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Irradiance at a point on a receiver due to a uniformly emitting polygon luminaire, or equivalently, the
differential area to polygon form factor, is of fundamental interest in computer graphics. An elegant
closed-form expression attributed to Lambert, dating from the 18th century, is the most commonly
used formula for the problem. This document provides several alternatives to Lambert’s formula,
all of which are summations on the vertices of the source polygon rather than the edges. A term in
a vertex-based summation is a function of the vertex position and the local behavior of the incident
edges. The summations may be evaluated in any order and are therefore suited to algorithms where
polygon contours are constructed incrementally.

1 Introduction

The fundamental radiometric quantity isradiance, the radiant power carried along a line [2]. Radiance is
measured in units of W/m2/sr. A related quantity isirradiance, the incident radiant flux at a surface point.
Irradiance at a receiver pointr is computed by integrating the incoming radiance against a cosine, in all
directions above the surface:

I(r) =
1

�

Z



L(r; !) cos(�) d! (1)

whereL(r; !) is the incoming radiance atr in the direction! and� is the angle! makes with the surface
normal atr. Irradiance is the power per unit area atr, and thus carries the units W/m2. Note that irradiance
is defined at a point on a surface where there is a tangent plane and a well-defined outward normal. The
tangent plane atr is also referred to as thereceiver plane.

Irradiance and its photometric analogilluminanceare important quantities in a variety of different areas,
from biology to illumination engineering. For computer graphics, irradiance is of fundamental interest
because it is directly proportional to the apparent brightness of a diffuse surface at a point.

1.1 Lambert’s Formula

The irradiance due to a uniformly emitting polygonP can be computed by an elegant formula attributed to
Lambert [9]

I(r) =
M

2�

nX
i=1

�i cos 
i (2)

where�i is the angle edgei makes with the receiver pointr, and
i is the angle the plane containing edgei
andr makes with the receiver surface normal.M is an emission constant (in W/m2). For a real surface, it is
assumed that no portion of the polygon lies below (with respect to the surface normal) the tangent plane at
r, andr is off the polygon.
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Figure 1:A uniformly emitting polygonal source can be projected onto an image plane or the unit sphere
through a receiver pointr. The irradiance atr does not change, and can be computed from a surface
integral on any of the three polygons.

Lambert’s formula may be expressed directly in terms of the vertices,v1; : : : vn of the polygon, the
receiver pointr, and the unit surface normalN at r:

I(r) = �M
�

nX
i=1

arccos
vi �vi+1

kvikkvi+1k
vi � vi+1
kvi � vi+1k �N: (3)

wherevi = vi�r. In this formulation, the edge normalsvi�vi+1 are the outward normals of the polyhedral
cone through the polygon with apex atr, hence the negative sign preceding the sum.

A drawback to Lambert’s Formula is that it is a summation over the edges of the polygon rather than the
vertices. For an unoccluded polygon this is less of a consideration, but algorithms for computing partially
occluded irradiance often work by clipping the source polygon against all the occluding polygons [7]. This
process generally produces the vertices of the clipped source before it produces the edges, so a formula for
irradiance that is a summation over the vertices of the polygon rather than the edges is a useful alternative.
The development of such vertex-based formulas is the purpose of this work.

1.2 Plan of this Work

An important property of uniformly emitting objects is illustrated in Figure 1. Projectively equivalent uni-
formly emitting objects produce the same irradiance; that is, objects which look the same from a given
receiver point produce the same irradiance. This follows directly from (1), which is an integral over only the
incoming directions. The advantage of this property is that projecting a uniformly emitting source polygon
onto an image plane, or onto the hemisphere, will produce the same irradiance.

This document develops formulas for the irradiance due to a uniformly emitting polygon based on the
vertex positions and the local behavior of the edges at the vertices. In Section 2, the polygon is projected
onto an image plane and a formula is developed in terms of the projected vertices and the slopes of the
incident edges. Section 3 details a more direct reformulation of Lambert’s formula which works on the
original polygon vertices and uses edge vectors and normals for local behavior at each vertex. In Section 4
a formula is developed based on a spherical projection of the polygon, and in Section 6 the image plane
formula is extended to work in the real projective plane.

Whenever possible, the formulas will be developed in terms of a natural representation of the polygon
in the space in which the formula is developed rather than referring to the original polygon vertices.
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Figure 2: (a)The geometry for Lambert’s formula.(b) The angles�i depend on the edges, so if part of the
polygon is clipped by an occluder, the terms associated with the vertices of the affected edges have different
values. (c) Using Green’s theorem in the image plane produces a formula in terms of the local behavior
at the vertices. (d) The contributions of the existing vertices are not affected if a bite is taken out of the
polygon.
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Figure 3:To apply Green’s theorem, the polygonP is projected onto an image plane parallel to the receiver
plane, one unit above. The origin of the coordinate system of the image plane lies directly above the point
of evaluationr on the receiver. The projection induces a reversal of orientation for front-facing polygons.

2 Image Plane Formula

The objective of this section is to construct a formula in terms of the vertices of a polygonP that has been
projected throughr onto animage plane, which is the plane parallel to the surface atr and one unit above
(in the direction of the outward normaln at r) as shown in Figure 3. This projection does not change the
irradiance atr [2]. The behavior of the edges incident on each vertex may then be characterized by their
slopes.

Lambert’s formula shows that the irradiance is invariant under rotation about the normaln, so the orien-
tation of thex andy-axes in the image plane is not important. Ifu is an arbitrary unit vector perpendicular to
n, andv = n� u, the projection of a vertexv of P may be computed, for example, using the homogeneous
transformation

v� =

"
I 0

0 0 1 0

# "
u v n 0

0 0 0 1

#T "
I �r
0
T 1

# "
v
1

#
: (4)

(In the case of a polygonal receiver,u can be a normalized edge; for a curved receiver,u could be the
direction of one of the curvilinear coordinates.) The first matrix on the left effects the projective projection,
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the other two perform a rotation and translation, respectively, to a coordinate system in which the receiver
plane is thexy-plane and the image plane is the parallel plane through(0; 0; 1), coordinates in this system
will be calledimage plane coordinates.

