Verifying a Virtual Component
Interface-based PCI Bus Wrapper Using an
LSC-Based Specification

Annette Bunker and Ganesh Gopalakrishnan

UUCS-02-004

School of Computing
University of Utah
Salt Lake City, UT 84112 USA

January 22, 2002

Abstract

Because of the high stakes involved in integrating externally developed intellectual property (IP)
cores used in System on Chip (SOC) designs, methods and tool support for quick, easy, decisive
standard compliance verification must be developed. Such methods and tools include formal stan-
dard specifications that are easy to read, formal definitions of standard compliance and automatic
generation of model checking assertions which together imply compliance. We compare two efforts
in verifying that the same register transfer level (RTL) code complies with the Virtual Sockets In-
terface Alliance’s (VSIA) Virtual Components Interface (VCI) Standard. We show that using Live
Sequence Charts (LSCs) as a formal notation for protocol specification has potential to ease the
verification effort required.

1 Introduction

As designers rely more and more on externally-developed intellectual property (IP), the necessity
of verifying that the IP blocks interface with one another correctly becomes a vital part of the
verification task. In an effort to alleviate this concern, the Virtual Socket Interface Alliance VSIA
(VSIA) produced the Virtual Component Interface (VCI) Standard. The problem, then, becomes
determining whether or not a given IP block correctly implements the VCI standard.

Both the IP designer and the IP integrator face this problem, as the integrator must at least san-
ity check and possibly fully replicate the verification reported by the developer. Because the same

1This work was supported by National Science Foundation Grants CCR-9987516 and CCR-0081406.

verification may be performed twice by separate organizations the verification effort must be signif-
icantly less than the total design effort. Furthermore, because those organizations may be contrac-
tually bound, the verification must state definitively whether or not the IP block complies with the
standard, and results must be reproducible.

With those three requirements in mind, we propose to use formal verification techniques to develop
a system in which the compliance of a register transfer level (RTL) model with a protocol standard
can be determined. Furthermore, because we use algorithmic formal methods combined with a
formal specification, our system provides definitive results and our results are reproducible.

This paper presents a verification study on an RTL model using the Cadence(® FormalCheck(®) tool.
The model under test translates a VCI transaction to its equivalent Peripheral Component Interface
(PCI) transaction as the VSIA expected integrators to use the VCI standard. Our control verification
relies on an ad hoc specification consisting of three liveness and three safety properties. We then
specify both the VCI protocol and the PCI protocol using Live Sequence Charts (LSCs) and verified
the model again, using properties systematically derived from these LSCs. While the LSC-driven
verification consisted of three times more properties and took far more CPU time than the ad hoc
verification, it found all the bugs found in the original project and took much less time overall.

The remainder of the paper reports on the verification effort. The rest of Section 1 introduces
the Virtual Component Interface Standard, the Peripheral Component Interconnect Standard, the
FormalCheck verification tool and Live Sequence Charts. Section 2 reviews related research. We
briefly describe the module we verified in Section 3. Section 4 presents the verification effort in
detail. Appendix A contains the full \erilog code for the wrapper model, while Appendix B consists
of the final verification report created by FormalCheck for the project.

1.1 TheVCI Standard

The Virtual Component Interface Standard specifies a family of point-to-point communication pro-
tocols aimed at facilitating communication between virtual components [Gro00], possibly those
created by separate design organizations. Three protocols currently belong to the family: the Pe-
ripheral Virtual Component Interface (PVCI), the Basic Virtual Component Interface (BVCI) and
the Advanced Virtual Component Interface (AVCI).

The AVCI is a superset of the BVCI which is a superset of the PVCI. The PVCI is not a split-
transaction protocol; request and response data transfers occur during a single control handshake.
The BVCI, on the other hand, is a split transaction protocol. The only constraint placed on responses
by the standard is that they arrive at the initiator in the same order in which the initiator generated
matching requests. The AVCI is also a split-transaction protocol. AVCI requests may be tagged to
allow request threads to be interleaved and transactions reordered.

All VCI standards require separate address and data busses. They allow for multiple addressing

modes enabling integrators to take advantage of memory access optimizations and bus optimiza-
tions.

1.2 ThePCI Standard

The Peripheral Component Interconnect Standard defines a chip-level interface for connecting 1/0
devices to the system’s processor/cache/memory subsystem via an acyclic network of busses and bus
bridges [Gro95]. The PCI standard is a split-transaction protocol based on two types of transactions,
posted and delayed. A posted transaction completes on the originating bus before it completes on
the destination bus. Delayed transactions, on the other hand, complete remotely before completing
locally. They do so by leaving markers in each bridge along the path from source to destination
which much be matched at each step by the transaction acknowledge. Only when the marker at the
source is matched is a delayed transaction completed.

In an attempt to obey the producer/consumer property and remain deadlock free, PCI allows certain
requests and responses to be reordered while in flight in the network. Address and data share the
same bus.

1.3 FormalCheck

The FormalCheck model checker [Bel98], marketed by Cadence Design Systems, Inc., is based
on language inclusion test for w-automata. FormalCheck compiles the Verilog or VHDL design
to build its system model. It provides the user with a series of templates for writing constraints
(environmental assumptions) and properties. The user may choose from several verification styles
ranging from bug-hunt to rigorous state-space exploration. A variety of model reduction techniques
can be employed, including the default one-step reduction, iterative reduction, clock extraction,
seeded and non-seeded reductions.

If the verification property holds on the system under investigation, the tool supplies the user with
a message so indicating. If the model violates the property, FormalCheck supplies the user with
a waveform describing the violation and the events leading to it. Violations may stem from either
improperly defined properties/constraints or from issues in the RTL model.

1.4 Live Sequence Charts

Harel and Damm propose Live Sequence Charts as an extension to Message Sequence Charts
(MSCs) [DHO1]. Live Sequence Charts consist of sets of processes, each denoted by rectangles
containing process identifiers. A process lifeline extends downward from each process. An arrow

represents a message passed from a sending process to a receiving process. The time scale of each
process is independent of the others with the exception of the partial order imposed on the events
occurring in the sending and receiving lifelines by a passed message. Sets of events that may occur
in any order are marked by coregions, dotted lines near the lifeline on which the events occur.

As the name suggests, Live Sequence Charts allow the specifier the ability to require that some or all
elements on the chart occur or that a certain time within the chart be reached (liveness). Required
events, messages, and points along the lifeline are denoted by solid lines, while optional events,
message, and timepoints are denoted by dashed lines. Similarly, required subcharts are outlined by
solid lines, while optional subcharts are outlined by dashed lines.

LSCs also offer facilities for testing conditions. Conditions are represented by bars with convex
ends that cross the lifelines of relevant processes. We require that our LSC specifications begin with
a precondition and end in a postcondition stating when the LSC is allowed to fire and in what state
the LSC leaves the system after it executes, respectively.

2 Related Work

Work related to our case study generally resides in three categories, that motivating our current
work, studies involving specifying and verifying standards at the RTL abstraction level and research
involving the use of the FormalCheck model checker. We treat each category of work, here.

The importance of high-level, formal, intuitive interface specification and verification methods has
increased greatly in recent years. The complexity of recently proposed standards implies that their
adoption depends on development of reliable SOC cores that implement these standards [GCO01].
This, in turn, relies on effective ways of specifying the standards and verifying RTL designs for
compliance. A recent expert panel points out that the integration and verification of IP will depend
not only on the individual tools chosen, but also the design process adopted [Mor01]. Our work
can be regarded as an effort to create an automatable verification process that tries to bridge the gap
between high-level standards specifications and industrial-scale model-checkers. Two key ingredi-
ents of such a process have been pointed out to be the use of high-level abstractions and interface
monitors [Alb].

Most of the work previously done in the area of standards specification and verification involves the
PCI standard. Shimizu, et al [SDHO00], specify the PCI standard using monitors written in HDLSs.
Monitor-based specifications can be checked for consistency and for receptivity, however they lack
conceptual cohesion and we expect them to be difficult to understand. Other work demonstrates
the verification of the PCI specification at roughly the same level of abstraction as the one reported
here [CCLW99, Wan99].

