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Abstract

Memory ordering properties of shared memory multiprocessors are more subtle and less well understood than
cache coherence. These properties tend to be processor or platform specific and are not always formally specified.
It is difficult to compare even those platforms whose memory ordering properties have been clearly specified as each
such platform is usually specified in its own definitional framework. We present a generic and formal specification
scheme to specify any realistic memory consistency model that gives an intuitive undertstanding to architects,
and implementors of platforms whose memory model is being defined and also a common definitional framework to
compare memory models. Another contribution of the paper is to generate an executable specification automatically,
given the specification of any memory consistency model expressed in our newly defined framework. This alternative
specification can be used to generate all possible outcomes of small assembly-language multiprocessor programs in a
giwen memory model, which is very helpful for understanding the subtleties of the model. The executable specification
can also check the correctness of assembly language programs including synchronization routines.

1 Introduction

Shared-memory multiprocessors are increasingly employed both as servers (for computations, databases, files,
and the web) and as clients. To improve performance, multiprocessor system designers use a variety of complex
and interacting optimizations . These optimizations include cache coherence via snooping or directory protocols,
out-of-order processors, store buffers. These optimizations add considerable complexity at the architectural level
and even more complexity at the implementation level. Directory protocols, for example, require the system
to transition from many shared copies of a block to one exclusive one. Unfortunately, these transitions must
be implemented with many non-atomic lower-level transitions that expose additional race conditions, buffering
requirements, and forward-progress concerns. Due to this complexity, industrial product groups spend more time
verifying their system than actually designing and optimizing it.

To verify a system, engineers should unambiguously define what ”correct” means. For a shared-memory system,
?correct” is defined by a memory consistency model. A memory consistency model defines for programmers the
allowable behavior of hardware.

Sequential Consistency is the most intuitive model for writing shared memory programs[?] mainly because all the
memory operations in an ezecution that obeys SC can be viewed as a total order ’as if’ the program has been run in
a uniprocessor. However, many commercial processors implement more relaxed memory consistency models in an
effort to improve performance. An example is the insertion of FIFO or coalescing store buffers, non-blocking loads
and so on. SPARC Total Store Order (TSO)[?], relax the SC requirement where in the total ordering of memory
operations a store(st) can appear after a load(ld) that follows it in program order. More relaxed models, such as
Compaq(DEC) Alpha[?], allow re-ordering between any two instructions . Cray3TD[?], PowerPc[?] implements
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