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Design and Validation of a Simultaneous
Multi-Threaded DLX Processor

Hans Jacobson

Abstract| Modern day computer systems rely on two
forms of parallelism to achieve high performance, parallelism
between individual instructions of a program (ILP) and par-
allelism between individual threads (TLP). Superscalar pro-
cessors exploit ILP by issuing several instructions per clock,
and multiprocessors (MP) exploit TLP by running di�erent
threads in parallel on di�erent processors.
A fundamental limitation of these approaches to exploit

parallelism is that processor resources are statically parti-
tioned. If TLP is low, processors in a MP system will be idle,
and if ILP is low, issue slots in a superscalar processor will
be wasted. As a consequence, the hardware cannot adapt
to changing levels of ILP and TLP and resource utilization
tend to be low.
Since resource utilization is low there is potential to

achieve higher performance if somehow useful instructions
could be found to �ll up the wasted issue slots. This pa-
per explores a method called simultaneous multithreading
(SMT) that addresses the utilization problem by letting
multiple threads compete for the resources of a single pro-
cessor each clock cycle thus increasing the potential ILP
available.

I. Introduction

To achieve high performance, modern day computer sys-
tems rely on two forms of parallelism in program execution.
Wide issue superscalar processors try to exploit instruction
level parallelism (ILP) that exists within a single program
and issue multiple instructions per cycle. However, even
aggressive superscalar implementations that use dynamic
hardware scheduling to extract parallelism cannot take full
advantage of the resources of a wide issue processor due to
inherent control and data dependencies between instruc-
tions of a single program. Since the resources in the su-
perscalar case are statically allocated to a single program,
resources (issue slots) are wasted when there is not suÆ-
cient ILP available in that program. Figure 1(a) illustrates
the vertical and horizontal issue slot waste that can take
place in a superscalar processor. Horizontal waste occurs
when the scheduling logic cannot �nd enough instructions
to issue to �ll up all issue slots this cycle, i.e. there is a lack
of ILP available. Vertical waste may occur when a cache
miss or data dependencies hinders the scheduling logic to
issue any instruction this cycle.
Multiprocessors (MP) try to exploit thread level par-

allelism (TLP) that exists either between parallel threads
derived from a single program, or between completely inde-
pendently executing programs. The individual processors
in the MP system can su�er from vertical and horizontal
issue waste as in the superscalar case. In addition, an MP
system can su�er from thread shortage which leaves some
processors without a program to execute. Resources in
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these idle processors are thus wasted due to lack of TLP as
shown in Figure 1(b). A typical example of thread shortage
is when a program that has been parallelized into multiple
threads has to go through a sequential section of code.
Multithreaded (MT) processors [1] allow several thread

contexts to be active. Each cycle, one context is selected
and instructions from that thread are issued. MT pro-
cessors can thus address the problem of vertical issue slot
waste. Whenever a certain thread cannot issue any instruc-
tions this cycle, another thread that can issue is selected as
illustrated in Figure 1(c). While MT addresses the verti-
cal waste problem, the limitation that only one thread can
issue per cycle still leaves the problem of horizontal waste.
Simultaneously multithreaded (SMT) processors also al-

low several thread contexts to be active. Each cycle, in-
structions can be issued from multiple threads. SMT pro-
cessors thus address both vertical and horizontal waste.
Whenever a thread cannot issue any instructions during a
cycle, all other threads can still issue so vertical waste is
reduced. Whenever a thread cannot �ll all issue slots dur-
ing a cycle, instructions from other threads can compete
for and �ll up these slots thus reducing horizontal waste.
These situations are illustrated in Figure 1(d).
Statically partitioning processor resources puts a limita-

tion to how much parallelism can be exploited. The super-
scalar and MP processors statically partition the individual
processor resources to be used by only allowing one thread
to execute at a time. MT processors improve upon this
concept by allowing multiple threads to be on standby but
still only allow one thread to use the processor resources
per cycle. An SMT processor on the other hand has the
ability to dynamically adapt to varying levels of TLP and
ILP since each cycle multiple threads compete for avail-
able issue slots. By allowing multiple threads to issue in-
structions each cycle, TLP is e�ectively transformed into
ILP since there is no control or data dependency between
instructions belonging to di�erent threads. Subsequently,
given the same amount of resources, SMT has the potential
to do more useful work compared to the other approaches.
This has also been indicated by a comparative study of
SMT and MP architectures [2].