Xu, et al [XCS™99], describe the verification of a proprietary frame mux/demux chip by Nortel

Corporation using FormalCheck. The authors present the properties verified as well as their expe-
riences using the model reduction features of FormalCheck. In [XCSH97], the verification of an
ATM fabric switch using various theorem provers as well as model-checkers is described. The paper
presents techniques to handle large queues as well as addresses the verification of latency properties
specific to this chip in FormalCheck.

3 PCI bus wrapper model

The PCI bus wrapper consists of eight fifos and six state machines, as shown in 3. Each fifo is
responsible for storing one element of the request or response, while earlier transactions proceed on
the buses. The address, byte enables (BE), command (CMDI[1:0]), write data (WDATA[31:0]) and
end-of-packet (EOP) fifos contain the input transaction information from the VCI, as indicated by
the name of each fifo. The response error (RERR), read data (RDATA[31:0]) and response end-of-
packet (REOP) fifos return response information to the VCI. Note that all information is stored in
the wrapper in its VCI-compliant format. This design decision localizes the complexity in the PCI
state machine.

Of the six state machines, three make up the actual bus interfaces: two for the VCI and one for the
PCI interface. The VCI Request machine reads input transactions from the VCI and inserts them
into the appropriate fifos. Likewise, the VCI Response machine reads response transactions from
the appropriate fifos and drives them onto the VCI. The PCI machine handles all timing relative to
transacting on the PCI bus, but it is aided in certain aspects by the remaining three state machines.
The Parity machine calculates even parity to be output on the PCI bus, as VCI does not use a notion
of parity checking. The CMD_CVT (command convert) machine converts the VCI transaction com-
mand and byte enables into their PCl-compliant format while multiplexing them onto the the PCI
command/byte enable bus (C/BE#[3:0]). Similarly, the AD_MRG (address/data merge) machine
multiplexes the address and write data onto the PCI ADJ[31:0] bus, though it does not do any data
reformatting.

If the PCI network is able to service a request without errors, the PCI state machine reformats
and loads the response data into the response queues immediately. However, if the PCI network
returns a retry, the PCI state machine leaves the current transaction at the head of the fifos and
immediately attempts the transaction on the PCI bus again, essentially busy-waiting on the retried
PCI transaction. We made this decision to simplify the wrapper’s design. The only PCI errors that
must be supported by this style of wrapper are target aborts, which mean that the addressed device
is unable to service the request due to a fatal error. In this case, we remove the request from the fifos
and return an error to the VVClI initiator.

CMDVAI
ADDRESS[31:(] ADDRESS_FIFO REQ#
BE FRAME#
CFIXED BE_FIFO PCI IRDY#
CLEN VCl IDSEL
CMD[1:0] REQUEST CMD_FIFO CIBE#[3:0]
CONTIG PAR
WDATA[31:0] WDATA_FIFO AD[31:0]
EOP PARITY SERR#
PLEN[8:0] EOP_FIFO |
WRAP
RSPACK

CMD_CVRT PERR#
CMDACK [RERR_FIFO GNT#
RSPVAL VCI TRDY#
RDATA[31:0] RESPONSE RDATA_FIFO STOP#
REOP AD MRG DEVSEL#
RERROR [REOP_FIFO -

Figure 1: Structure of the PCI Bus Wrapper

4 Verifying with FormalCheck

This section discusses the process we used to verify the wrapper model in FormalCheck. Though
we present our process in a linear fashion for clarity, here, we used an iterative process in which,
model reductions, constraint formulation and bug tracking interacted and fed back to one another.
Subsection 4.1 explains the model reductions necessary to make the model model-checkable. Sub-
section 4.2 enumerates the environmental constraints necessary to complete the model checking and
Subsection 4.3 enumerates the properties we verified. We discuss the issues found with the design
in this case study in Subsection 4.4.

4.1 Moded reductions

The primary reductions that had to be made to the model to allow FormalCheck to handle the
wrapper design were to reduce the counter sizes and the data bus widths. Since we were aware
that we would likely make these reductions at design time, the fifos and state machines that know
about the bus sizes and counter widths were all designed using Verilog parameters. Using this
Verilog feature allowed us to change the size parameter at the highest level of module instantiation
and the Verilog compiler managed change propagation to all necessary modules. (Later versions of
FormalCheck make these reductions automatically, without the aid of parameterized designs.)

The original design contained 32-bit address and data busses as one would expect to use when
interfacing with a standard PCI network. These busses were all reduced to two bits to allow for a
nontrivial number of address and data element possibilities.

The original design also specified 9-bit fifo counters (for the head and tail pointers). Nine bits allows
enough slots to store an entire VCI packet in the fifos at once. Though our model does all processing
on the cell-level, we chose this design for flexibility. We wished to make this design easy to modify

to allow full packet-based processing, if we choose to do so, later. For purposes of the verification,
however, these counters were also reduced to two bits, allowing for only 4 slots in our fifos.

4.2 Constraints

It is our experience that precisely defining environmental constraints is the most difficult and time-
consuming portion of a FormalCheck-based verification. We began our verification with a minimal
set of constraints and added a new constraint only when it was necessary in order to avoid a false
negative. We chose this approach for three reasons: to keep the verification as simple as possible,
to allow our results to be as strong as possible and to mimic the industrial procedures of which we
are aware.

Besides the usual clock and reset constraints, we created eight constraints during the verification
project. The final set of constraints we used and their English semantics are enumerated below.

1. Assune Never: (xlator.reset_ | == 0) & (xlator.cndval == 1)
cndval may never be asserted while the wrapper is in reset.

2. Aiter: (xlator.cndval == 1) && (xlator.clk == rising)
Assune Al ways: (xlator.cndval == 1)
Unl ess: (xlator.crmdval == 1) && (xlator.cnmdack == 1) &&
(xlator.clk == rising)

cndval must remain asserted until it is properly acknowledged.

3. After: (xlator.req | == 0) & (xlator.clk == rising) &&
(xlator.reset | == 1)
Assune Eventual ly: (xlator.gnt_| == 0) &% (xlator.clk == rising)

The PCI arbiter will eventually grant ownership of the PCI bus to the bus wrapper.

4, After: (@etry) & ((xlator.ul.curr_state == 4) ||

(xlator.ul.curr_state == 3)) && (xlator.clk == rising)
Assune Eventually: (xlator.stop_| == 1) &&

(xlator.trdy_ | == 0) && (xlator.ul.curr_state == 4) ||

(xlator.ul.curr_state == 3)) && (xlator.clk == rising)

The PCI environment will not give the wrapper a PCI retry response in all future states when
the wrapper samples the PCI response.

5. After: (xlator.rspval == 1) && (xlator.clk == rising)
Assune Eventually (xlator.rspack == 1) && (xlator.clk == rising)

The VCI environment acknowledges every response, eventually.

6. Afiter: (xlator.reset | == 1) & (xlator.franme_| == 0)
Assune Eventual ly: (xlator.trdy_| == 0) && (xlator.clk == rising)

The PCI environment will eventually take ownership of every transaction the wrapper drives
onto the PCI bus.

7. Assume Never: (xlator.rspack == 1) && (xlator.clk == rising)
Unl ess: (xlator.rspval == 1) && (xlator.clk == rising)

The VCI environment does not generate an acknowledge to a response unless the response
has been driven.

8. After (xlator.req_| == 0) & (xlator.clk == rising)
Assune Al ways: (xlator.req_| == 0)
Unl ess: (xlator.req_| == 0) & (xlator.gnt_|I == 0) &&
(xlator.clk == rising)

The PCI request remains asserted until the PCI environment grants the wrapper ownership of
the bus.

Constraint 4 deserves more comment. The @ et r y term in the constraint represents a FormalCheck
macro, which expands to (xl ator.stopl == 0) && (xlator.devsel 1 == 0) &&
(xlator.trdy.l == 1),thePCl signaling that indicates a retry response. Ironically, the com-
plexity of this constraint is a direct result of our goal to keep the verification simple. We chose to
model the PCI environment with as few constraints as possible. As a result, the PCI environment
is allowed to drive responses at anytime, whether it is actually a moment at which the PCI machine
samples the PCI inputs or not. Hence, merely stating that the PCI environment cannot give a retry
forever is not strong enough. Instead, we must stipulate that retries may not be returned at all future
states when the PCI transaction is sampled.