In the remainder of this section we shall assumeP has been projected onto the image plane forming a
new planar polygonP � having verticesv�1; : : : ; v

�
n. Each vertexv�i of P � will be treated as a two-dimensional

point (xi; yi) in image plane coordinates; thez-coordinate is always 1 and is omitted in this section.

2.1 Integration

The irradiance from a uniformly emitting surfaceS, which is not self-occluding as viewed from a pointr
on a receiver can be computed [1] from the surface integral

I(r) =
M

�

Z
S

cos �S cos �r
d2

dS; (5)

whered is the distance fromr to a point onS, �r and�S are the angles made by the ray joiningr and the
point with the receiver normal atr and the surface normal at the point, respectively. The constantM is an
emission constant ofS.

For the projected polygonP �, the integral of (5) has a particularly simple form; it reduces to the ordinary
plane double integral (omitting the emission constant and normalizing factor1=�)

I(r) =

Z Z
P �

1

(1 + x2 + y2)2
dx dy: (6)

This double integral may be reduced to a contour integral on the boundary ofP � using Green’s theorem:I
@P �

F1 dx+ F2 dy =

Z Z
P �

�
@F2
@x

� @F1
@y

�
dx dy: (7)

The usual convention is counter-clockwise vertex ordering with respect to the outward normal. For a
“front-facing” polygon, the angle between the outward normal and the receiver surface normal is negative,
so the projected polygonP � will have a clockwise vertex ordering on the image plane, which means a
negatively-oriented boundary contour and the sign of the left-hand side of (7) must be reversed.

TakingF2(x; y) � 0 andF1(x; y) an anti-derivative of the integrand in (6) with respect toy we obtain
from Green’s theoremZ Z

P �

1

(1 + x2 + y2)2
dx dy =

I
@P �

F1(x; y) dx =
nX
i=1

Z
E�

i

F1(x; y) dx:

The line integral over each edge can be evaluated by parameterizing the edge with the line equationy =
mix+ bi and integrating over the domain of the edgeE�i = v�i v

�
i+1Z

E�

i

F1(x; y) dx =

Z xi+1

xi

F1(x;mix+ bi) dx = 
(xi+1;mi; bi)�
(xi;mi; bi)

(vertical edges consequently drop out of the summation). Here
 is


(x;m; b) =

Z  Z
1

(1 + x2 + y2)2
dy

!�����
y=mx+b

dx;

mi = (yi+1 � yi)=(xi+1 � xi) is the slope of the segment joiningv�i andv�i+1, andbi is they-intercept of
that line.
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The irradiance integral may therefore be written as

I =
nX
i=1


(xi+1;mi; bi)� 
(xi;mi; bi)

= 
(x2;m1; b1)� 
(x1;m1; b1) + � � �+
(x1;mn; bn)� 
(xn;mn; bn)

=
nX
i=1


(xi;mi�1; bi�1)� 
(xi;mi; bi)

As bi = yi � mixi andbi�1 = yi � mi�1xi the intercept term can be eliminated by introducing a new
functionF (x; y;m) = 
(x;m; y �mx), and the final form of the solution thereby obtained is

I =
M

2�

nX
i=1

F (xi; yi;mi�1)� F (xi; yi;mi): (8)

The functionF is

F (x; y;m) = Ax arctan(Ay) + C(y �mx) arctan [C(x+my)] (9)

where

A =
1p

1 + x2
; C =

1p
1 +m2 + (y �mx)2

: (10)

Equations (8), (9) and (10) provide a formula analogous to Lambert’s formula for the irradiance due to
a uniformly emitting polygon. The first term in (9) is independent ofm, and therefore appears to cancel in
the summand of (8) so it is tempting to omit it fromF . But recall that terms ofF with undefinedm are
omitted outright, so in the case where only one ofmi andmi�1 is undefined, there is nothing to cancel the
first term. The terms do cancel if neither incident edge is vertical.

2.2 Remarks

There are several notable points about the result. Most importantly, the formula is a summation over a
function of the vertices and the incoming and outgoing slopesmi�1 andmi, respectively, and consequently
may be evaluated in any order. In the case of an extraneous vertex, which has the same incoming and
outgoing slope, the twoF terms cancel and there is no contribution to the sum. Although the formula forF
looks complicated, it is fairly easy to evaluate. Both the square root and arctangent functions have desirable
computational behavior; note the radicand is bounded above 1.

The formula is valid only for a polygon which lies strictly above the plane of the receiver. As with
Lambert’s formula, the polygon must be clipped against the receiver plane, but unlike Lambert’s formula,
the projected polygon must be bounded on the image plane. (Otherwise the foregoing computation would
have to be evaluated in the real projective plane, and this is the subject of Section 6.)

2.3 Error Bounds for the Image Plane

As noted above, the vertex-based formulation of the image plane integral requires a bounded projected
polygon. If the polygon impinges the receiver plane the projection on the image plane will be unbounded.
In this section we derive a simple bound on the error incurred by clipping the projected polygon on the
image plane against a disc or square centered at the origin.

As it happens, the integral of (6) becomes simpler in polar coordinates, so we start by developing a
bound in terms of a disc in the image plane. LetA be the complement of the open disc of radiusR, centered
at the origin. Formally

A = f(x; y) :
q
x2 + y2 � Rg:
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Figure 4: (a)The vertex, edge, and edge normal vectors associated with vertexvi. (b) WhenP is partially
occluded butvi remains visible, the incoming and outgoing edge vectors change only in magnitude, and the
(unit) edge normals remain the same.

