
Processes in KaffeOS:
Isolation, Resource Management, and Sharing in Java

Godmar Back Wilson C. Hsieh Jay Lepreau

Department of Computer Science, University of Utah
http://www.cs.utah.edu/flux/

Technical Report UUCS–00–010

April, 2000

Abstract

Single-language runtime systems, in the form of
Java virtual machines, are widely deployed plat-
forms for executing untrusted mobile code. These
runtimes provide some of the features that oper-
ating systems provide: inter-application memory
protection and basic system services. They do not,
however, provide the ability to isolate applications
from each other, or limit their resource consump-
tion. This paper describes KaffeOS, a system that
provides these features for a Java runtime. The Kaf-
feOS architecture takes many lessons from operat-
ing system design, such as the use of a user/kernel
boundary.

The KaffeOS architecture supports the OS ab-
straction of a process in a Java virtual machine.
Each process executes as if it were run in its own
virtual machine, including separate garbage collec-
tion of its own heap. The difficulty in designing
KaffeOS lay in balancing the goals of isolation and
resource management against the goal of allow-
ing direct sharing. Overall, KaffeOS is up to 11%
slower than the freely available JVM on which it is
based, which is an acceptable penalty for the safety
that it provides. KaffeOS is substantially slower
than commercial JVMs, but exhibits much better
performance scaling in the presence of uncoopera-
tive code.

This research was largely supported by the Defense Ad-
vanced Research Projects Agency, monitored by the Air Force
Research Laboratory, Rome Research Site, USAF, under
agreements F30602–96–2–0269 and F30602–99–1–0503.

1 Introduction

The need to support the safe execution of un-
trusted programs in runtime systems for type-safe
languages has become clear. Language runtimes
are being used in environments for executing un-
trusted code: for example, applets, servlets, active
packets [38], database queries [13], and kernel ex-
tensions [5]. Current systems (such as Java) pro-
vide memory protection through the enforcement
of type safety and secure system services through a
number of mechanisms, including namespace and
access control. Unfortunately, malicious or buggy
applications can deny service to other applications.
For example, a Java applet could generate exces-
sive amounts of garbage and cause a Web browser
to spend all of its time collecting dead objects.

To support the execution of untrusted code, type-
safe language runtimes need to provide mecha-
nisms to isolate and manage the resources of appli-
cations, analogous to those provided by operating
systems. Although other resource management ab-
stractions exist [3], the classic OS process abstrac-
tion seems appropriate. A process is the basic unit
of resource ownership and control; it provides iso-
lation between applications. On a traditional op-
erating system, untrusted code can be forked as
its own process; CPU and memory limits can be
placed on the process, and the process can be killed
if it is uncooperative. Current type-safe language
runtimes do not support such functionality.

A number of approaches to isolating applications
in Java have been developed by others over the last
few years. An applet context [7] is an example

1


