Description of The Functionality of
Thelmpulse Memory Controller

Lixin Zhang

UUCS-01-009

School of Computing
University of Utah
Salt Lake City, UT 84112 USA

July 10, 2001

Abstract

This document describes the functionality and control flow models for each component of
the Impulse main memory controller.

1 Background

1.1 KISS rule

Keep It Simple and Stupid.

1.2 TImpulse architecture

| mpulse Memory Controller

1 .
i !
! !
! !
i l I
! ' !
P SCitlr 'EE
: Q j] o M| E||
|8 |~ |Redisters| | |:| 3l ;
i | @ Buffer || s||
i 1= la d - |E =2l
| _— c n I
i le :: SILHEf .
. AddrCalc - i
B b i
|2 i
i o | C i
i MCache I g I
! !
1 1

{1 e o A

DRAM Scheduler
¢ h h

DRAM B DRAM

Figure 1: The internal architecture of the Impulse memory controller. The arrows indicate
how data flows within an Impulse system.

Figure 1 shows the internal architecture of the Impulse memory controller, which
includes the following components:

e a small number of Shadow Controllers (SCtlr)', each of which contains several
registers to store remapping configuration information, a small SRAM buffer
to scatter/gather data, a simple ALU unit (AddrCalc) to translate shadow ad-
dresses to pseudo-virtual addresses, and some control logic to control the flow;

e a Memory Controller TLBs (MTLB), which are backed up by main memory and
map pseudo-virtual addresses to physical DRAM addresses, along with a small
number of buffers to hold page table entries fetched from DRAM;

e a Memory Controller Cache (MCache), which buffers data prefetched from
DRAM.

An address appearing on the system memory bus may be a real physical address
or a shadow address (a). A real physical address is passed untranslated to the
MCache(b). A shadow address must go through the matching shadow controller
(d). The AddrCalc unit in the shadow controller translates the shadow address into
a set of pseudo-virtual addresses using the configuration data stored in the control
registers (e). These pseudo-virtual addresses are translated into real physical ad-
dresses by the MTLB (f). The real physical addresses then are passed to the MCache
(g). If an access misses in the MCache, it is passed to the DRAM scheduler. The
DRAM scheduler orders and issues the DRAM accesses (h) and sends the data back
to the matching shadow controller (i) (for shadow addresses) or system interface (c)
(for non-shadow addresses). Finally, the appropriate shadow controller assembles the
data into a cache line and sends it to the system interface (j).

1.3 Assumptions and restrictions

We assume the Impulse memory controller is used in a system with the following
features:

4K-byte base page, (maybe 16Kbyte later);

44-bit virtual address;

40-bit physical address;

128-byte L2 cache line.

Impulse applies the following restrictions.

!Shadow controller is what we used to call “shadow descriptor”.

3

Shadow address format:
39 38 37 32 31 0
1| 1| shaodw controller index

e Maximum size of each remapped virtual region: 16 Gbytes (234).

e Maximum shadow region for each shadow controller: 4 Gbytes (232).

Any object to be scattered/gathered must meet the following requirements:

— It must be no greater than a cache line? and no less than 4 bytes;
— Its size must be a power of 2;

— It can not cross cache-line boundary.

The stride size must be a multiple of a cache line size.

The starting virtual address of a remapped virtual region must be page-aligned.

e A shadow region must start from page boundary.

The memory controller page table must be page-aligned too.

In this document, a cache line means a line of the lowest cache level, or say a block from the system
bus’s point of view.

4

2 Shadow Controllers

2.1 Internal structure

Each shadow controller has equivalent functionality and supports all the remapping
algorithms developed so far. Each shadow controller contains the following compo-
nents:

a small number of control registers to store configuration data;

a small SRAM buffer to scatter/gather data,

a cache-line-sized SRAM to store elements of the indirection vector in scat-
ter/gather mapping through an indirection vector;

an ALU unit to translate shadow addresses to pseudo-virtual addresses using
the configuration data stored in the control registers;

control logic.

2.1.1 Control registers

The control registers must be set with appropriate values before any corresponding
shadow addresses reach the shadow controller. They are memory-mapped and set
by the processor through uncached store operations. The number of control registers
that different remapping algorithm requires is different. The following sections will
describe the minimum configuration data needed by each remapping algorithm.

2.1.2 ALU unit

The ALU unit calculates pseudo-virtual addresses. It can perform only the following
simple operations:

e addition: 32-bit + 32-bit = 32-bit, without overflow detection;
e subtraction: 32-bit — 32-bit = 32-bit, with overflow detection;
e multiplication: 32-bit x 32-bit = 32-bit, without overflow detection;

5

e shift: 32-bit << 4-bit, without overflow detection;

e masking: 32-bit & 32-bit = 32-bit.

2.1.3 Control Logic

New access

!