If all of A is emits radiance uniformly with emission constantM , the resulting irradiance is computed from

M

�

Z Z
A

1

(1 + x2 + y2)2
dx dy =

M

�

Z
1

R

Z 2�

0

r

(1 + r2)2
d� dr = 2M

Z
1

1+R2

1

u2
du =

M

1 +R2
:

This value therefore bounds the irradiance of any object with emissionM which lies totally outside the disc
of radiusR. The exterior of the square with side-length2R satisfies this and we have proved the following:

Lemma 1 The error incurred in computing the irradiance from a uniformly emitting polygon with emission
M by clipping inside the square with side length2R centered at the origin on the image plane is bounded
byM=(1 +R2).

NoteM=(1 + R2) < M=R2, so the bound is actually slightly better than the inverse square of the
clipping square. In practice it might make more sense to clip the polygon in space against the viewing
frustrum through the clipping square before projecting.

3 Vertex-Based Reformulation of Lambert’s Formula

The goal of this section is to develop a vertex-based formulation of Lambert’s formula analogous to the
formula of the previous section, but based on the original polygon vertices rather than the image plane
projection. Each term of the summation must depend only on the vertex and the local behavior of the
incident edges, and hence can be evaluated in any order. For this, a formalization of what is meant by the
“local behavior” at each vertex is required.

Define thevertex vectorsof polygonP by vi � vi � r, and theedge vectorsasei � vi+1 � vi and
designate theincomingandoutgoingedges at vertexvi as the vectorsei�1 andei, respectively. Each non-
degenerate edge is contained in a unique plane containing the edge and the receiver pointr. These edge
planes contain the faces of the cone subtended byP from r, and therefore have an associated outward
normal. We define the unitoutward edge normals

n̂i � (vi � r)� ei
k(vi � r)� eik =

vi � vi+1
kvi � vi+1k :

Eachn̂i is the outward normal of facei, containing edgei, of the cone subtended byP from r, as illustrated
in Figure 4(a). We shall refer tôni�1 andn̂i as the incoming and outgoing edge normals at vertexvi.

If polygonP is partially occluded as viewed fromr, but some neighborhood of vertexvi remains visible,
the incoming and outgoing edge vectors for the vertex corresponding tovi in the clipped polygon do not
change direction. Consequently, the incoming and outgoing outward normals are invariant, as illustrated in
Figure 4(b).
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Figure 5: (a)The angle�i can be computed by subtracting the anglesv̂i+1 and v̂i make with a reference
vectorxi (in the plane of edgei). (b) A natural choice for the reference vector is the edge vectorei itself.

3.1 Arc Length as an Angular Difference

Each edge plane intersects the unit sphere centered atr in the arc of a great circle. The arc is the edge
projected onto the sphere, and the great circle is the intersection of the sphere with the edge plane. The
length of the arc (the measure of the angle subtended by edgei from r) is �i in (2) and is what makes the
summation dependent on the edges of the polygon, as the natural way of computing�i is by computing the
inverse cosine of the inner productv̂i �v̂i+1, as is done in (3).

The edge dependence can be avoided by expressing�i as thedifferenceof the angles that̂vi andv̂i+1
make with some reference vectorxi in edge planei. A choice for the reference vector is the normalized
edge vector̂ei itself, as shown in Figure 5(b). In symbols, set

�i;1 = arccos(x�v̂i)
�i;2 = arccos(x�v̂i+1);

so that�i = �i;1 � �i;2. Then

�i = arccos(v̂i �êi)� arccos(v̂i+1 �êi) (11)

where the unit edge vector̂ei is

êi =
ei
keik =

vi+1 � vi
kvi+1 � vik :

3.2 Formula

Equation 3 can be reformulated in terms of the vertices and the local behavior of the incident edges. Substi-
tuting equation (11) for�i and rearranging produces

�I(r) =
nX
i=1

[arccos(v̂i �êi)� arccos(v̂i+1 �êi)] N�n̂i

= arccos(v̂1 �ê1)N�n̂1 � arccos(v̂2 �ê1)N�n̂1 +� � � �+ arccos(v̂n �ên)N�n̂n � arccos(v̂1 �ên)N�n̂n
=

nX
i=1

arccos(v̂i �êi)N�n̂i � arccos(v̂i �êi�1)N�n̂i�1
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Figure 6: (a)A directed arc on the sphere. The position of the tail of the arc has longitude�, latitude�,
and the position angle of the direction of the edge is� (measured counter-clockwise from the meridian with
respect to the inside of the sphere.)(b) A spherical polygon, viewed from the inside of the sphere. A vertex is
characterized by its longitude and latitude[�; �] and the position angles�in and�out of the incoming and
outgoing edges, respectively.

Switching the terms of the summand gets rid of the negative of the sum, and thereby we arrive at the new
formulation of Lambert’s formula:

I(r) =
M

2�

nX
i=1

arccos(v̂i �êi�1)N�n̂i�1 � arccos(v̂i �êi)N�n̂i
(12)

=
M

�

nX
i=1

arccos(v̂i �êi�1)N� v� ei�1
kv� ei�1k � arccos(v̂i �êi)N� v� ei

kv� eik (13)

Equation (13) has the edge normal vectors replaced by their values in terms of the incoming and outgoing
unit edge vectors.

Equations (12) and (13) are summations over the vertices of the polygon rather than the edges. The edge
dependence of the original formula has been removed by using the edge vectors and normals.

4 Spherical Polygons

In this section we develop a vertex-based irradiance formula for a polygon on the sphere. Loosely, a spherical
polygon is a region on the sphere which is bounded by a collection of great-circle arcs, the edges of the
polygon. In terms of irradiance, we are only interested in spherical polygons contained in the hemisphere
above the receiver plane.

While every polygon projects to a spherical polygon, not every spherical polygon is the projection of a
planar polygon. As a trivial example, the hemisphere itself is a polygon with a single edge, consisting of an
entire circle.