Project goals

The focus of this project has been the development, im-
plementation, validation, and evaluation of a simultaneous
multithreaded microprocessor architecture running DLX
native code. In this paper we will focus on the architecture
implementation and performance analyses of the processor.
We are mainly interested in �nding out how simultaneous
multithreading can help improve instruction throughput on
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Fig. 1. Horizontal and vertical issue slot waste in di�erent processor
architectures

an architecture with the same amount of resources that can
be found in todays single-threaded superscalar processors.
Details of the techniques used to validate correct processor
functionality through simulation, self-checkers, and hard-
ware emulation are also discussed.
Section II presents a baseline SMT architecture based

on the Tomasulo approach. In Section III we will discuss
shortcomings of this baseline architecture and how it can be
improved upon. This section will also examine cache miss
tolerance of the SMT architecture. Section IV will examine
the possibilities of exploiting multithreadings latency hid-
ing ability to avoid expensive hardware speculation, and
identify where SMT and non-speculative SMT processors
could be useful. Sections V and VI presents techniques
used to validate the correct operation of the processor.

II. A baseline SMT architecture

Since an SMT processor is basically a superscalar pro-
cessor extended to handle multiple threads this section will
�rst present a superscalar Tomasulo architecture that will
form the base of our integer SMT architecture.

A. An SMT Tomasulo architecture

The Tomasulo approach to dynamic hardware specula-
tion use three special stages to handle out of order and
speculative execution. The issue stage illustrated in Fig-
ure 2 checks for and resolves control and data dependencies
between instructions before issuing them to the reservation
station stage. As they are issued, each instruction is given
a unique reorder bu�er entry into which its result should
be written. A register data structure in the issue stage
keeps track of which reserved reorder bu�er entry holds
or will hold the latest updated value of a register operand.

The destination register and source operands of an instruc-
tion are thus renamed to these corresponding entries in the
reorder bu�er to avoid RAW, WAR, and WAW hazards.
After the instructions are issued, the reservation station

stage holds each instruction until it has received all needed
operands, either from the register �le, reorder bu�er, or
as a fed back result on the common databus. Once all
operands have been received the instruction is forwarded
to its respective function unit. The reorder bu�er collects
the results from the functional units and stores them tem-
porarily until the instructions can be committed at which
time the processor state is changed by writing the results
to the registers or memory. By issuing instructions and
reserving their reorder bu�er entries in order, the instruc-
tions can also be committed in order by treating the reorder
bu�er as a circular FIFO queue. Loads and stores in our
architecture are handled at commit time by the reorder
bu�er. Loads are blocking while stores are non-blocking.
Similarly, program counter addresses for branch mispredic-
tions are updated at commit time by the reorder bu�er1.
The presented superscalar Tomasulo architecture al-

ready have all basic features needed for a superscalar SMT
architecture. The only additions needed to support multi-
ple threads are:

� multiple program counters and a method to select one
to fetch from each cycle

� per thread instruction 
ush and trap mechanisms
� a larger register �le to handle all threads.

The only signi�cant impact on cycle time expected from
such moderate extensions to the baseline superscalar pro-
cessor is the larger register �le which may have to be
pipelined and take multiple cycles to access. However, nei-
ther register �le, instruction issue, execution, or commit is
signi�cantly more complex than that of the baseline super-
scalar processor.

B. Processor resources

We decide to keep as many resources as possible shared.
Thus the instruction queue, reservation queues, function
units, reorder queue, and caches are all shared between
threads. This way nearly all hardware resources are avail-
able even when only one thread is running. This is an
important feature in order to support high performance
under varying levels of TLP and ILP.
Instruction issue queue size is practically limited by the

number of operand comparisons that need to be done to
detect data dependencies which is a function of n2, where
n is the number of entries of the issue window. Having an
instruction queue larger than the window size only serves
as bu�ering and is only really useful to provide instructions
during a cache miss. Since the probability that the instruc-
tions at the end of the queue are actually useful (correctly
speculated) decreases rapidly with the queue size due to
increasing number of branch predictions made earlier in
the queue, large queues are not very helpful. We decide

1More eÆcient approaches can certainly be implemented in which
the functional units handle load/stores and program counter updates
but is out of scope for this project
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Fig. 2. An SMT Tomasulo superscalar processor architecture

to implement a rather normal instruction queue size of 32,
which is not signi�cantly larger than the 28 entry queue
used in for example the HP PA-8000.

We chose the maximum fetch bandwidth to be 8 instruc-
tions per cycles as our experiments have shown that less
would limit the throughput when more than one thread
is running, but more than that does not signi�cantly im-
prove performance even with multiple threads running due
to increased cache miss rates and practical limitations on
instruction issue queue size.

As loads in our architecture are handled at instruction
commit time by the reorder bu�er, load latency may be
high. We therefore need fairly large reservation station
queues in order for them to not get �lled up with instruc-
tions awaiting results from loads, thus blocking other in-
structions from being issued. We choose to use 8 entry
reservation queues as the expected load latency when data
dependencies during address calculation are accounted for
is about 7-8 cycles.