- Y —
ontroller isbu Enter waiting queue * \ A

B

Initiate controller: busy bit, * ‘ Datato return buffer * }7
reserve a block, etc. c

{ """"""""""""" :
" Fetch iv request :

Free controller:
unset busy hit, etc,

r- 7>‘ DRAM returns data ‘ D

After dl data
returns.

\ Datato return buffer * \

* The stage takes a configurable number of cycles. -+ Only for scatter/gather through an indirection vector.

Figure 2: Flow model of shadow controller.

Figure 2 shows the control flow model of the shadow controller.

6

2.2 Supported remapping algorithms

Currently, the shadow controllers support the following types of remapping:

e no-copy superpage formation;

strided mapping;

® N0-copy page-color mapping;

scatter /gather mapping through an indirection vector;

transpose mapping.

The following sections describe the configuration data required by each type of remap-
ping algorithm and how the configuration data is used to compute pseudo-virtual
addresses.

2.2.1 No-copy superpage formation

This mapping creates superpages for disjoint physical pages. It maps one contiguous
cache line in the shadow address space to one contiguous cache line in real physical
memory.

Configuration parameters

Name Bits | Description
map_type 8 | DIRECT_MAPPING
pref_info 2 | prefetch forward, or backward, or no prefetch

pref-count | 16 | prefetch distance, in bytes

saddr_start | 32 | bits 0 — 31 of starting shadow address
saddr_size 32 | size of the remapped shadow region, in bytes
ptable_ptr 28 | starting physical page of the MC page table

Address generation

First pseudo-virtual address® (Figure 3): (Assuming receiving shadow address saddr)
saddr — saddr_start.

Next pseudo-virtual address: No.

saddr saddr_start
31 6 0 31 11 0
| 10000000 | 000000000000

32-hit - 32-bit => 32-bit

pseudo-virtual address

Figure 3: Computation of the first pseudo-virtual address for direct mapping.

2.2.2 No-copy page-color mapping

This mapping maps a virtual region to appropriate shadow regions so that data inside
this virtual region goes to only the designated portion of a physically indexed cache.

An example

Figure 4 shows how this mapping is used. This example maps data structure A to the
third quadrant of a physically-indexed L2 cache. The operating system first allocates
a shadow address space four times of the L2 cache and then creates a page table in
the CPU to map each quarter of A to an appropriate region in the allocated shadow
address space, as shown by Figure 4. Assuming the allocated shadow address space
is L2-cache-size-aligned, all the grey boxes in the shadow address space are mapped
into the same portion of the L2 cache. Note that the white spaces in the shadow
address space are wasted in this design. Since shadow addresses are not directly
backed up by real physical memory, wasting them does not actually waste any real
physical memory.

Configuration parameters

3Refer to First pv address and Next pv address stages in Figure 2.

8

Logical Layout of A:

Shadow
Address
Space
L2 Cache:
_coloroffeet SO
Size
<— cacheway size —=
Figure 4: Map A into the third quadrant of L2 cache
Name Bits | Description
map_type 8 | PAGECOLOR_MAPPING
pref_info 2 | prefetch forward, or backward, or no prefetch

pref_count 16 | prefetch distance, in bytes

saddr_start | 32 | bits 0 — 31 of the starting shadow address
saddr_size 32 | size of the remapped shadow region, in bytes
color_size 32 | size of the designated color, in bytes.

way_size 32 | cache blocking factor (size/associativity), in bytes
color_offset | 32 | offset of the color in a cache way, in bytes
ptable_ptr 28 | starting physical page of the MC page table

Address generation

First pseudo-virtual address (Figure 5):
(saddr — saddr_start) /waysize X colorsize +
(saddr — saddr_start)%waysize — colorof f set.

Next pseudo-virtual address: No.

Although the mathematic formula seems complicated, Figure 5 shows how easily the
9

translation can be done in hardware. Note that both way_size and color_size must be
a power of two multiple of base pages. The figure shows operations that can possibly
be performed in parallel at parallel positions. It is up to hardware design team to
decide whether to actually perform them in parallel.

saddr saddr_start
31 6 0 31 1
[0000000) \ (000000000000

? 32-hit -- 32-bit => 32-bit

(saddr - saddr_start)
31 way_size ()

log2(way_size/ color_size) * \ \ \ color_offset

30-bit >> 4-bit => 32-bit 32-hit -- 32-bit => 32-hit

32-bit + 32-bit => 32-hit
pseudo-virtual address
*log2(way_size/ color_size) is set during initialization and is less than 16.
Figure 5: Computation of the first pseudo-virtual address for page-color mapping.

2.2.3 Stride mapping

This mapping creates dense cache lines from data items whose virtual addresses are
distributed in a uniform stride.