4.1 Spherical geometry

A brief review of spherical geometry is in order. As the basic elements of Euclidean geometry are points
and lines in Euclidean space, the elements of spherical geometry are points and great circles on the sphere.
A great circleis the intersection of the sphere and plane through the origin, thepolesof the great circle are
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the points on the sphere which intersect the line through the center perpendicular to the plane. Informally,
an orientationon a great circle is a direction for traversal; each great circle has two possible orientations.
An orientation can be thought of as a choice of one of the poles, in such a way that the orientation of the
great circle is “right-handed”. This chosen pole is in fact the intersection of theoutwardnormal to the plane
of the great circle, and will hereafter be referred to as theupper poleof the great circle.

A connected portion of a great circle is agreat circle arc, or, in this context, simply anarc. A directed arc
is an arc with an orientation, and can be specified by ordering the endpoints. Notice that simply specifying
two points on the sphere does not uniquely determine an arc, although it does determine a unique great
circle. In fact, an oriented great circle is uniquely determined by a single pole, just as each point on the
sphere is the upper pole of a unique oriented great circle.

4.2 Spherical coordinates

A coordinate system on the sphere is required. Spherical coordinates in the literature differ somewhat,
depending on how they are used. We will use a system analogous to the longitude/latitude system, with lon-
gitudes measured positively to the east, and latitudes measured positively to the north as shown in Figure 6.
Formally, we assume the sphere is a unit sphere inR

3 placed at the origin with the north pole in the direc-
tion of the positivez-axis and the prime meridian in thex-positive portion of thexz-plane. The spherical
longitude� and latitude� (or azimuth and altitude) are related to the rectangular coordinates according to
the equations

x = cos� cos�

y = sin� cos�

z = sin�:

The intersection of the sphere with thexy-plane is theequator, and is taken to have the usual orientation,
making the upper pole the point(0; 0; 1), thenorth poleof the sphere. The great semi-circles of constant
longitude are themeridians, and the meridian with zero longitude is theprime meridian. The pole of the
meridian with longitude� is taken as the spherical point[�� �=2; 0].

A more standard practice in graphics is to measure the latitude angle from the north pole rather than from
the equator, probably because that corresponds to the angle a point, or ray, makes with a surface normal.
This angle is often called thecolatitudein cartography and astronomy, and we will use� for this angle, for
consistency with the normal angle, noting the relation� = �=2 � �. 1 In either case, spherical coordinates
are unique except for the north pole, and its diametric opposite thesouth pole, where longitude is undefined.

4.3 Spherical Polygons and Position Angles

A spherical polygon is the analogue of a planar polygon; the boundary instead consists of a finite collection
of great circle arcs, theedgesof the spherical polygon. An oriented spherical polygon consists of oriented
edges in a natural way. We assume the spherical polygon has apositiveorientation, which amounts to a
counter-clockwise vertex order with respect to the center of the sphere.

In order to develop a formula for irradiance from spherical polygons in terms of local behavior, a local
behavior characterization is required. Analogous to the incoming and outgoing slope of edges on the image
plane, the formula will be in terms of incoming and outgoingposition angle, which we now define.

The angle between two great circles, or great circle arcs, is the angle made by the planes which contain
them. Theposition angleof an arc at a point on the sphere is the angle the (directed) arc makes with the

1The longitude/colatitude system of spherical coordinates is the one adopted my most calculus texts, but they tend to use� for
the longitude and� for the colatitude—the opposite of use of the symbols commonly used in graphics.
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(directed) meridian (Figure 6). The position angle of a directed arc is uniquely defined for any point on the
arc except one of the poles, where there is no unique meridian. (In this case, the angle is usually measured
against the prime meridian.) Position angles are full-circle angles, in the range[0; 2�), as they are angles
between directed arcs.

Each vertex of a spherical polygon is a point common to two edges. Thevertex angleis the angle made
by the two directed edges. The local vertex characterization, analogous to the incoming/outgoing slope
formulation in Section 2, is in terms of the vertex position in spherical coordinates, and the position angles
of the incoming and outgoing edges (Figure 6). The goal is to develop a vertex-based formula for irradiance
from a spherical polygon in terms of vertex position and the two position angles.

For irradiance on a real surface we are only interested in polygons contained in the northern hemisphere,
such as those that might arise from space polygons clipped against the receiver plane then projected onto the
sphere. It is important to note, however, that not every spherical polygon contained in the northern hemi-
sphere arises from such a projected space polygon. As a trivial example, the spherical polygon consisting the
entire upper hemisphere cannot arise from a real (bounded) space polygon, nor can any spherical polygon
with an edge of length�.

There is an important restriction on the edges of upper hemisphere polygons. Only half of the great
circle which contains a non-equatorial edge lies above or on thexy-plane, so the maximum length of a non-
equatorial edge is�. The points at which the great circle intersects thexy-plane are thenodesof the great
circle; for an oriented great circle the nodes are identified asascendinganddescending nodesin the natural
way. As we shall see, the ascending node will serve as the reference point for measuring the arc length of
an edge.

4.4 Projecting Polygons onto the Sphere

In order to develop a formula based on vertex position in spherical coordinates and position angles, we must
relate the positions and position angles of a projected space polygon to the vertices of the space polygon.
Suppose we have a space polygonP . The projection onto the unit sphere requires the rotation and transla-
tion portion of the transformation of (4) which translates the receiver point to(0; 0; 0) and rotates so that the
receiver normal is along the positivez-axis. The spherical positions of the projected vertices are then ob-
tained from the definition of spherical coordinates. However, computing the position angles of the projected
edges is more involved.

Note that the position angle of an edge varies along the edge so it is dependent on the spherical position
on the edge. In other words, the position angle “of an edge” does not make sense unless it refers to the
position angle of the edge at a particular point. We begin by relating the normal to the plane containing a
spherical edge with a point on the edge and the position angle. Edges of a spherical polygon are directed,
and as such they are directed circular arcs in space. Consider an edge through a spherical point[�; �] with
position angle�. The edge has a unique unit normal vectorn̂ as previously described. The edge at the point
can be viewed as a rotation of the equator, in the positive direction, passing through the point[0; 0]. The
rotation which effects this (in the natural space coordinate system described above) is the matrix

R � Rz(�)Ry(�)Rx(
�

2
� �) (14)

Using an auxiliary angle = �=2� �, the matrixR can be written explicitly

R =

2
64 cos� cos� � cos� sin� sin � sin� cos � cos� sin� cos + sin� sin 

sin� cos� � sin� sin� sin + cos� cos � sin� sin� cos � cos� sin 
sin� cos� sin cos� cos 

3
75 (15)
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Figure 7:Measuring the angle subtended by a spherical arc. (a) The angle as the difference of the angles
the vertex vectors make with the vectorê pointing the toe ascending node. (b) The angle as the difference of
the angles measured from the acme of the arc.