4.3 Properties

The specification we used for the verification consisted of two Live Sequence Charts describing the
VCI standard and two LSCs describing the subset of the PCI standard which the wrapper supports.
The example LSC shown in Figure 2 specifies VCI requests.

Because all of the elements of our specification were required behaviors (recall that LSCs can also
contain optional behaviors), generating the corresponding FormalCheck specification proceeds in a
systematic fashion. We first define a notion of precise previous upon which the definition of both
properties depend. A precise previous message is the most recently received message that is both a
required message and is not in a coregion.

Each message sent by a process results in two FormalCheck properties, one eventually property
and one never property. For eventually properties, the precise previous message represents the
trigger condition, while the message sent translates to the verification condition. For instance, in our
wrapper verification the message leaving the VCI target labeled cndack generates the following
property because CMDVAL is the last required message that is not in a coregion received by the
VCI target before it sends a CMDACK message.

‘ LSC: avci request ‘

request_quiet

address = ADDR
be = BE

clen = CLEN
eop = EOP
opcode = OP
plen = PLEN
wdata = WDATA
cmdval = VALID

/i

cmdack = ACK
address = INV
be = INV
clen = INV
eop = INV
opcode = INV
plen = INV
wdata = INV
cmdval = INV \\
cmdack = INV

request_quiet

Figure 2: LSC specification of VCI requests.

After: (xlator.reset L == 1) && (xlator.cmdval == 1) &&

(xlator.clk == rising)
Eventual ly: (xlator.cnmdack == 1) &&
(xlator.clk == rising)

For never properties, the message sent becomes the verification condition, while the precise previous
message becomes the discharge condition. Thus, in our wrapper verification, the cndack message
and its precise previous translate into the following requirement:

Never: (xlator.cndack == 1) && (xlator.clk == rising)
Unl ess: (xlator.cndval == 1) && (xlator.clk == rising)

The example properties shown above highlight an earlier observation that in order for Live Sequence
Charts to be completely effective as protocol specification devices, they must have a timing model
attached to them [BGO01la]. Read strictly, the current LSC description does not require the clock to
tick as the FormalCheck translations do. These clock ticks are, however, important aspects of the
VCI Standard and must considered in the verification effort.

These examples also point out a second problem with translating the Live Sequence Charts into
model checker input. User expertise is required to write the logical expressions from the charts in
terms of the signal names in the implementation model. While LSC variables and implementation
signals have a one-to-one mapping, the exact semantics of symbolic constants, such as ADDR are
unclear.

Below, we list all the properties generated and verified in this verification project.

1. After: (xlator.reset L == 1) && (xlator.cndval == 1) &&
(xlator.clk == rising)
Eventual | y: (vp_xlator.cndack == 1) && (xlator.clk == rising)

After cdval s correctly raised, eventually cndack will acknowledge, correctly.

2. Aiter: (xlator.reset L == 1) && (xlator.cndack == 1) &&
(xlator.clk == rising)
Eventual ly: (xlator.cnmdack == 0) && (xlator.clk == rising)

After cndval is correctly asserted, it must eventually be deasserted.

3. After: (xlator.reset L == 1) & (xlator.clk == rising)
Never: (xlator.cndack == 1) && (xlator.clk == rising)
Unl ess: (xlator.cndval == 1) && (xlator.clk == rising)

No cndacks are allowed without a preceding cndval .

4. After: (xlator.cndval == 1) & (xlator.clk == rising)
Eventual ly: (xlator.rdata == stable) && (xlator.rspval == 1) &&
(xlator.clk == rising)

r dat a should eventually be valid.

10.

11.

12.

13.

14.

After: (vp_xlator.rdata == stable) && (vp_xlator.rspval == 1) &&
(vp_xlator.clk == rising)
Eventual ly: (vp_xlator.rspval == 0) & (vp_xlator.clk == rising)

r dat a must eventually invalidate.

After: (vp_xlator.cndval == 1) && (vp_xlator.clk == rising)
Eventual ly: (vp_xlator.reop == stable) &% (vp_xlator.rspval == 1) &&
(vp_xlator.clk == rising)

r eop is eventually valid.

. After: (vp_xlator.reop == stable) && (vp_xlator.rspval == 1) &&
(vp_xlator.clk == rising)
Eventual ly: (vp_xlator.rspval == 0) & (vp_xlator.clk == rising)

r eop eventually invalidates.

After: (vp_xlator.cndval == 1) && (vp_xlator.clk == rising)
Eventual ly: (vp_xlator.rerror == stable) && (vp_xlator.rspval == 1) &&
(vp_xlator.clk == rising)

rerror eventually becomes valid.

After: (vp_xlator.rerror == stable) & (vp_xlator.rspval == 1) &&
(vp_xlator.clk == rising)
Eventual ly: (vp_xlator.rspval == 0) & (vp_xlator.clk == rising)

rerror eventually invalida

After: (vp_xlator.reset_L == 1) & (vp_xlator.cmdval == 1) &&
(vp_xlator.clk == rising)

Eventual | y: (vp_xlator.reset_L == 1) && (vp_xlator.rspval == 1) &&
(vp_xlator.clk == rising)

r spval eventually becomes valid once a transaction has been inserted into the queues.

After: (vp_xlator.rspval == 1) & (vp_xlator.clk == rising)
Eventual ly: (vp_xlator.rspval == falling)

rspval eventually invalidates.

Never: (vp_xlator.rspval == 1) && (vp_xlator.clk == rising)
Unl ess: (vp_xlator.cmdval == 1) && (vp_xlator.clk == rising)

r spval may not be asserted until a cndval precedes it.

After: (vp_xlator.cmdval == 1) && (vp_xlator.clk == rising)
Eventual ly: (vp_xlator.req_| == 0) & (vp_xlator.clk == rising)

Once a request has occured on the VCI, then the wrapper must eventually request PCI arbi-
tration.

After: (vp_xlator.cndval == 1) && (vp_xlator.clk == rising)
Eventual ly: (vp_xlator.frame_| == 0) && (vp_xlator.clk == rising)

Once a request has occured on the VCI, the wrapper must initiate a PCI transaction, eventu-
ally.

15. After: (vp_xlator.cndval == 1) && (vp_xlator.clk == rising)
Eventual | y: (vp_xlator.c_be_|I == stable) && (vp_xlator.clk == rising)

Once a request has occured on the VVCI, the wrapper must generate appropriate command and
byte enable information on the PCI interface, eventually.

16. After: (vp_xlator.cndval == 1) && (vp_xlator.clk == rising)
Eventual ly: (vp_xlator.irdy_|I == 0) & (vp_xlator.clk == rising)

Once a transaction has occured on the VCI, the wrapper must eventually assert i r dy 1 to
show its data transfer readiness.

17. Aiter: (vp_xlator.cndval == 1) & (vp_xlator.cnd == 1) &&
(vp_xlator.clk == rising)
Eventual ly: (vp_xlator.trdy_|I == 0) & (vp_xlator.clk == rising)

Once a read transaction has occured on the VCI then the wrapper must eventually assert
trdy_|l toshow its data transfer readiness as the target device.

18. Never: (vp_xlator.franme_ | == 0) & (vp_xlator.clk == rising)
Unl ess: (vp_xlator.cmdval == 1) && (vp_xlator.cndack == 1) &&
(vp_xlator.clk == rising)

The wrapper may not initiate a PCI transaction unless a VCI transaction preceded it.

Table 4.3 summarizes the verification statistics reported by FormalCheck on the final, passing run
of each property.

44 |ssues

Our original wrapper model contains eight issues, three of which were identified as a direct result
of model checking activities. The other five were identified as a result of deeper examination of
the code inspired by feedback obtained from the model-checker. Of the eight issues, six of resided
in the PCI state machine. One of these six issues corrects poor coding, but was not a functional
correctness issue. Another of the six relates to the fix for an earlier-identified issue.