As illustrated in Figure 3 4 arithmetic/logic, 2 load/store
(address calculation), and 1 branch unit seem to be the
right choice when work load ranges from 1 to 8 threads. A
shared 512 entry 2-bit branch prediction bu�er is used to
predict branches.

As a consequence of the reservation station queue size
and number of functional units which together potentially
allow 77 instructions to be in-
ight at the same time, the
reorder bu�er is chosen to be 64 entries large as we do not
expect the reservation stations and function pipelines to
ever be 100% full. In order to not make the reorder bu�er
throughput-limiting we allow as many instructions to be
committed per cycle as we fetch, namely 8.

While a cache subsystem is not directly implemented in

IPC
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Threads

Fig. 3. Instruction throughput dependence on number of function
units

the proposed architecture, e�ects of cache misses are sim-
ulated using data provided in [3]. The cache subsystem
consists of three levels of caches. Level 1 instruction and
data caches are directmapped and of 32KB size each with
a latency of 6 cycles to the L2 cache. The level 2 cache
is a shared 256KB 4-way associative cache with a latency
of 12 cycles to the L3 cache. The level 3 cache is a 2MB
shared cache with a 4 cycle access time and a latency of
62 cycles to main memory. The L1 cache miss percentage
under a fetch policy of 8 instructions per cycle is given in
Figure 4. We simulate cache misses using the average cache
miss penalty which ranges from 15 to 12 cycles depending
on how many threads are running due to number-of-thread
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dependent di�erences in miss rates in the L2 and L3 caches.

C. Simulation methodology

The SMT processor presented in this paper was imple-
mented as a behavioral model but in a synthesizable sub-
set of Verilog. The infrastructure used for behavioral and
gate-level netlist simulation was Verilog-XL from Cadence.
For hardware emulation GVL from IKOS was used. The
processor implementation runs unmodi�ed DLX native op-
codes. The dlxcc compiler and the dlxasm assembler were
used to compile C-programs into native DLX instruction
opcodes. Due to the slow simulation of a design as large
as an SMT processor in Verilog-XL, simulation runs were
restricted to small programs such as bubble sort, selection
sort, Fibonacci etc. with each run comprising a few thou-
sand instructions. It should be noted that the amount of
ILP available in such small programs is rather limited, and
since dlxcc is targeted for a single issue pipeline, no static
instruction scheduling is performed by the compiler fur-
ther reducing available ILP. To not give undue advantage
to the SMT methodology in terms of speedup due to in-
creased ILP when instructions from independent threads
are introduced, the assembly code generated by dlxcc was
slightly hand-optimized to yield a �nal single threaded IPC
approximately double that of the original code.

The small programs and short program runs undoubt-
edly introduce a certain margin of error in our measured re-

sults. However, observations of major trends in instruction
throughput should still be valid. We speculate and issue
wrong path instructions to get an accurate representation
of resource interference between correctly and incorrectly
(mispredicted) issued instructions. All IPC performance
numbers presented of course only represent correctly issued
(committed) instructions. We de�ne resource utilization as
the number of cycles a function unit had useful work to
perform.

III. SMT architecture enhancements

As illustrated in Figure 5(a,b), the baseline SMT archi-
tecture presented so far increase the useful IPC by about
80% at 8 threads and resource utilization by 50%. While it
is encouraging to see that even with the minimum required
set of SMT extensions to the superscalar architecture that
has been introduced so far do result in a visible speedup,
with a resource utilization of only 32% it should be possible
to achieve a higher throughput. To achieve higher resource
utilization we need to identify the limiting factors in the
architecture.

A. Reorder bu�er enhancements

One fairly obvious limitation can be found in the re-
order bu�er. While the reorder bu�er is not throughput
limiting for single threaded execution due to the balanced
fetch/commit bandwidth, the situation changes when mul-
tiple threads are involved. The problem lies in the sin-
gle commit (front) pointer in the circular reorder queue.
If the instruction in the entry pointed to by the commit
pointer has not yet received its result or is experiencing a
load cache miss it will block other instructions from com-
mitting. It will thus hinder instructions belonging to other
threads that have received their results from committing al-
though there is no order-dependence between instructions
from di�erent threads. A straight forward solution to this
thread block problem is to keep a set of thread speci�c
front pointers in the reorder bu�er. Each thread can then
commit its own instructions independent of the status of
instructions belonging to other threads. Using multiple
commit pointers results in reorder bu�er entries becoming
available more quickly allowing additional instructions to
issue, and that potentially a higher average of committed
instructions per second can be reached. Figure 5(a,b) illus-
trates the improved performance obtained by the multiple
commit versus single commit pointer approaches. With
multiple commit pointers the IPC and utilization increase
at 8 threads compared to 1 thread are e�ectively doubled
compared to the single commit pointer approach. Using a
single commit pointer was clearly a limiting factor in both
throughput and utilization. The hardware structure re-
quired to support multiple commit pointers should not be
signi�cantly more complex than that of a single pointer.