The unit normal̂n to the edge is then simply the unit normal to the positively-oriented equator, the vector
(0; 0; 1), transformed by the rotation matrixR:

n̂ = R

2
64 0

0
1

3
75 =

2
64 � cos� sin� cos + sin� sin 
� sin� sin� cos � cos� sin 

cos� cos 

3
75 =

2
64 � cos� sin� sin�+ sin� cos�
� sin� sin� sin�� cos� cos�

cos� sin�

3
75 (16)

Equation (16) is of fundamental importance in this section, because it provides the relation of the edge
normal to the position and orientation of a spherical edge at a point.

The position angle of an edge passing through a non-polar point(�; �) is uniquely determined:

sin� = �nx sin� cos�� ny sin� sin�+ nz cos� (17)

cos� = nx sin�� ny cos� (18)

From thez-coordinate of (16) we also have

sin� =
nz

cos�
(19)

which is undefined for at the north pole (� = �=2), but so is the position angle. (Edges through the north
pole of the sphere have no contribution, because the edge normal is perpendicular to the receiver normal.)
In any case, these expressions together with the definition of spherical coordinates, provide a formula for
converting the position and edge normals of each vertex of a polygonP to a spherical position and position
angles of the adjacent edges.

4.5 Lambert’s Formula on the Sphere

Lambert’s formula states that the contribution of each spherical edge is the size (arc length) of the edge
times the cosine of the angle the plane of the edge makes with the normal. The latter is easily obtained from
the unit normal̂n of the edge; it is the negative of the inner product ofn̂ with the unitz-axis, and this is
simply thez-coordinatenz from (16)

cos 
 = �nz = � cos� sin�: (20)

The arc length� is more difficult. The goal is to measure the arc lengths from each of the two vertices to a
fiducial pointon the edge and express the length of the edge as the difference of the two lengths.
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Consider first the case of a non-equatorial edge. As the polygon is restricted to the upper hemisphere,
the non-equatorial edge is necessarily contained in a great semi-circle which has an ascending node. The
direction of the ascending node, in rectangular coordinates, is given by the cross product of thez-axis with
the edge normal̂n. In symbols

e� (0; 0; 1) � n̂ =

2
64 sin� sin� cos + cos� sin 
� cos� sin� cos + sin� sin 

0

3
75 (21)

and the unit vector is

ê =
1q

sin2 � cos2  + sin2  

2
64 sin� sin� cos + cos� sin 
� cos� sin� cos + sin� sin 

0

3
75 : (22)

The angle� from the ascending node to a point(�; �), in rectangular coordinateŝv, satisfies, with some
simplification,

cos � = v̂�ê =
cos� sin q

sin2 � cos2  + sin2  
: (23)

Consequently, the angular size of the edge joining[�i; �i] and [�i+1; �i+1], with position angles�i; �i+1,
respectively, is the difference

�i = �i;2 � �i;1 = arccos
cos�i+1 sin i+1q

sin2 �i+1 sin
2  i+1 + sin2  i+1

� arccos
cos�i sin iq

sin2 �i sin
2  i + sin2  i

: (24)

A somewhat simpler alternative formulation is also possible in terms of inverse tangents, obtainable by
measuring from the acme of the arc (the point midway between the two nodes, as shown in Figure 7)

�i = arctan
cos�i sin i

sin�i
� arctan

cos�i+1 sin i+1
sin�i+1

(25)

= arctan
cos�i
tan�i

� arctan
cos�i+1
tan�i+1

: (26)

In this latter formulation, the arctangent must be extended to include��=2 and�=2 for a zero denominator
with a negative and positive numerator. A zero numerator and denominator is not possible for a non-
equatorial edge.

The case of an equatorial edge is conceptually easier, because we havecos 
 = 1, and the arc lengths can
be measured by subtracting longitudes. However, a problem occurs if an edge crosses the prime meridian
as the difference will be off by�2�. It seems the only direct solution to this problem is to “cut” equatorial
edges at the prime meridian by adding a correction term to the formula.

Summing the edge terms, and rearranging in the manner of the previous sections, we can write the
irradiance directly in terms of the vertex positions and incident position angles

I(r) = cM +
M

2�

nX
i=1

G(�i; �i; �i�1)�G(�i; �i; �i) (27)

where

G(�; �; �) =

8>>>><
>>>>:

0; if � = �=2
�; if � = 0 and� = �=2
��; if � = 0 and� = 3�=2

cos� sin� arctan
cos�

tan�
; otherwise:

(28)
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Figure 8: (a)The plane of an edge on the image plane, and the unit edge vectorê. (b) Measuring the angles
subtended of an edge (in the plane of the edge) from the edge vector and from the normal to the edge.

and c is the number of equatorial edges which properly cross the prime meridian (0 or 1, for a proper
spherical polygon.) The correction could, of course, be avoided if we measure the angles of equatorial
edges from the edge vector in space, as was done in Section 3, but doing so would require the original space
vertices of the polygon.

5 The Image Plane Revisited

In this section we return to the situation of the first section, where a polygon (or an entire scene) is projected
onto the image plane. We ultimately wish to address points and edges “at infinity” which correspond to
points and edges along the equator of the hemisphere. The subject of this section is to relate the image plane
formula (8) to Lambert’s formula and therefore to the sphere formula of the previous section. Doing so
will clarify how the image plane formula can be augmented to handle vertices corresponding to equatorial
points on the sphere. We begin by demonstrating how the image plane formula can be extracted directly
from Lambert’s formula without using a separate Green’s theorem integration.