Configuration parameters

10

Name Bits | Description
map_type 8 | STRIDE_MAPPING
pref_info 2 | prefetch forward, or backward, or no prefetch

prefetch distance, in bytes

bits 0 — 31 of the starting shadow address
size of the remapped shadow region, in bytes
stride size, in bytes

object size, in bytes

number of objects

offset of the required object in a stride
starting physical page of the MC page table

pref_count 18
saddr_start 32
saddr_size 32
stride_size 16
object_size 12
object_count | 32
object_offset | 12
ptable_ptr 28

Address generation

First pseudo-virtual address (Figure 6):
(saddr — saddr_start) /object_size X stride_size + object_of fset.

Next pseudo-virtual address:
previous_one +stride_size.

2.2.4 Scatter/Gather mapping using an indirection vector
It packs dense cache lines from array elements according to an indirection vector.

Configuration parameters

11

saddr Saddr Start

31 6 0 31 11
\ [0000000] \ \oooooooooooo\

? 32-bit -- 32-bit => 32-hit

(saddr - saddr_start)

31 object szeO
‘ stride_size/4

~_

30 bit * 16-bit => 32-hit

object_offset/4

AN

@ 32-bit + 12-bit => 32-bit

i

31 0
\ | 00 append two Os.

pseudo-virtual address (34 bits)

Figure 6: Computation of the first pseudo-virtual address for stride mapping.

Name Bits | Description
map_type 8 | INDIRVECTOR_MAPPING
pref_info 2 | prefetch forward, or backward, or no prefetch

pref_count 16 | prefetch distance, in bytes
saddr_start | 32 | bits 0 — 31 of the starting shadow address

saddr_size 32 | size of the remapped shadow region, in bytes
object_size 12 | object size, in bytes

object_count | 32 | number of objects.

w_paddr 28 | starting physical page of the indirection vector
1w_elemsize 3 | element size of the indirection vector
1w_objcount 32 | number of objects in the indirection vector
fortran_sub 1 | C style or Fortran style array subscript

ptable_ptr 28 | starting physical page of the MC page table

Address generation

12

First pseudo-virtual address: (Figure 7)
index = (saddr — saddr_start)/object_size;
(tw[index] — fortran_sub) X object_size.

Next pseudo-virtual address:
(tv[+ + index| — fortran_sub) x object_size).

saddr saddr_start
31 6 0 31 1 0
\ 0000000] [000000000000]

|
32-bit -- 32-hit => 32-bit

31 (saddr - saddr_start) 0
\ \ log2(object_size/ iv_elemsize)

32-bit >> 4-bit => 32-bit

31 11 0
iv_paddr \ | Page Offset

/

28-bit + 20-bit => 28-bit

S O |

‘ Physical page number ‘ physical address

Access SRAM buffer or DRAM for the relevant element of indirection vector

Get index fortran_sub

S

@ 32-hit -- 1-bit => 32-hit

o

Append log2(object_size) Os. | | 0.0

pseudo-virtual address (34 bits)

Figure 7: Computation of the first pseudo-virtual address for scatter/gather through an
indirection vector.

13

2.2.5 Transpose mapping

This type of mapping creates the transpose of a two-dimensional matrix by mapping
element [j/[i] of the transposed matrix to element [i/[j] of the original matrix.

Configuration parameters

Name Bits | Description
map_type 8 | TRANSPOSE_MAPPING
pref_info 2 | prefetch forward, or backward, or no prefetch.

pref-count | 16 | prefetch distance, in bytes
saddr_start | 32 | bits 0 — 31 of the starting shadow address
saddr_size 32 | size of the remapped shadow region, in bytes

elem_size 12 | size (a power of 2) of an array element, in bytes
row_size 32 | size of each row, in bytes
row_num 32 | number of rows in the array. Must be a power of 2

ptable_ptr 28 | starting physical page of the MC page table.

Address generation

First pseudo-virtual address (Figure 8):
of fset = (saddr — saddr_start)/elem_size;
of fset%orow num X row_size + of fset/row_num X elem _size.

Next pseudo-virtual address:
previous_one —+row_size.

14

saddr Saddr Sart

31 31 0
| ooooooo\ oooooooooooo\

\/

32-bit -- 32-bit => 32-bit

(%ddr saddr_start)
31 elem_size

] column number | row_num \ ‘ row_sizeledlem size

\® 32-bit * 32-bit => 32-bit

@ 32-bit + 32-bit => 32-bit

i

pseudo-virtual address

Figure 8: Computation of the first pseudo-virtual address for transpose mapping.

3 Memory Controller TLB

The MTLB is responsible for the mapping from pseudo-virtual addresses to physical
DRAM addresses.