B. Distributing instruction fetch bandwidth

Although we fetch 8 instructions from 1 thread (8:1) each
cycle, the average number of instructions that are usefully
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Fig. 5. Instruction throughput and resource utilization when using single vs. multiple commit pointers

fetched per cycle (due to cache misses and misfetched in-
structions caused by branches) lie in the range of 3.8 in-
structions per cycle. To reduce this fetch block fragmenta-

tion the fetch bandwidth could be distributed over several
threads per cycle. Figure 6 illustrates how fetching di�er-
ent number of instructions from di�erent number of threads
per cycle a�ects instruction throughput. Fetching of 1 or 2
instructions per thread su�ers from thread shortage when
few threads are running explaining the low IPC in these
cases. The best overall fetching scheme seem to be fetch-
ing 4 instructions from 2 threads (4:2) each cycle. The 4:2
scheme increases the usefully fetched instructions by 20%
from 4.7 to 5.9 per cycle on the average for 4 and 8 threads.
However, for 1 and 2 threads the usefully fetched instruc-
tions per cycle decrease by almost 10% from 2.9 to 2.7. We
believe this decrease is an artifact of the higher sensitivity
to cache misses at low thread counts. As a whole, we in-
crease the useful fetch bandwidth by about 10% from 3.8
to 4.3 instructions per cycle by using the 4:2 fetch scheme
rather than the original 8:1 scheme. The reason the use-
ful fetch bandwidth increase (decrease) does not result in
a higher (lower) IPC than it does is most likely a result
of the limited ILP available due to poor static instruction
scheduling of the compiler. In each case, the actual fetch
bandwidth is higher than the actual issue bandwidth, so the
processor is issue limited rather than fetch limited which
explains the little e�ect a higher (lower) fetch bandwidth
has on IPC. With a compiler targeted for a superscalar ar-
chitecture the IPC improvements due to improved useful
fetch bandwidth should be more pronounced.

C. Reducing instruction queue clog

A problem that is not present in a single threaded super-
scalar architecture is that of instruction queue (IQ) clog.
When several threads share the same instruction queue
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Fig. 6. Instruction throughput as a function of di�erent instruction
fetching schemes

however, in the worst case, a single slow-running thread
may end up �lling up all instruction queue entries thus
drastically reducing available TLP. This situation occurs
when the input (fetch) bandwidth of a certain thread is
higher than the output (issue) bandwidth in the instruc-
tion queue, and can easily occur in sections of code where
there are tight control and data dependencies. The solution
to this problem is providing feedback of the current instruc-
tion queue status to the fetch stage so that the threads run-
ning most eÆciently can be selected to fetch new instruc-
tions this cycle. A good approximation of what threads are
running most eÆciently is to measure how many instruc-
tions a thread has present in the decode and instruction
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queue stages. We should then fetch instructions from the
threads with least number of instructions in these stages
which should then represent threads with a high output
bandwidth from the issue stage. While our benchmark
programs are too small and the runs too short to be able
to con�rm these observations, we still believe it is a valid
and necessary technique to improve performance. Other
schemes for increasing instruction throughput and reduce
IQ clog problems have also been presented [3].

D. Cache miss tolerance

As discussed earlier, cache miss frequencies increase with
number of simultaneously running threads. Clearly, good
cache miss tolerance is thus an important feature to achieve
high performance in an SMT architecture. Figure 7 il-
lustrates the performance degradation due to instruction
cache miss rates for di�erent number of threads (data cache
miss rates are modeled at 0% in this comparison). The �g-
ure clearly illustrates that even with a 20% cache miss rate
at 8 threads, throughput is still 97% of that achieved at a
0% cache miss rate. Thanks to the latency hiding potential
of multithreaded architectures the higher cache miss rates
at multiple threads do not have a major performance im-
pact. Ordinary cache sizes for superscalar processors thus
do not need to be made signi�cantly larger to handle a
workload of 8 threads eÆciently.