On the image plane, a (finite) polygonaledgeis simply a line segment, which for definiteness we take
as the segment joining(xi; yi; 1) and(xi+1; yi+1; 1). For now, assume the edge is not vertical and therefore
is contained in the liney = mix + bi. In Lambert’s formula, the irradiance contribution of an edge is the
apparent angular size� of the edge times the cosine of the angle
 the edge plane normal makes with the
surface normal. Both of these angles are measured from the point of evaluationr on the receiver, which in
image plane coordinates is simply(0; 0; 0).

We attack the cosine of the plane angle first. In image plane coordinates, the edge is the difference
(xi; yi; 1)–(xi+1; yi+1; 1), and the outward edge plane normal isni = (xi; yi; 1) � (xi+1; yi+1; 1). The
cosine is then

cos 
i = �(0; 0; 1)�ni = �xiyi+1 + yixi+1p
(yi � yi+1)2 + (xi+1 � xi)2 + (xiyi+1 � yixi+1)2

(29)

To remove the dependence on the second endpoint, lett = xi+1 � xi, so thatxi+1 = xi + t andyi+1 =
yi +mit. Then the expression forcos 
i becomes

cos 
i =
�xi(yi +mit) + yi(xi + t)p

(yi � (yi �mit))2 + (xi + t� xi)2 + (xi(yi +mit) + yi(xi + t))2
(30)

=
t(yi �mixi)q

t2m2
i + t2 + t2(mixi � yi)2

(31)
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=
s(yi �mixi)q

1 +m2
i + (mixi � yi)2

; (32)

wheres = sgn(t) is the direction, of sorts, of the edge on the image plane.
The same trick used to compute the angle� by measuring from the edge vector (see Section 3) can be

used here. The edge vector, as illustrated in Figure 8, is

ê =
sq

1 +m2
i

(1;mi; 0) (33)

and the vertex vectors are

v̂1 =
(xi; yi; 1)p
1 + xi + yi

; v̂2 =
(xi+1; yi+1; 1)p
1 + xi+1 + yi+1

(34)

The angle of the edge is the difference of the vertex angles measured from the edge vector. We have, forv̂1,

cos�1 = ê�v̂1 =
s(xi +miyi)q

(1 +m2
i )(1 + x2i + y2i )

: (35)

However, the image plane formula involves inverse tangents rather than inverse cosines. To match the
formulation, we use the following identity for first-quadrant angles

arccos
a

c
= arctan

p
c2 � a2

a
=
�

2
� arctan

ap
c2 � a2

(36)

and thereby obtain

�1 =
�

2
� arctan

s(xi +miyi)q
1 +m2

i + (yi �mixi)2
(37)

Using�1 = �=2 � �1, the angle of̂v1 measured from the perpendicular in the edge plane (as illustrated in
Figure 8, and corresponding to measuring from the acme of the arc in the previous section) the arctangent
conversion remains valid if the numeratorxi + miyi becomes negative; the angle�1 likewise becomes
negative, as it is measured. Then the angle of the edge�i is the difference�2��1 (�2 computed analogously
to �1) and we obtain

�i = s

0
@arctan

xi+1 +mi+1yi+1q
1 +m2

i+1 + (yi+1 �mi+1xi+1)2
� arctan

xi +miyiq
1 +m2

i + (yi �mixi)2

1
A : (38)

The term for the edge is the product�i cos 
i in which the sign terms cancel (s2 = 1) and we have0
@arctan

xi+1 +mi+1yi+1q
1 +m2

i+1 + (yi+1 �mi+1xi+1)2
� arctan

xi +miyiq
1 +m2

i + (yi �mixi)2

1
A (yi �mixi)q

1 +m2
i + (mixi � yi)2

(39)
which matches the formula developed from Green’s theorem—but where is the second term? Recall the
development in the section thus far has assumed that the the edge on the image plane is not vertical.

14



5.1 Vertical edges

Suppose now that the edge joining(xi; yi; 1) and(xi+1; yi+1; 1) is vertical. In this case, the line equation is
simplyx = xi or x = xi+1 and the expression forcos 
i reduces to

cos 
i = � sxiq
1 + x2i

(40)

wheres = sgn(yi+1 � yi), and the edge angle becomes

�i = s

0
@arctan

yi+1q
1 + x2i+1

� arctan
yiq

1 + x2i

1
A : (41)

Again thes signs cancel in the product.
While equation (41) matches the first term in the expression for theF in the Green’s Theorem evaluation,

there is a problem, because that summationexcludedvertical edges. Yet the previous equation shows that
vertical edges have a definite contributionvia Lambert’s summation. This can be reconciled by adding the
terms

xiq
1 + x2i

arctan
yiq

1 + x2i

� xi+1q
1 + x2i+1

arctan
yi+1q
1 + x2i+1

(42)

to the Lambert term for each non-vertical edge. The terms telescope for adjacent non-vertical edges, so if the
summation excludes vertical edges the required terms for the vertical edges will remain in the summation.
It is left to the reader to verify that this does indeed produce exactly the same formula as the one developed
directly from Green’s Theorem.

5.2 Remarks

The results in this section show how the terms of the image plane formula correspond to the equivalent terms
which are obtained from Lambert’s formula. This correspondence will be exploited in the next section, to
merge the expressions obtained from the sphere formula to vertices and edges “at infinity” in the image
plane.

6 The Projective Plane

A restriction of the the image plane formula developed in Section 2 is that it requires the polygon to lie
strictly above the receiver plane (thexy-plane), whereas Lambert’s formula allows the polygon to have
vertices or edges actually on the receiver plane. A polygon having a vertex or an edge on the receiver plane
will project to an unbounded polygon on the image plane, as illustrated in Figure 9. When a single vertex
lies on the receiver plane, the projected polygon has a vertex “at infinity”; when an edge lies on the receiver
plane, the projected polygon has an edge “at infinity”. In this section we shall augment the image plane
formula to handle such unbounded polygons, by working in the real projective plane [8].