The most interesting issue raised by this study relates to a performance optimization in the PCI ma-
chine. When the PCI network issues a target abort (fatal error) in response to the wrapper’s request,
the original design immediately checks the status of the queues, initiating the next transaction if
there is one and idling if not. This procedure, however, does not allow the request queues enough
time to discard the aborted transaction and update the empty status bit before it is checked. In the
case when the aborted transaction is the last one in the queues, the wrapper tries to generate an extra,
garbage transaction. Removing the optimization, forcing the PCI state machine to travel through a
recovery state before testing the status bits, solves the problem.

The experimental verification found all the bugs reported in the original project [BGO1b], except the
buggy bug-fix. We had the advantage of experience in the second project and the bug was avoided

| Property | State Vars Time | Memory |

1 71 4 min,9sec | 481 MB
2 71 4 min, 54 sec | 438 MB
3 67 2 min, 40sec | 473 MB
4 143 — —

5 143 — —

6 87 — —

7 87 — —

4 78 28 min, 56 sec | 563 MB
5 78 21 min, 45 sec | 530 MB
6 71 7 min, 31sec | 497 MB
7 72 6 min, 34 sec | 499 MB
8 66 2 min, 15sec | 471 MB
9 72 4 min, 25sec | 483 MB
10 72 5min, 46 sec | 488 MB
11 103 9min, 1sec | 504 MB
12 73 17 min, 8 sec | 518 MB
13 72 4 min, 21 sec | 481 MB
14 67 2min, 15sec | 471 MB

Table 1: FormalCheck statistics summary

completely. All the issues found in the LSC-based verification project were found as a direct result
of model checking.

5 Conclusions and future work

As the use of externally developed intellectual property becomes widespread practice, the need for
formal compliance verification techniques increases. Adequate verification schemes should require
significantly less time and effort than development of the IP. They should state definitively whether
or not the block complies with the standard and the verification results should be reproducible.

We seek to understand if specifications written in Live Sequence Chart notation address the first
requirement, above, and if so, how. While not conclusive, our study indicates that Live Sequence
Chart specifications show potential for aiding in standard compliance verification tasks. The poten-
tial for large effort reductions exists, given better understanding of how LSCs can aid the produc-
tion of environmental constraints. We show how model checking properties can be systematically
derived from an LSC specification. The properties so generated can give the IP designer high con-
fidence that the design correctly implements the standard. They can also give the IP integrator high
confidence in and deep insight into the delivered IP component in a short amount of time.

There is much work we can still do toward developing automatic tool support for standard compli-
ance verification. In the near term, our case study raises several specific questions. First, we should
study LSC constraint generation more closely. Developing exactly the right set of the constraints
for a FormalCheck verification project is difficult and time consuming. It is also the source of many
errors. Finding ways to ease this task could equate to greatly reducing the total verification effort.
Second, we must address the name mapping problem in order to automatically generate properties
or constraints from Live Sequence Chart specifications as it is not always obvious how certain con-
structs of an LSC specification are expressed in the implementation model. Third, deriving schemes
for addressing optional elements of protocol specifications expressed as LSCs is necessary for our
methods and tools to generalize to other protocols. The Basic Virtual Component Interface is a
relatively simple standard. Even describing its sister standard, the Advanced Virtual Component
Interface, requires the use of optional behaviors.

In the longer term, developing a formal definition of standard compliance is a high priority. Such
a definition would characterize exactly what the generated properties imply. We expect that such
a definition will rely heavily upon trace inclusion concepts and techniques. Once compliance is
formally defined and the issues with automatically generating properties from Live Sequence

Chart specifications are solved, we can create an automatic compliance verification system.

References

[Alb] Ken Albin. Nuts and bolts of core and soc verification.

[Bel98] Bell Labs design Automation and Lucent Technologies. FormalCheck User’s Guide, v2.1 edi-
tion, 1998.

[BG01la] Annette Bunker and Ganesh Gopalakrishnan. Using live sequence charts for hardware protocol
specification and compliance verification. In IEEE International High Level Design Validation
and Test Workshop. IEEE Computer Society Press, November 2001.

[BGO1b] Annette Bunker and Ganesh Gopalakrishnan. Verifying a virtual component interface-based pci
bus wrapper using formalcheck. Technical Report UUCS-01-006, University of Utah, June 2001.

[CCLW99] Pankaj Chauhan, Edmund M. Clarke, Yuan Lu, and Dong Wang. Verifying ip-core based system-
on-chip designs. In IEEE International ASIC/SOC Conference, pages 27-31, September 1999.

[DHO1] Werner Damm and David Harel. LSCs: Breathing life into message sequence charts. Formal
Methods in System Design, pages 45-80, 2001.

[GCO1] Torbjorn Grahm and Barry Clark. Soc integration of reusable bashband bluetooth ip. In Proceed-
ings of the 2001 Design Automation Conference, pages 256-261, 2001.

[Gro95] PCI Special Interest Group. PCI Local Bus Specification. PCI Special Interest Group, 1995.

[Gro00] OCB Design Working Group. VSI Alliance Virtual Component Interface Standard. Virtual
Sockets Interface Alliance, November 2000.

[Mor01] Gabe Moretti. Your core - my problem? integration and verification of ip. In Proceedings of the
2001 Design Automation Conference, pages 170-171, 2001.

[SDH00] Kanna Shimizu, David L. Dill, and Alan J. Hu. Monitor-based formal specification of PCI. In
Warren A. Hunt, Jr. and Steven D. Johnson, editors, Formal Methods in Computer-Aided Design,
volume 1954 of Lecture Notes in Computer Science, pages 335-352. Springer-\Verlag, November
2000.

[Wan99] Dong Wang. Formal verification of the PCI local bus: A step towards ip core based system-on-
chip design verification. Master’s thesis, Carnegie Mellon University, May 1999.

[XCST99] Y. Xu, E. Cerny, A. Silburt, A. Coady, Y. Liu, and P. Pownall. Practical application of formal
verification techniques on a frame mux/demux chip from nortel semiconductors. In Laurence
Pierre and Thomas Kropf, editors, Proceedings of the 10th IFIP WG 10.5 Advanced Research
Working Conference, CHARME 99, volume 1703 of Lecture Notes in Computer Science, pages
110-124. Springer Verlag, September 1999.

[XCSH97] Ying Xu, Eduard Cerny, Allan Silburt, and Roger B. Hughes. Property verification using theorem

proving and model checking. www.isdmag.com, November 1997.

A Verilog Wrapper Model

/**/

/*

/* Project: VCI/PCI bridge model

/* File: ad _mrg.v

/* Author: Annette Bunker

/* Date: Thu Oct 5 10:53:12 MDT 2000
/* Modifications:

/*

/ Kk KKk KKk KKk KKk

/* define state names */
“define AD 1”b0
“‘define DATA 1°b1

XXk x

KKK [

module ad_mrg (pci_ad, vci_address, vci_data, merge, cmd, clk,

output[3:0] pci_ad;

reg [3:0] pci_ad;
input [3:0] vci_address;
wire [3:0] vci_address;
input [3:0] vci_data;
wire [3:0] vci_data;

input merge;
wire merge;
input [1:0] cmd;
wire [1:0] cmd;
input clk;

wire clk;

input reset_L;
wire reset L ;

reg curr_state;
reg next_state;

always @(posedge clk or negedge reset L) begin

if (Ireset L) begin
next_state = “AD;

end else begin
curr_state = next_state;
case (curr_state)

“AD: begin

it (merge) begin
pci_ad = vci_address;
next_state = “DATA;

end else begin
next_state = “AD;

reset L);

end
end // case: “AD
“DATA: begin
if (cmd == “VCI_WRITE) begin
pci_ad = vci_data;
end else begin
pci_ad = 327bz;
end
next _state = “AD;
end
endcase
end
end
endmodule

/**/
/ *

/* Project: VCI/PCI bridge model

/* File: cmd_cvt.v

/* Author: Annette Bunker

/* Date: Tue Oct 3 11:08:45 MDT 2000

/* Modifications:

/*

/**/

/* define state names */
“define CMD 1”b0
“define BE 1°bl

module cmd_cvt (pci_cmd _be, vci_cmd, vci_be, convert, clk, reset L);

output[3:0] pci_cmd_be;
reg [3:0] pci_cmd_be;
input [1:0] vci_cmd;
wire [1:0] vci_cmd;
input [3:0] vci_be;
wire [3:0] vci_be;

input convert;
wire convert;
input clk;
wire clk;
input reset_L;
wire reset L;

reg curr_state;
reg next_state;

always @(posedge clk or negedge reset_L) begin
if (reset_L) begin

next_state = “CMD;
end else begin
curr_state = next_state;
case (curr_state)
“CMD: begin
if (convert) begin
case (vci_cmd)
“VCI_NOOP: begin
end
“VCI_READ, “VCI_LREAD: begin
pci_cmd_be = “PCl_READ;
end
“VCI_WRITE: begin
pci_cmd_be = “PCI_WRITE;
end
endcase // case(vci_cmd)
next_state = “BE;
end else begin
next_state = “CMD;
end
next_state = “BE;
end // case: “CMD

“BE: begin
pci_cmd_be = Tvci_be;
next_state = “CMD;
end
endcase
end
end
endmodule

/**/

/*
/* Project: VCI/PCI bridge model
/* File: fifo.v

/* Author: Annette Bunker

/* Date: Tue Jan 19 12:59:28 MST 1999

/* Modifications:
/*

/**/

/* define readable state names
“define DECODE 1’b1l
“define CLEAN 17b0

/* define readable last_op names
“define INS 1°bl
“define REM 1°b0

/* define readable command widths */
“define QCMD_WIDTH 2
“define MCMD_WIDTH 2

/* define some readable bus widths */
“define DATA WIDTH 8

/**/

/* This module takes the clock as input and generates

/* a binary up counter.
/**/

module bin (cntr, new, clk, reset L);
parameter width = 8;

output [width-1:0] cntr; // create output for counter

reg [width-1:0] cntr; // create a register for the counter
input new; // count only when asserted

wire new; // wire new to input

input clk; // create clock input

wire clk; // create internal wire for clock

input reset L; // create input for reset line

wire reset L; // create internal wire for reset

always @(posedge clk) begin
if (Ireset L) begin
cntr <= 0;
end
else it (new) begin
cntr <= cntr + 1;
end
end
endmodule

/**/

/* This module implements the memory to which the

/* queue writes its data.
/**/

module memory (data out, write_enable, head ptr, read _enable,
tail_ptr, data in, clk);
parameter data width = 32;
parameter cntr_width = 8;

output [data width-1:0] data_out; // output for queue data

reg [data_width-1:0] data out; // wire queue data to output
input write_enable;// allow mem to write

wire write_enable;// wire write enable

input [cntr_width-1:0] head ptr; // input for dest address

wire [cntr_width-1:0] head_ptr; // pointer to dest

input read_enable; // allow mem to read

wire read_enable; // wire read enable

input [cntr_width-1:0] tail_ptr; // input for dest address
wire [cntr_width-1:0] tail_ptr; // pointer to dest

input [data width-1:0] data_in; // input for queue data

wire [data_width-1:0] data_in; // wire queue data to input
input clk; // input for system clock

wire clk; // wire system clock

reg [data_width-1:0] mem[(1<<cntr_width)-1:0]; // the memory

wire [data_width-1:0] memO;
assign memO0 = mem[O0];

always @(posedge clk) begin
if (read_enable) begin
data_out = mem[head ptr];
end
if (write_enable) begin
mem[tail_ptr] = data_in;
end
end
endmodule

/**/

/* This module implements full and empty, signals that
/* warn the other modules that the queue is full or empty,
/* as appropriate. Modified for simultaneous read/write.

/**/

module dual_bounds(full, empty, head ptr, tail_ptr, reset L);
parameter cntr_width = 8;

output full; // signal that the queue is full
wire full; // wire up the full output

output empty; // signal that the queue is empty
wire empty; // wire up the empty output

input [cntr_width-1:0] head ptr; // input for head pointer 1/0
wire [cntr_width-1:0] head ptr; // bus for head pointer 1/0
input [cntr_width-1:0] tail_ptr; // input for tail pointer 1/0
wire [cntr_width-1:0] tail_ptr; // bus for tail pointer 1/0
input reset L ; // input for system reset

wire reset L; // wire up system reset

wire [cntr_width-1:0]Jone_tail;

assign empty = (lreset L) || (head_ptr == tail_ptr);
assign one_tail = tail _ptr+1;

assign Tull = (lreset_L) |] (head_ptr == one_tail);

endmodule

/**/

/* This module wires my system together. Modified for
/* simultaneous read/write.

/**/

module dual_bin_fifo (data_from_mem, full, empty, data to _mem, insert,
front, remove, clk, reset L);
parameter data_width 32;
parameter cntr_width 8;

output [data width-1:0] data_from_mem;// bus for data 1/0
wire [data_width-1:0] data from_mem;// bus for data 1/0

output full; // wires full 1/0
wire full; // wires full 1/0
output empty; // wires empty 1/0
wire empty; // wires empty 1/0

input [data_width-1:0] data_to_mem; // bus for data 1/0
wire [data width-1:0] data _to_mem; // bus for data 1/0

input insert; // insert command

wire insert; // wires insert command

input front; // front command

wire front; // wires front command

input remove; // remove command

wire remove; // wires remove command

input clk; // wires clock 1/0

wire clk; // wires clock 1/0

input reset_L; // wires reset -- asserted low
wire reset L; // wires reset -- asserted low

wire [cntr_width-1:0] head ptr; // bus for head pointer 1/0
wire [cntr_width-1:0] tail_ptr; // bus for tail pointer 1/0

bin #(cntr_width) head (head_ptr, remove, clk, reset L);
bin #(cntr_width) tail (tail_ptr, insert, clk, reset L);
memory #(data width, cntr_width) mem (data_from_mem, insert,
head_ptr, (remove || front),
tail_ptr, data to mem, clk);
dual_bounds #(cntr_width) bnd (full, empty, head ptr, tail ptr,
reset _L);
endmodule

/**/
/*

/* Project: VCI/PCI bridge model

/* File: parity.v

/* Author: Annette Bunker

/* Date: Tue Feb 1 09:34:20 MST 2000
/* Modifications:
/*

/**/

/* R e S ST s s s R S STt *HxFk)

/* This module returns an even parity over the input bus.

/**/

module even_parity (parity, bus, calc parity, clk, reset_L);
parameter data_width = 32;

output parity;
reg parity;
input[data_width-1:0] bus;
wire [data_width-1:0] bus;

input calc_parity;
wire calc parity;
input clk;

wire clk;

input reset_L;
wire reset L;

always @(posedge clk) begin
if (Ireset L) begin
parity = O;
end else begin
if (calc_parity == “TRUE) begin
parity = “bus;
end
end
end
endmodule

/**/

/* */
/* Project: VCI/PCI bridge model */

/* File: response.v */

/* Author: Annette Bunker */

/* Date: Fri Oct 13 10:18:13 MDT 2000 */

/* Modifications: */

/= */

/**/

/* define state names */
“define IDLE 1”°b0
“define RESPOND 1°bl

module response (rspval, reop_remove, rdata_remove, rerr_remove,

rspack, empty, clk, reset L);

output rspval;
reg rspval;
output reop_remove;

reg reop_remove;
output rdata_remove;
reg rdata_remove;
output rerr_remove;
reg rerr_remove;
input rspack;

wire rspack;

input empty;

wire empty;

input clk;

wire clk;

input reset_L;

wire reset_L;

reg curr_state;
reg next_state;

always @(posedge clk or negedge reset_L)
if (Ireset L) begin
rspval = “FALSE;
rdata_remove = “FALSE;
rerr_remove = “FALSE;
reop_remove = “FALSE;
next_state = “IDLE;
end else begin
curr_state = next_state;
case (curr_state)
“IDLE: begin
rspval = “FALSE;
if (empty) begin
rdata _remove = “TRUE;
rerr_remove “TRUE;
reop_remove “TRUE;
next_state = “RESPOND;
end else begin
next_state = “IDLE;
end
end
“RESPOND: begin
rdata _remove = “FALSE;
rerr_remove = “FALSE;
reop_remove = “FALSE;
rspval = “TRUE;
if (rspack) begin
next_state = “IDLE;