IV. Multithreading and speculative execution

While speculation is an important property to achieve
high performance in single threaded superscalar processors,
this might not be true of multithreaded architectures. As
discussed earlier, multithreading provides multiple threads
that can be chosen to issue instructions from each cycle.
As illustrated in Section III an SMT architecture is very
tolerant towards high cache miss frequencies and the same
is also true for high cache miss latencies. This latency tol-
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erant quality could also potentially be used to avoid spec-
ulation. As long as enough threads are available to contin-
uously provide instructions to the pipeline, fetching from
a thread could be suspended upon encountering a branch
and be reactivated only when the branch has been resolved.
This way, the resource interference between correctly and
incorrectly issued instructions would also be eliminated.
Since hardware based speculation is very expensive in

terms of combinational logic latency, a multithreaded ar-
chitecture might be better o� without using speculation
and aiming for a higher clock rate instead. Several simpli-
�cations can be made to a superscalar architecture if specu-
lation is not used. Most signi�cantly, the reorder bu�er can
be removed completely, and the issue stage does not need
to check for control dependencies reducing the amount of
comparisons needed to issue an instruction. Furthermore
there is no longer a need for instruction 
ush mechanisms
or branch prediction logic. It should be noted that all SMT
characteristics are still preserved in the non-speculative ar-
chitecture. The architecture still addresses both horizontal
and vertical issue slot waste since it can still issue multiple
instructions from multiple threads per cycle.
The important question that need to be answered is how
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many threads would be needed to even out the through-
put loss caused by not using speculation. Figure 8(a,b)
illustrates the e�ects removing speculation from the SMT
architecture has on throughput and resource utilization. At
around 8 threads the di�erence in throughput is only 20%
and this could probably be made up for in a higher clock
frequency for the non-speculative architecture. From the
results it would thus seem that the bene�ts from specula-
tion have more or less disappeared due to multithreadings
latency hiding potential when running more than 8 threads.
It should be noted however, that non-speculative execution
is only really a high performance alternative to speculation
when we can sustain a minimum of 8 simultaneously run-
ning threads over time. In situations of varying TLP this
might not be the case, and under such circumstances a
speculative SMT is still preferable.
A speculative SMT processor with its ability to handle

varying levels of TLP and ILP and potential to exploit in-
dividual thread throughput based on thread priority seem
well suited for high-performance desktop environments
where tasks range from low-latency single threaded inter-
active programs to high-latency, high-throughput, multi-
threaded simulation runs.
A non-speculative processor could probably be useful

for high-performance server applications where many tasks
are available and high instruction throughput is desirable.
The ability to handle a large workload eÆciently even at
a somewhat lower throughput per individual thread seem
well suited for a server environment which usually do not
run interactive low-latency demanding tasks.

V. Behavioral Validation

Due to the increased concurrency and more complex
interaction between operations in a simultaneous multi-
threaded architecture, ensuring a correct behavior is a a
key objective during design. In this section we will focus
on techniques that have been applied in order to gain a high
con�dence level on the correct operation of the SMT micro-
processor. We describe techniques used to gain con�dence
of the correct behavior of the processor through simulation
at the behavioral level, simulation at the synthesized gate
netlist level, as well as hardware emulation of a subset of
the processor pipeline stages.
Behavioral simulation was mainly used to ensure the cor-

rect operation of the microprocessor at a functional level.
Simulation of gate level netlists of the processor were per-
formed mainly to ensure that the synthesized gate-level ar-
chitecture netlist was equivalent to the intended behavior
of the behavioral speci�cation. Hardware emulation was
used mainly to further gain con�dence in that the synthe-
sized gate-netlists would behave as intended when running
as real hardware. The following sections will describe these
steps in detail.
Formally verifying a design as large as an SMT micro-

processor in detail was not feasible both due to lack of ap-
propriate tools and a tight time budget. Other techniques
for most eÆciently discovering and locating the source of
errors in such a design therefore had to be developed.

A. Validation techniques

While observing input (instructions) and output (regis-
ters and memory) behavior often can give the designer an
indication that something has gone wrong during the pro-
gram run, it is often very hard to locate the source of the
problem. Program runs also often tend to deadlock be-
fore any results have been produced, especially in the early
stages of implementation, making it impossible to learn
what went wrong by simply observing the input-output be-
havior. Quite frequently it was discovered, program runs
completed correctly in terms of output behavior, but still
had subtle internal errors not visible in the produced out-
put. Clearly we need some means to eÆciently observe the
internal state of the processor during execution. There are
two parts to this problem, detecting that an error has taken
place, and locating the source of the error.