The projective plane arises naturally from the perspective projection used in Section 2. A point(x; y; z)
in space withz 6= 0 projects to the point(x=z; y=z; 1) on the image plane. Points on thexy-plane do not
project to the image plane, rather they project topoints at infinity.

In fact, the image plane we have used, the plane parallel to thexy-plane one unit above, matches the
homogeneous representation of the projective plane. Points on the projective plane are eitherfinite points,
represented as(x; y; 1) or points at infinity, which are represented as(a; b; 0); any nonzero multiple of a
point at infinity is the same point at infinity.
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The projective plane is not a vector space, but a vector can be defined as the difference of any two finite
points, thus having the form form(a; b; 0). A vector represents a direction on the finite plane in a manner
similar to a point at infinity, with one important difference. Without giving formal definitions, a vector and
a point at infinity differ in that a negative multiple of a point at infinity results in the same point, while such
a multiple reverses the direction of a vector. For this reason, we shall refer to the direction of a vector as a
signed direction, and a point at infinity as aprojective direction.

6.1 Reformulation on the Finite Plane

The vertex-based formulation works on the finite projective plane (which excludes points at infinity) in the
same manner as in Section 2. However, it is more natural to replace the edge slopes with projective direc-
tions. A line with slopem, regardless of its position on the finite plane, intersects the unique point at infinity
(1;m; 0); a vertical line intersects(0; 1; 0). The slope of a line may therefore be generally represented by
the point at infinity(a; b; 0) where, for a line with finite slope,m = a=b and for a vertical line we usea = 0,
b = 1.

For a non-vertical edge, replacingm with b=a in equation produces

ax+ byp
a2 + b2 + (bx� ay)2

arctan
ay � bxp

a2 + b2 + (bx� ay)2
(43)

which not only becomes more symmetric, but reduces immediately to equation (41) for a vertical edge.
Using projective directions rather than the slopes of the incoming and outgoing edges thus results in a
cleaner formulation. It is worth stating the formulation specifically:

I =
M

2�

nX
i=1

~F (xi; yi; ai�1; bi�1)� ~F (xi; yi; ai; bi): (44)

where
~F (x; y; a; b) =

ax+ byp
a2 + b2 + (bx� ay)2

arctan
ay � bxp

a2 + b2 + (bx� ay)2
(45)

and(ai; bi) is the projective direction of edgei. Equation (44) provides an alternative to the original image
plane formula (8) that eliminates the extra condition for vertical edges. Also the projective directions of the
edges are easy to compute:(ai; bi) = (xi+1 � xi; yi+1 � yi), and any multiple of this direction, including a
negative multiple, remains valid.

6.2 Vertices at Infinity

The primary goal is to develop a vertex-based formula which works on the polygon in the space in its natural
representation without referring to the original polygon. In this case the natural representation of a projective
polygon is it terms of projective points. At first glance, it might appear that because the projective direction
of an edge going to infinity is identical to that point at infinity the formula would be simpler still, but this is
not the case. As we shall see, thesigneddirection of the edges incident on an infinite vertex are needed for
a vertex at infinity.

For a concrete example, consider the term for a vertical edge

xip
1 + xi

�
arctan

yi+1p
1 + xi+1

� arctan
yip

1 + xi

�
:

The first term approaches�=2 asyi+1 approaches infinity, but��=2 asyi+1 approaches negative infinity.
However, in both cases the vertex at infinity is represented by(0; 1) � (0;�1) in the projective plane, and
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(a) (b)

(c) (d)

Figure 9: (a)A vertex that lies on the receiver plane projects to a vertex at infinity on the projective plane,
resulting in an unbounded polygon with parallel edges approaching infinity.(b) The projected polygon in
a disc representation of the projective plane. The edges are contained in lines which meet at diametrically
opposite points; these two points together are the single point at infinity.(c) An edge on the receiver plane
projects to an edge at infinity on the projective plane, resulting in two non-parallel edges which go to infinity.
(d) The infinite edge represented in the projective plane.

if only the vertex and the incoming direction is used to represent the vertex, there is no way to distinguish
the sign of the�=2 term.

The local characterization of a vertex at infinity therefore requires a signed direction(a; b; 0) (which
without the direction is also the point at infinity on which the vertex lies) and an arbitrary point(xin; yin; zin)
and(xout; yout; zout) on each incident edge. Either point may be a point at infinity. A finite vertex requires
only a projective (unsigned) direction, and the position of the vertex itself provides the point on the edge.

Now consider the case of an edge terminating at a vertex at infinity. The characterization of the incoming
edge at the vertex requires an arbitrary (finite) point on the edge(xin; yin; 1) and a signed direction(a; b; 0).
As we have seen, the term for the incoming edge is the product of thecos 
 term and the angle measured
from the near point on the line containing the edge. The former is computed as in Equation (23), while the
latter is the limiting value�=2—the sign is always positive for an incoming edge. For an outgoing edge, the
cosine term is the same, but the angular term is always��=2. Note that because of this thes terms from
Section 5 do not cancel and it is therefore necessary to use a signed direction for the edge.

6.3 Edges at Infinity

The case of an edge at infinity corresponds to an edge on the equator of the sphere. The cosine of the edge
angle is always 1, and the angular size can be computed in a manner analogous to the longitude subtraction
which we did on the sphere. There is a topological problem, however; an infinite edge in the projective
plane is not well represented by a circular arc, rather it is a pair of antipodal arcs. This is not a problem if we
assume each infinite edge comes from a real polygonal edge, and thus cannot span more than a semi-circle in
this representation. The angle of the edge is the difference of the angle each endpoint makes with the point
at infinity (0; 1; 0): the contribution of an incoming edge at infinity to(x; y; 0) is the anglearctan(x=y), for
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an outgoing edge, it is the negative.
Again, we have the problem with an edge at infinity which crosses the point(1; 0; 0); in this case an

extra correction of� must be added. Again, if we measure the angles from the edge vector of the polygon
the correction can be avoided; this is done in the next subsection.