begin

end else begin
next_state = “RESPOND;
end
end
endcase
end
end
endmodule

/**/

/* */
/* Project: VCI/PCI bridge model */

/* File: to_pci.v */

/* Author: Annette Bunker */

/* Date: Tue Sep 26 10:22:55 MDT 2000 */

/* Modifications: */

/* */

/)(*hkx *hkx * XXX *XKkxx *hkx * kXX * kXX nn)()(/

/* define readable data widths */
“define D_WIDTH 4

module vp_ xlator (cmdack, rspval, rdata, reop, rerror, req_l, frame_l,
irdy I, c be I, par, stop_ I, perr_I, serr_I, ad,
cmdval, address, be, cfixed, clen, cmd, contig,
wdata, eop, plen, wrap, rspack, gnt_I, trdy_lI,
devsel 1, clk, reset L);

output cmdack;// VCI ack to request

wire cmdack;// VCI ack to request

output rspval;// VCI valid response available
wire rspval;// VCI valid response available

output [“D_WIDTH-1:0] rdata; // VCI response data
wire [“D_WIDTH-1:0] rdata; // VCI response data
output reop; // VCI end of response

wire reop; // VCI end of response

output rerror;// VCI error in request

wire rerror;// VCI error iIn request

output req_l; // PCI request for bus ownership
wire reqg_l; // PCl request for bus ownership
output frame_I1;// PCl beginning of frame marker
wire Fframe_Il;// PCl beginning of frame marker
output irdy 1;//7 PCI init ready to complete cycle
wire irdy I1;// PCl init ready to complete cycle
output [3:0] c _be 1;/7/ PCI command/byte enables
wire [3:0] c_be 1;// PCl command/byte enables
output par; // PCl even parity

wire par; // PCl even parity

inout
inout
inout

input
wire
input
wire
input
wire
input
wire
input
wire
input
wire
input
wire
input
wire
input
wire
input
wire
input
wire
input
wire

input
wire
input
wire
input
input
wire

input
wire
input
wire

wire
wire
wire
wire
wire
wire

perr_1;// PCI
serr_I1;// PCI
[“D_WIDTH-1:0]

cmdval ;
cmdval ;

[“D_WIDTH-1:0]
[“D_WIDTH-1:0]

[3:0] be;
[3:0] be;
cfixed;
cfixed;
clen;

clen;

[1:0] cmd;
[1:0] cmd;
contig;

contig;

[D_WIDTH-1:0]
[D_WIDTH-1:0]

€eop;
eop;
[7:0]
[7:0]
wrap;
wrap;
rspack;
rspack;

gnt_1;
gnt_1I;
trdy I;
trdy 1I;
stop_1;
devsel 1I;
devsel _1I;

clk;
clk;

reset_L;
reset_L;

insert;
addr_full;
be full;
wdata_Tfull;
cmd_full;
full;

plen;
plen;

parity error

system error -- fatal

ad; // PCl address/data

// VCI valid command available
// VCI valid command available
address; // VCI address
address; // VCl address

// VCI byte enables
// VCI byte enables

// VCI opcode is fixed across chain
// VCI opcode is fixed across chain

// VCI packets remaining in chain

// VCI packets remaining in chain

// VCI command
// VCI command

// VCI contiguous addressing mode

// VCI contiguous addressing mode
wdata; // VCI data to write
wdata; // VCI data to write

// VCI end of packet

// VCI end of packet

// VCI packet length: 0 = unspecified
// VCI packet length: 0 = unspecified

// VCI wrapping addressing mode

// VCI wrapping addressing mode

// VCI response ack

// VCI response ack

// PCI bus ownership granted

// PCl bus ownership granted

// PCl target ready to complete cycle
// PCl target ready to complete cycle
// PCIl target abends cycle

// the global clock
// the global clock
// global reset
// global reset

full = addr_full |] be_full || wdata_full ||

empty = addr_empty || be_empty || wdata_empty

wire be_empty;
wire addr_empty;
wire wdata_empty;
wire cmd_empty;
wire empty;
wire ad_front;
wire be front;
wire wdata_ front;
wire cmd_front;
wire calc_parity;
wire [1:0] new_cmd;
wire [3:0] new_be;
wire [“D_WIDTH-1:0]
wire [“D_WIDTH-1:0]
wire convert;
wire merge;
wire rdata_full;
wire rdata_empty;
wire rdata_insert;
wire rerr_full;
wire rerr_empty;
wire rerr_insert;
wire err;
wire new_eop;
wire eop_Full;
wire reop_full;
wire eop_empty;
wire reop_empty;
wire reop_insert;
wire eop_remove;
wire reop_remove;
wire res_empty;
assign

cmd_Ffull;
assign

|l cmd_empty;
assign

res_empty = rerr_empty || reop_empty ||

rdata_empty;

vci_loader #(2) vl (insert, cmdack, cmdval, full, cmd, clk,
reset L);

new_address;
new_wdata;

dual_bin_fifo #(2, 2) cmd_gq (new_cmd, cmd_full, cmd_empty, cmd,
insert, cmd_front, cmd_remove, clk,

reset L);

dual_bin_fifo #(4, 2) addr_gq (new_address, addr_full, addr_empty,
insert, ad_front,
ad_remove, clk, reset L);

address,

dual_bin_fifo #(4, 2) be_qg (new_be, be_full, be_empty, be,

insert,

be_ front, be_remove, clk, reset L);
dual_bin_fifo #(4, 2) wdata g (new_wdata, wdata full, wdata_empty,
wdata, insert, wdata_ front,
wdata_remove, clk, reset L);
dual_bin_fifo #(4, 2) rdata g (rdata, rdata_full, rdata empty, ad,
rdata_insert, “FALSE, rdata_remove,
clk, reset L);
dual_bin_fifo #(1, 2) rerr_g (rerror, rerr_full, rerr_empty, err,
rerr_insert, “FALSE, rerr_remove,
clk, reset_L);
dual_bin_fifo #(1, 2) eop_qgq (new_eop, eop_ Tull, eop_empty, eop,
insert, “FALSE, eop_remove, clk,
reset L);
dual_bin_fifo #(1, 2) reop_q (reop, reop_full, reop _empty, new_eop,
reop_insert, “FALSE, reop_remove,
clk, reset_L);
cmd_cvt cvt (c_be I, new_cmd, new_be, convert, clk, reset L);
ad_ mrg adm (ad, new_address, new_wdata, merge, new_cmd, clk,
reset L);
even_parity #(8) ep (par, {ad, c _be 1}, calc_parity, clk, reset L);
vci_unloader ul (irdy_ I, req_l, frame_l, ad_front, wdata_ front,
be_front, cmd_front, ad_remove, eop_remove,
wdata_remove, be remove, cmd_remove, reop_insert,
convert, merge, calc parity, rdata_insert,
rerr_insert, err, new_cmd, empty, gnt I, trdy I,
stop_1I, devsel 1, clk, reset _L);
response res (rspval, reop_remove, rdata_remove, rerr_remove,
rspack, res_empty, clk, reset L);
endmodule

/**/
/*

/* Project: VCI/PCI bridge model

/* File: unloadr.v

/* Author: Annette Bunker

/* Date: Wed Jul 19 10:27:57 MDT 2000

/* Modifications:

/*

/ *Xx *xx *Xx *x*k *hkx * k% * X%)(7(2(/

/* define state names */
“define IDLE 37b000
“define REQ_ARB 37b001
“define ADDRESS 37b010
“define WRITE_DATA 3°b011
“define READ_DATA 37b100
“define READ DONE 3’b101
“define RECOVER 37b110

