable cost�

In summary� the contributions of this paper are�

� We demonstrate that a single distributed runtime
system can support a wide range of applications
with reasonable performance 
within 	�� of the
performance of hand�tuned versions of the appli�
cations� even using a very untuned version of Kha�
zana��

� We provide insight into how such a runtime system
should be organized�

� We demonstrate the bene�ts of combining ele�
ments of distributed shared memory� distributed
�le systems� and distributed object systems�
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Future work will be focussed in four areas� 
i� im�
proving the performance� scalability� and fault toler�
ance of the core Khazana layer� 
ii� greatly expand�
ing the number of distributed applications run on top
of Khazana to identify issues that we may have over�
looked in our initial design� and 
iii� adding support
for a Java object layer�
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