Combining the expressions for vertices and edges at infinity with the finite edge formulations of the
previous section we obtain a complete formula for polygons on the image plane, including unbounded
polygons. All the terms are collected in Figure 6.4. Notice we have not attempted to unify the terms for the
various cases into a single expression.

6.4 Formulation in Homogeneous Coordinates

The development in the previous subsection developed a vertex-based formula for irradiance from a polygon
situated and represented in the real projective plane without referring to the original polygon. An argument
could be made that the projective plane is not the proper setting for computing irradiance, because antipodal
points at infinity are most definitely not the same point; the fact that the signed direction for points at infinity
was needed exemplifies this. In this section we amend the formula so that it applies to the homogeneous
coordinates of the projected polygon. The principal difference is that we omit points at infinity outright and
simply use the coordinates of vertices which line on the receiver plane directly.

Consider the vertices of the projected polygonP � in homogeneous image plane coordinates. We make
the assumption that vertices which lie on the receiver plane,i.e. with z-coordinate 0, remain unaffected by
the perspective projection. The polygon vertices are then of the form(xi; yi; zi) wherezi is either 0 or 1.

Each edge has a direction vector. The edge joining two finite vertices has direction(xi+1 � xi; yi+1 �
yi; 0), the vector difference on the image plane. For the edge joining two vertices at infinity,i.e. two vertices
on the receiver plane, we use the same vector. The direction of an edge going to a vertex at infinity is simply
that vertex at infinity(xi; yi; 0), and the negative for an edge leaving a vertex at infinity. Again, to properly
specify the “local behavior” of an edge going to (or coming from) a vertex at infinity we require an arbitrary
point on the edge.

We previously assumed that each vertex of the projective polygon is either a finite point or a point at
infinity. That is, points at infinity did not have a direction. In the homogeneous representation, a vertex at
infinity has the coordinates of the vertex on the receiver plane, and as such has a definite direction (that is,
a negative multiple of the point produces a vertex in the opposite direction—again, on the projective plane
these points are the same.) So rather than using a signed direction of the edge going to a point at infinity, we
can use the homogeneous point itself.

To measure the angular span of an edge at infinity, we shall measure against the edge vector on the
receiver plane—this eliminates the need for the� correction in the previous section. We have, as in Section 5

�i;1 = arccos
(xi; yi; 0)�(ai; bi; 0)q
x2i + y21

q
a2i + b2i

=
�

2
� arctan

aixi + biyi
jbixi � aiyij

where(xi; yi; 0) is either point on the edge and(ai; bi; 0) is the direction of the edge. The term for the edge
is therefore

arctan
aixi+1 + biyi+1
jbixi+1 � aiyi+1j � arctan

aixi + biyi
jbixi � aiyij (46)

This naturally leads to a vertex-based expression, where the edge vector(ai; bi; 0) is replaced by the appro-
priate incoming or outgoing edge direction vector. Figure 6.4 contains a complete list and description of all
the terms.
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incoming edge outgoing edge

edge C(ainy � binx) arctan [C(ainx+ biny)] �C(aouty � boutx) arctan [C(aoutx+ bouty)]

vertical edge Ax arctan(Ay) �Ax arctan(Ay)

vertex at infinity
�

2
C(ainyin � binxin) ��

2
C(aoutyout � boutxout)

edge at infinity arctan
x

y
� arctan

x

y

Where

A =
1p

1 + x2
; C =

1p
a2 + b2 + (bx� ay)2

The terms for the vertical edges are redundant but included for completeness. Each projective vertex is a finite vertex
or point at infinity, each is of the form(x; y; 0). Each incident edge has a signed direction(a; b; 0). Thexin andyin
values in the terms for a vertex at infinity are arbitrary points on the incoming edge; the “out” values are those of the
outgoing edge. A correction of� must be added if an edge at infinity crosses(1; 0; 0). The irradiance is the sum of the
terms and the correction scaled byM=2�.

Figure 10: Terms for the vertex-based irradiance formulated in the projective plane.

incoming edge outgoing edge

edge C(ainy � binx) arctan [C(ainx+ biny)] �C(aouty � boutx) arctan [C(aoutx+ bouty)]

vertical edge Ax arctan(Ay) �Ax arctan(Ay)

vertex at infinity
�

2
C(xyin � yxin) ��

2
C(xyin � yxout)

edge at infinity arctan
ainx+ biny

jbinx� ainyj � arctan
aoutx+ bouty

jboutx� aoutyj

Where

A =
1p

1 + x2
; C =

1p
a2 + b2 + (bx� ay)2

The terms for the vertical edges are redundant but included for completeness. Each homogeneous vertex is a either
finite vertex of the form(x; y; 1) or a vertex at infinity of the form(x; y; 0), in image plane coordinates. Each incident
edge has an unsigned direction(a; b; 0). Thexin andyin values in the terms for a vertex at infinity are arbitrary points
on the incoming edge; the “out” values are those of the outgoing edge. The irradiance is the sum of the terms scaled
byM=2�.

Figure 11: Terms for the vertex-based irradiance formulated in homogeneous coordinates.
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7 Conclusion

This report has detailed several vertex-based formulas for irradiance due to a uniformly emitting polygon.
Each has advantages and disadvantages. The image plane formula from Section 2 is the simplest and per-
haps the most computationally efficient, but suffers from the restriction that the polygon is not allowed to
impinge the receiver plane. The reformulation of Lambert’s formula given by Equation (12) works without
transforming the polygon and has perhaps the cleanest formulation but does not immediately generalize to
the apparent intersection of polygons. The sphere formula of Section 4 was introduced primarily to guide
the extension of the image plane formula to unbounded polygons, and these formulas given in Section 6
have extra “ifs”. We hope the vertex-based formulations for irradiance developed here will provide a useful
alternative to Lambert’s formula.
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