/* define PCIl constants */
“define ADDR_WIDTH 4
“define CMD_WIDTH 4

module vci_unloader (irdy_I, req_l, frame_ 1, ad_front, wdata_ front,
be_ front, cmd_front, ad_remove, eop_remove,
wdata_remove, be remove, cmd_remove, reop_insert,
convert, merge, calc parity, rdata_insert,
rerr_insert, err, new_cmd, q_empty, gnt_ |,
trdy_1, stop_1, devsel_ 1, clk, reset L);

output irdy I;
reg irdy_I;

output req_I;

reg req_I;

output frame_lI;

reg frame_I;
output ad_remove;
reg ad_remove;
output eop_remove;
reg eop_remove;
output wdata_remove;
reg wdata remove;
output be remove;
reg be_remove;
output cmd_remove;
reg cmd_remove;
output reop_insert;
reg reop_insert;
output ad_front;
reg ad_front;
output wdata_front;
reg wdata_front;
output be front;
reg be front;
output cmd_front;
reg cmd_front;
output convert;

reg convert;

output merge;

reg merge;

output calc_parity;
reg calc_parity;
output rdata_insert;
reg rdata_insert;
output rerr_insert;
reg rerr_insert;
output err;

reg err;

input [1:0] new_cmd;
wire [1:0] new_cmd;
input q_empty;

wire q_empty;

input gnt_I;

wire gnt_1;

input trdy I;

wire trdy_I;

input stop I;

wire stop_1;

input devsel _1I;
wire devsel 1;

input clk;

wire clk;

input reset_L;

wire reset L;

reg [2:0] curr_state; //current state bit
reg [2:0] next_state; //next state bit

always @(posedge clk or negedge reset_L) begin

if (Ireset_L) begin

irdy I = “TRUE;

reqg_l = “TRUE;

frame_1 = “TRUE;

convert = “FALSE;

merge = “FALSE;

be front “FALSE;

ad_front “FALSE;

cmd_front = “FALSE;

rdata_insert = “FALSE;

err = “FALSE;

next_state = “IDLE;
end else begin

curr_state = next_state;
case (curr_state)
“IDLE: begin

rerr_insert “FALSE;
reop_insert “FALSE;
rdata_insert = “FALSE;
ad_remove = “FALSE;
be remove = “FALSE;
wdata_remove = “FALSE;
eop_remove = “FALSE;
cmd_remove = “FALSE;
wdata_ front = “FALSE;
ad_front = “FALSE;
cmd_front = “FALSE;
calc_parity = “FALSE;

if (Iq_empty) begin
irdy I = “TRUE;
reg_l = “TRUE;
next_state = “REQ_ARB;
end else begin
next_state = “IDLE;
end
end
“REQ_ARB: begin
rerr_insert = “FALSE;
reop_insert = “FALSE;
rdata_insert = “FALSE;
ad_remove = “FALSE;
be_remove = “FALSE;
wdata_remove = “FALSE;
eop_remove = “FALSE;
cmd_remove = “FALSE;
calc parity = “FALSE;
wdata_ front = “FALSE;
irdy_1 = “TRUE;
req_l = “FALSE;
if (Ignt_I) begin
cmd_front = “TRUE;
be front = “TRUE;
convert = “TRUE;
ad front = “TRUE;
wdata_front = “TRUE;
merge = “TRUE;
next_state = “ADDRESS;
end else begin
next_state = “REQ_ARB;
end
end
“ADDRESS: begin
cmd_front = “FALSE;
be_front = “FALSE;
wdata front = “FALSE;
ad_front = “FALSE;
convert = “FALSE;
merge = “FALSE;
calc_parity = “TRUE;
frame_ 1 = “FALSE;

if (new_cmd == “VCI_WRITE) begin

eop_remove = “TRUE;
next_state = “WRITE_DATA;
end else begin
next_state = “READ_DATA;
end
end

“WRITE_DATA: begin
frame_ 1 = “TRUE;
irdy_l = “FALSE;
eop_remove = “FALSE;
if (devsel 1 && !stop_I) begin // TARGET-ABORT

ad_remove = “TRUE;
be _remove = “TRUE;
wdata_remove = “TRUE;
eop_remove = “TRUE;
cmd_remove = “TRUE;
err = “TRUE;
rerr_insert “TRUE;
reop_insert “TRUE;
rdata_insert = “TRUE;
next_state = “RECOVER;
end else 1T (ldevsel 1 && Istop_ 1 && trdy_I) begin // RETRY
err = “FALSE;
rerr_insert “TRUE;
reop_insert “TRUE;
rdata_insert = “TRUE;
next_state = “REQ_ARB;
end else if (1trdy_1) begin // NORMAL TERMINATION
ad_remove = “TRUE;
be remove = “TRUE;
wdata_remove = “TRUE;
eop_remove = “TRUE;
cmd_remove = “TRUE;
err = “FALSE;
rerr_insert “TRUE;
reop_insert “TRUE;
rdata_insert = “TRUE;
next_state = “RECOVER;

end else begin // NO INPUT
next_state = “WRITE_DATA;
end
end

“READ_DATA: begin
irdy_l = “FALSE;
calc parity = “FALSE;
if (devsel 1 && !stop 1) begin // TARGET-ABORT
ad_remove = “TRUE;
be _remove = “TRUE;
wdata_remove = “TRUE;
eop_remove = “TRUE;
cmd_remove = “TRUE;
err = “TRUE;
rerr_insert = “TRUE;
next_state = “RECOVER;
end else if (ldevsel 1 && 'stop I && trdy 1) begin // RETRY

err = “FALSE;
rerr_insert = “TRUE;
next_state = “REQ_ARB;
end else if (1trdy_I) begin // NORMAL TERMINATION
ad_remove = “TRUE;
be_remove = “TRUE;
wdata_remove = “TRUE;
eop_remove = “TRUE;
cmd_remove = “TRUE;
err = “FALSE;
rerr_insert = “TRUE;
next_state = “READ_DONE;
end else begin
next_state = “READ_DATA; // NO INPUT
end
end
“READ_DONE: begin
ad_remove = “FALSE;
be_remove = “FALSE;
wdata_remove = “FALSE;
eop_remove = “FALSE;
cmd_remove = “FALSE;
reop_insert = “TRUE;
rdata_insert = “TRUE;
rerr_insert = “FALSE;
frame_1 = “TRUE;
next_state = “IDLE;
end // case: “READ_DONE
“RECOVER: begin
ad_remove = “FALSE;
be_remove = “FALSE;
wdata_remove = “FALSE;
eop_remove = “FALSE;
cmd_remove = “FALSE;
next_state = “IDLE;
end
endcase
end
end
endmodule

/**/
/*

/* Project: VCI/PCI bridge model

/* File: unloadr.v

/* Author: Annette Bunker

/> Date: Wed Jul 19 10:27:57 MDT 2000

/* Modifications:

/*

/ KKk

*Ahkx *Ahkx *Ahkx *Ahkx *k*k

/* define state names */

“define
“define
“define
“define
“define
“define
“define

/* define PCI

“define
“define

module vci_unloader (irdy_ I, req_l, frame_ 1, ad_front,

IDLE 3”b000
REQ_ARB 3°b001
ADDRESS 37b010
WRITE_DATA 3°b011
READ_DATA 3°b100
READ_DONE 3”b101
RECOVER 3°b110

constants */
ADDR_WIDTH 4
CMD_WIDTH 4

be_ front, cmd_front, ad_remove, eop_remove,
wdata_remove, be remove, cmd_remove, reop_insert,
convert, merge, calc parity, rdata_insert,
rerr_insert, err, new_cmd, g _empty, gnt_ 1,
trdy_1, stop_1, devsel_1, clk, reset L);

output
reg
output
reg
output
reg
output
reg
output
reg
output
reg
output
reg
output
reg
output
reg
output
reg
output
reg
output
reg
output
reg
output

irdy I;

irdy_I;

req_lI;
req_I;

frame_1I;
frame_1I;

ad_remove;
ad_remove;

eop_remove;
eop_remove;

wdata_remove;
wdata_remove;

be remove;
be remove;

cmd_remove;
cmd_remove;

reop_insert;
reop_insert;

ad_front;
ad_front;

wdata_front;
wdata_front;

be front;
be front;

cmd_front;
cmd_front;
convert;