A.1 Locating an error

To make the internal state visible to the designer, sim-
ulation traces were written out to a �le during a program
run. The simulation trace contains cycle by cycle informa-
tion and content of internal datastructures of each pipeline
stage as well as the communication between them. The
simulation trace can be restricted to display information
only of desired pipeline stages. To facilitate the track-
ing of individual instructions through the pipeline, each
instruction is assigned a unique id tag when it is fetched
from the instruction memory. Each entry in the internal
datastructures are then displayed with both thread and
instruction id's as well as their data �elds to easily iden-
tify where instructions are and what their current status
is. Figure 9 illustrates the contents of a reservation sta-
tion queue. Each entry in the queue is clearly marked as
valid or invalid, the instruction id is clearly displayed as
well as the thread it belongs to. The current status of the
instruction can also be observed. In this case, instruction
38i that belongs to thread 3 has received one of its source
operands (src1 marked as done) while it is still waiting for
the other operand (src2). We can also see what type of
instruction this is, what reorder bu�er entries it expect its
source operands to come from (q20 and q18), as well as
what reorder bu�er entry the result should be written to
(q29). During this cycle instructions 36i and 35i are both
ready to be forwarded to the function unit associated with
the reservation station as they have both �nished reading
their respective source operands.

A.2 Detecting an error

While the simulation traces discussed above are useful to
detect errors for very short program runs, it becomes a te-
dious and time consuming task to detect errors for program
runs consisting of thousands of clock cycles with trace �les
over 70 MB in size.

An easy way to detect errors manually is to do a sparse
simulation run. In a sparse simulation run only the most
important information is displayed, such as when store or
branch instructions are issued , what their prediction status
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Fig. 9. Reservation queue datastructure

is, and when they are committed. Deadlocks and mishan-
dling of branches, e.g. errors in or the branch prediction
logic etc. that may cause the program to follow an unin-
tended execution path, are easily detected with such sparse
simulation runs. The place of the error is then in a majority
of cases easily located through the thread and instruction
id's in the displayed information.

In some cases however, it is not enough to observe the

ow of the sparse simulation traces to discover errors. In
these situations, self-checkers [4], [5] are an important com-
plement to detecting errors. Run-time self-checkers that
continually checks that certain properties are satis�ed dur-
ing program runs have been especially helpful in detecting
subtle errors. A global runtime self-checker that ensures
correct behavior of the pipeline stages during stalls and

ushes will be discussed shortly. When such a self-checker
discovers a violation of some property, it displays informa-
tion pointing out the pipeline stage the error was discov-
ered in along with the thread and instruction id's of the
instruction in that stage at the time of the error. Locating
the error in the simulation trace �le then becomes a fairly
simple task.

A.3 Detecting uncommon errors

While sparse simulation traces and runtime self-checkers
can catch a majority of errors, some errors will only show
up in very speci�c situations that occur only rarely. Usu-
ally such situations can be arti�cially created by using
constraint solvers [6] to �nd instruction combinations that
have a high probability of exercising the conditions leading
to the errors. Since we did not have access to such con-
straint solvers we had to �nd another way to increase the
probability of such uncommon errors to occur.

The solution was found in parameterization of the pro-
cessor resources. By parameterizing the sizes of instruction
queues, reorder bu�er, reservation station queues, number
of instructions fetched per cycle, number of threads run-
ning simultaneously, number of function units, number of
committed instructions per cycle etc. we were able to ex-
ercise certain behaviors of the processor more heavily by
creating hotspots. For example, by setting the instruction
queue to be small we exercised the behavior of the proces-
sor when the issue stage was full and the fetch and decode
stages needed to stall. As another example, by using a
large instruction queue and many functional units we in-
stead got high coverage that instruction dependencies were
handled correctly under high concurrency. These hotspots
could then easily be moved around to stress di�erent parts
of the processor.

B. Correctness properties requiring self-checkers

B.1 A global runtime self-checker

While many properties of local nature were easily
checked manually by outlining \paper self-checkers" and
comparing against the implemented code, global proper-
ties were that much harder to check manually due to many
special cases and types of interaction. Properties of a global
nature that are crucial to the correct operation of the pro-
cessor are found in the interaction between pipeline stages
when both stall and 
ush conditions occur simultaneously.
Due to a tight time budget, the implementation of these
functionalities were at �rst implemented in a very ad-hoc
manner without any standard way of dealing with them
�rst having been thought out. While the approaches to
handle pipeline stalls and thread 
ushes conceptually were
fairly straight forward it was hard to gain con�dence in
the correct operation of their implementations even locally.
When the pipeline stages were interconnected and started
interacting with each other, it became a hopeless task to
manually check that pipeline stall and thread 
ush condi-
tions were met. To make matters worse, erroneous behavior
does not always show up in the �nal register and memory
output of the test programs that are run making it hard to
detect and locate such errors. Automated means of both
detecting that an error has occurred as well as locating
the o�ending pipeline stage and associated instruction were
therefore needed.