3.1 Architecture

When an application issues an Impulse system call, the operating system creates a
dense, flat page table to store the pseudo-virtual-to-physical translations of the data
structure being remapped. We refer to this page table as the memory controller page
table. Each 4-byte entry of the memory controller page table has the following format:

| valid (1) [ref (1) | modify(1) | fault(1) | frame (28) |
15

The walid bit indicates whether this mapping is valid. The reference bit indicates
whether a page has been referenced. This bit is set on the first MTLB miss for the
page. The modify bit indicates whether a page has been written. This bit is set on
the first write reference for the page. The fault bit indicates whether the page is in
main memory. The frame is physical page number. Assuming 40-bit physical address
and 4kilobyte page size, frame has 28 bits.

In the simulator, the MTLB has configurable size and associativity, uses a Not Re-
cently Used (NRU) replacement policy, and has a one-cycle access latency. Each entry
of the MTLB has the following format:

| valid (1bit) | locked (1bit) | tag (22Dbits) | refcount (2-4bits) | PTE (4 bytes) |

The walid bit indicates whether or not this mapping is valid. The locked bit indicates
whether or not this entry is reserved for an ongoing write-back transaction. A tag
is formed by a pseudo-virtual page number and the index number of the shadow
controller that generated this pseudo-virtual address. The refcount records the total
number of references to the page. It is used to implement the NRU replacement policy
when the MTLB is not direct-mapped.

A small buffer inside the MTLB is used to cache page table entries loaded from
physical memory. Each MTLB miss checks this buffer first before sending a fill request
to DRAM. If an MTLB miss hits in the buffer, it only takes one extra cycle to load

the translation into the MTLB. If it misses in the buffer, the MTLB generates a fill
request to load a cache line worth of page table entries from physical memory.

3.2 Flow model

Figure 9 shows the control flow model of the MTLB.

16

New access

MTLB busy, or
Waiting queue not empty, O
A pending miss

‘ Enter Waiting queue| A

N
Access MTLB (1 cycle)

<Line being fetched> Form physical address

1cycle | send accessto DRAM | E
Set ref/modify bit

: |

N
——| Issuearead to DRAM | D /modify big chan

Waiting
! v | Lcycle

[Load PTE into MTLB [0

Write dirty PTE back

* MTLB and its buffer are accessed in parallel.

Figure 9: Flow model of the MTLB.

4 Memory Controller Cache

4.1 MC-based prefetching

An important feature of Impulse is its supporting for prefetching at the memory
controller — MC-based prefetching. The MC-based prefetching preloads data from
DRAM into a modest SRAM cache (so-called MCache) in the MMC.

When MC-based prefetching is turned on, each access first checks the MCache for a
match. If it hits in the MCache, the Impulse MMC can quickly move the requested
data to the system interface without going through a full DRAM access (which con-
tributes the majority of a memory latency). MC-based prefetching is very important
for shadow accesses. Each shadow access must go through the shadow controller,
which may take from several cycles to hundreds of cycles. It is crucial for the Impulse
MC to start loading shadow data as early as possible to hide the cost of remapping.

The MC-based prefetching currently implements a simple next-line sequential
prefetching algorithm. A prefetching transaction is issued in the following two
situations:

e When a prefetched line is hit by a demanding request, prefetch the next line;

e When a request misses in the MCache, fetch the requested line and prefetch the
next line;

4.2 MCache organization

The MCache uses a FIFO replacement policy. The MCache is quite different from
the CPU caches. Since the most frequently used data should reside in the CPU
caches, data in the MCache should normally not be used frequently. Replacement
policies such as LRU and NRU simply do not work well with the MCache. Previous
experiments show that FIFO outperforms LRU in all programs that we have tested.

In general, the MCache has the following features:

e Physically indexed and physically tagged;
e Configurable size and set-associativity;

e FIFO replacement policy;
18

e Write-invalidate protocol. Since writes invalidates the matched data in the
MCache, data in the MCache can never be dirty, which means that conflict
victims can simply be discarded.

Each MCache line has the following format:

| used (1bit) | state (1bit) | pref (1bit) | physical tag (25bits) | data (128) |

The used bit indicates whether or not this line is in use. The state bit indicates the
state of this line — either Fetching or Valid. Fetching means that the data is being
fetched right now but has not returned from physical memory. After the fetched data
has returned, the state bit will be changed to Valid. The pref bit indicates whether
or not it is a prefetched line never being used. When a non-prefetch access hits a
prefetched line, this bit is cleared. The tag is formed by extracting bits 7 — 31 of a
shadow address.

To avoid generating duplicate DRAM accesses when a cache line being fetched is also
requested by a processor, a line is reserved and its tag is set when a transaction is
issued. If an access needs a line that an ongoing transaction is fetching, it will hit in
the MCache and wait for the return of the desired data. A line reserved for an ongoing
transaction will not be victimized before the requested data returns. If all lines that
a transaction can use are occupied by other ongoing transactions, this transaction
will stall the shadow controller pipeline if it is a normal transaction, or be discarded
if it is a prefetch transaction.

19