A runtime self-checker illustrated in Figure 10 was there-
fore implemented to assist in the checking of correct stall
and 
ush behavior. As a consequence of the development
of the stall and 
ush self-checker, the necessary proper-
ties that the di�erent pipeline stages had to satisfy became
more clearly laid out. As a result a much simpli�ed uni-
�ed approach to pipeline stall and thread 
ush was also
developed. This uni�ed approach in turn simpli�ed the
self-checker which now only needed to check a few well de-
�ned properties. For example, the properties that must
be upheld when a reservation station becomes full are as
follows:

� All outputs belonging to a 
ushed thread must be
cleared regardless of pipeline stall status

� The Register �le and Reorder bu�er must keep their
current outputs belonging to the stalled reservation
station (so that any pending operands can be correctly
read in when the reservation station becomes non-full)

� The Register �le and Reorder bu�er must continue to
serve requests not associated with the stalled reserva-
tion station

� The Issue stage must clear all outputs belonging to
the stalled reservation station (to avoid reading in the
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Fig. 10. The global self-checker

same instruction twice)
� The Issue stage must continue to feed instructions to
all non-stalled reservation stations

The global self-checker also checks that the fetch and de-
code stages behave correctly when the issue stage becomes
full, and also that all instructions belonging to a 
ushed
thread indeed are 
ushed and do not show up on the out-
puts of the pipeline stages the following cycles. The self-
checker non-intrusively performs its task by monitoring the
communication between the pipeline stages. The global
self-checker became a clear example of when thinking of a
problem from a self-checkers point of view also helped to
simplify the implementation itself, not just ensuring that
the original implementation behaved correctly.

B.2 A local runtime self-checker

Another property that is somewhat hard to check man-
ually is that the thread speci�c commit (front) pointers
in the reorder bu�er behave correctly. While the property
that a thread pointer only commits instructions belonging
to its own thread can be fairly easily derived by just looking
at the implemented code and performing a few test runs,
it is harder to ensure that the pointers do not go \out
of bounds" with respect to allocated bu�er entries. If a
pointer would go out of bounds it might result in incorrect
information about free bu�er entries being communicated
to the issue stage which has shown to cause errors that are
hard to discover and track down.

Since it is hard to determine the correct boundaries when
we are dealing with multiple front pointers, to aid in the
self-checking of these pointer boundaries we added a main
front pointer. A consequence of adding a main front pointer
was that now calculation of free bu�er entries became much

easier to perform and check for correctness. The thread
speci�c front pointers could now be initialized to the posi-
tion of the main front pointer each cycle signi�cantly sim-
plifying the code necessary to track their individual posi-
tions. The boundary correctness checks then became quite
simple, we only needed to check that the following condi-
tions were satis�ed (mfp stands for main front pointer, mrp
for main rear pointer, and tfp for thread front pointer).

� if mfp < mrp then tfp >= mfp and tfp <= mrp
� if mfp > mrp than tfp >= mfp or tfp <= mrp
� always (mrp + free entries) == mfp

This was another example of a situation where thinking of
a problem from a self-checkers point of view also helped to
simplify the implementation itself.

VI. Gate-level validation

This section describes the validation of the microproces-
sor through simulation at the synthesized gate-level and
subsequent emulation on real hardware.

A. Synthesis and gate-level validation

While simulation at the behavioral level gives high con-
�dence that the design at least conceptually works cor-
rectly, some functionalities expressed in behavioral code
might have unintended side-e�ects when synthesized and
run at the gate-level.

Indeed, some potential discrepancies between behavioral
level code and synthesized gate behavior in the form of un-
expected introduction of latches in combinational parts of
the design were detected. These di�erences between in-
tended and actual structural implementation were caused
by signals that under certain circumstances in the behav-
ioral code were not explicitly assigned new values during
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a clock cycle. These potential discrepancies were easily re-
moved by always specifying a value (explicitly assign the
old value to a signal if it was not supposed to change) for
combinational signals.
Instruction fetch, queue sizes, and number of function

units had to be reduced in order for synthesis to complete.
In the synthesized version, instruction queue and reorder
bu�er have 4 entries each, we run 2 threads simultaneously,
fetch 2 instructions per cycle, and have 3 functional units.
To complete synthesis the stages had to be synthesized sep-
arately and manually interconnected. Synthesis took about
2-3 hours each for the most complex stages (issue and re-
order) on a 333MHz Ultrasparc. The reservation station
stage did not complete synthesis within 20 hours, and the
complete stage ran out of memory at 700 MB. These stages
along with the function unit stage were therefore not syn-
thesized.
The stages that were successfully synthesized consists of

the fetch, decode, issue, register �le, and reorder bu�er
stages. The gate-level representations of the synthesized
stages were interconnected and co-simulated with the be-
havioral implementations of the non-synthesized stages.
The simulation results of the behavior-only and the mixed
gate-level and behavior systems were identical, thus in-
dicating that the gate-level architecture operated as in-
tended. One unexpected bene�t of the mixed simulation
system was that while compilation time increased due to
huge gate netlists, simulation time actually decreased by
almost a factor of two.

B. Hardware emulation

While we have gained con�dence that the synthesized
gate-level architecture worked as intended through simu-
lation run comparisons with the original behavioral spec-
i�cation, all validation still has been performed only via
software simulation techniques. Any potential discrepan-
cies between the software simulated gate-level architecture
and its implementation as real hardware are still hidden
from us. For example, an especially important situation
to check is the reset and initialization phase. To gain con-
�dence that the synthesized architecture works correctly
when implemented as actual hardware, we map the netlist
to actual emulation hardware using the GVL toolpath from
IKOS.
For this purpose the fetch, decode, and issue stages were

interconnected and taken through the IKOS hardware em-
ulation toolpath. These stages were checked at the VSM
and Verify levels of GVL and found to have a behavior iden-
tical to the behavioral and gate-level software simulation
models2.
The compile runtime for the three stage pipeline was

about 15 minutes. 212 I/O signal consisting mainly of the
databus between the issue and reservation station pipeline
stages were speci�ed to be probed. The clock epochs had
14 and 15 virtual cycles respectively. The number of VMW

2The only experienced problem with the GVL toolpath was that a
dummy input had to be added in addition to reset and clock to the
toplevel module to make GVL generate a correct Verify model

primitive gates were 31,991. PPR FPGA-compile had 71
board routing tasks which were completed in just over 1 1/2
hours using 7 workstations (1 Ultrasparc-10, 5 Ultrasparc-
1, and 1 Sparcstation-20).
The IKOS emulator was run at 20 MHz as this was re-

quired to handle the 29 virtual clocks within the 500kHz
clock period of the external clock. The microprocessor was
tested both using the Functional test, and the Logic an-
alyzer features. Both tests generated correct results on
the �rst run. Functional test including setup and check
of generated vectors took about 1 second to perform. A
total of 48 cycles were executed which corresponds to a to-
tal of 96us spent in actual emulation with a user clock of
500kHz. In comparison, gate-level netlist simulation time
on an Ultrasparc-1 including compile was 19 seconds, while
about 100ms was spent in simulation. The relative speedup
of the hardware emulation compared to gate-level software
simulation in this case is thus in the order of 1040 times.
Hardware emulation has so far been used to ensure a cor-

rect correspondence between behavioral level simulations
and program runs on actual hardware. Now that we have
shown the two design models to be equivalent, we can start
using hardware emulation for another purpose. Since the
software simulation of the behavioral architecture model is
rather slow (2-3 committed instructions per second), only
small program runs were possible while checking the mi-
croprocessor for correctness. Since hardware emulation is
quite fast as demonstrated by the test run described above,
the next logical step in the validation of the microprocessor
would be to run larger programs using the hardware em-
ulator to further test the functional aspects of the design.
Instead of the program runs being limited to a few thou-
sand cycles, we can now potentially run them for millions
of cycles.

VII. Conclusions

This paper has illustrated the potential bene�ts in in-
creased instruction throughput on a basic simultaneously
multithreaded architecture derived by extending a super-
scalar Tomasulo architecture with the ability to handle
multiple threads. We have shown that very few and sim-
ple modi�cations are required to extend an ordinary su-
perscalar architecture to a full-
edged simultaneously mul-
tithreaded processor. We have shown that even on our
simple SMT architecture without undue resource exten-
sions to handle the higher multithreaded workload, use-
ful instruction throughput can be increased by 60% at 2
threads and 160% at 8 threads. The improved through-
put is mainly due to SMT's ability to convert TLP into
ILP, thus dramatically increasing the amount of available
parallelism between instructions in the issue stage. Fur-
thermore we have demonstrated that the latency hiding
potential of our SMT architecture could make expensive
hardware speculation useless at a sustained thread count
as low as eight.
This paper has also discussed the validation techniques

used during the implementation of the simultaneous mul-
tithreaded microprocessor. Validation of the behavioral
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speci�cation was accomplished by a combination of simu-
lation traces, runtime self-checkers, and parameterization.
Runtime self-checkers were used to ensure that certain
properties hard to check manually were satis�ed during
program execution and if not, the pipeline stage causing
the error and the associated instruction were displayed to
the designer which could then use this information to lo-
cate the error in a full simulation trace of the processors
internal datastructures. Processor resources were param-
eterized which introduced the ability to exercise certain
uncommon behaviors of the processor more frequently by
creating hotspots in di�erent parts of the processor. Parts
of the behavioral speci�cation were then synthesized to
gate-level netlists and shown correct in co-simulation with
the unsynthesized parts. The synthesized parts were also
taken through the GVL toolpath and successfully run on
the IKOS hardware emulator, demonstrating that the de-
sign runs correctly also in hardware.
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