KA KK [

wdata_front,

reg convert;

output merge;

reg merge;

output calc_parity;
reg calc_parity;
output rdata_insert;
reg rdata_insert;
output rerr_insert;
reg rerr_insert;
output err;

reg err;

input [1:0] new_cmd;
wire [1:0] new_cmd;
input q_empty;

wire q_empty;

input gnt_1I;

wire gnt_1I;

input trdy_I;

wire trdy 1I;

input stop I;

wire stop_1;

input devsel _1I;

wire devsel 1;

input clk;

wire clk;

input reset_L;

wire reset L;

reg [2:0] curr_state; //current state bit
reg [2:0] next_state; //next state bit

always @(posedge clk or negedge reset_ L) begin
if (reset_L) begin
irdy I = “TRUE;
reg_l = “TRUE;
frame_1 = “TRUE;
convert = “FALSE;
merge = “FALSE;
be front “FALSE;
ad_front “FALSE;
cmd_front = “FALSE;
rdata_insert = “FALSE;
err = “FALSE;
next_state = “IDLE;
end else begin
curr_state = next_state;
case (curr_state)
“IDLE: begin
rerr_insert = “FALSE;

reop_insert = “FALSE;
rdata_insert = “FALSE;
ad_remove = “FALSE;
be_remove = “FALSE;
wdata_remove = “FALSE;
eop_remove = “FALSE;
cmd_remove = “FALSE;
wdata_front = “FALSE;
ad_front = “FALSE;
cmd_front = “FALSE;
calc_parity = “FALSE;
if (g _empty) begin
irdy_l = “TRUE;
reqg_l = “TRUE;
next_state = “REQ_ARB;
end else begin
next_state = “IDLE;
end
end
“REQ_ARB: begin
rerr_insert “FALSE;
reop_insert “FALSE;
rdata_insert = “FALSE;
ad_remove = “FALSE;
be_remove = “FALSE;
wdata_remove = “FALSE;
eop_remove = “FALSE;
cmd_remove = “FALSE;
calc parity = “FALSE;
wdata_front = “FALSE;
irdy_1 = “TRUE;
req_l = “FALSE;
if (Ignt_I) begin
cmd_front = “TRUE;
be front = “TRUE;
convert = “TRUE;
ad_front = “TRUE;
wdata_front = “TRUE;
merge = “TRUE;
next_state = “ADDRESS;
end else begin
next_state = “REQ_ARB;
end
end
“ADDRESS: begin
cmd_front = “FALSE;
be_front = “FALSE;
wdata front = “FALSE;
ad_front = “FALSE;

convert = “FALSE;
merge = “FALSE;
calc_parity = “TRUE;
frame_1 = “FALSE;
if (new_cmd == “VCI_WRITE) begin

eop_remove = “TRUE;

next_state = “WRITE_DATA;
end else begin

next_state = “READ DATA;
end

end
“WRITE_DATA: begin

frame_ 1 = “TRUE;
irdy_l = “FALSE;
eop_remove = “FALSE;
ifT (devsel_1 && !stop_I) begin // TARGET-ABORT

ad_remove = “TRUE;

be _remove = “TRUE;

wdata_remove = “TRUE;

eop_remove = “TRUE;

cmd_remove = “TRUE;

err = “TRUE;

rerr_insert “TRUE;

reop_insert “TRUE;

rdata_insert = “TRUE;

next_state = “RECOVER;
end else if (ldevsel 1 && 'stop I && trdy 1) begin // RETRY

err = “FALSE;

rerr_insert “TRUE;

reop_insert “TRUE;

rdata_insert = “TRUE;

next_state = “REQ_ARB;
end else if (Itrdy_1) begin // NORMAL TERMINATION

ad_remove = “TRUE;

be remove = “TRUE;

wdata_remove = “TRUE;

eop_remove = “TRUE;

cmd_remove = “TRUE;

err = “FALSE;

rerr_insert “TRUE;

reop_insert “TRUE;

rdata_insert = “TRUE;

next_state = “RECOVER;

end else begin // NO INPUT
next_state = “WRITE_DATA;
end
end

“READ_DATA: begin
irdy 1 = “FALSE;

calc_parity = “FALSE;
if (devsel 1 && !stop 1) begin // TARGET-ABORT
ad_remove = “TRUE;
be remove = “TRUE;
wdata_remove = “TRUE;
eop_remove = “TRUE;
cmd_remove = “TRUE;
err = “TRUE;
rerr_insert = “TRUE;
next_state = “RECOVER;
end else if (ldevsel 1 && 'stop I && trdy 1) begin // RETRY
err = “FALSE;
rerr_insert = “TRUE;
next_state = “REQ_ARB;
end else 1If (Itrdy_l) begin // NORMAL TERMINATION
ad_remove = “TRUE;
be_remove = “TRUE;
wdata_remove = “TRUE;
eop_remove = “TRUE;
cmd_remove = “TRUE;
err = “FALSE;
rerr_insert = “TRUE;
next_state = “READ_DONE;
end else begin
next_state = “READ_DATA; // NO INPUT
end
end
“READ_DONE: begin
ad_remove = “FALSE;
be_remove = “FALSE;
wdata_remove = “FALSE;
eop_remove = “FALSE;
cmd_remove = “FALSE;
reop_insert = “TRUE;
rdata_insert = “TRUE;
rerr_insert = “FALSE;
frame_1 = “TRUE;
next_state = “IDLE;
end // case: “READ_DONE
“RECOVER: begin
ad_remove = “FALSE;
be remove = “FALSE;
wdata_remove = “FALSE;

eop_remove = “FALSE;
cmd_remove = “FALSE;
next_state = “IDLE;
end
endcase

end

end
endmodule

/**/
/*

/* Project: VCI/PCI bridge model

/* File: vciloadr.v

/* Author: Richard Sharp

/* Date: Wed Jul 19 10:27:57 MDT 2000

/*

/**/

/* define state names */
‘define NOOP 1°b0
“define LOAD 1°bl

module vci_loader (g_insert, cmdack, cmdval, full, cmd, clk, reset L);
parameter cmd_width = 2;

output g_insert; // insert data to FIFO
reg g_insert; // register insert signal

output cmdack; // command acknowledge to VCI

reg cmdack; // register ACK signal

input cmdval; // command valid signal from VCI
wire cmdval ; // wire command valid signal

input full; // FIFO full signal

wire full; // wire FIFO full signal

input [cmd_width-1:0] cmd; // VCI command

wire [cmd_width-1:0] cmd; // wire VCI command
input clk; // system clock

wire clk; // wire system clock

input reset_L; // reset signal asserted low
wire reset L; // wire reset signal

reg curr_state; //current state bit
reg next_state; //next state bit

always @(posedge clk) begin
if (Ireset L) begin
g_insert = “FALSE;
cmdack = “FALSE;
next_state = “NOOP;
end else begin
curr_state = next_state;
case (curr_state)
“NOOP: begin
it (cmdval && !full) begin
g_insert = “TRUE;
cmdack = “TRUE;

next_state = “LOAD;
end else begin
next_state = “NOOP;
end
end
“LOAD: begin
q_insert = “FALSE;
cmdack = “FALSE;
next _state = “NOOP;
end
endcase
end
end
endmodule

B FormalCheck Verification Report

FormalCheck Project Report

/home/abunker/projects/vci/fc2/lsc_assert._fpj
Tue Jan 22 10:22:58 MST 2002

Title: VCI, using LSC assertions

FormalCheck Query Report

Query: eventually_ cmdack

Property: eventually_cmdack_prop
Type: Eventually

After: (xlator.reset_L == 1) && (Xlator.cmdval == 1) &&
(xlator.clk == rising)
Eventually: (xlator.cmdack == 1) && (xlator.clk == rising)

Options: (None)

CONSTRAINTS: clk cmdval_after_reset cmdval_until_cmdack
eventually_arbitrate eventually not_retry eventually_ rspack
eventually_trdy no_rspack wo_rspval read or_write_only reqg_until_gnt
reset_L

STATE VARIABLES: (None)

RUN OPTIONS:

Reduction Technique: 1-Step
Reduction Seed: Empty

Verification Query eventually_cmdack VERIFIED! Tue Jan 15 19:35:06
2002 on server: hanuman

Query Data:

820 combinational variables

256 Possible input combinations per state
71 State variables: 3.54e+21 states

Verification Data:

Reachable space: 4.81e+06 states

4_.81e+06 states reached.

State variable coverage: 71 variables, 100.00% average coverage
Search Depth: 134

Real time: 4 minutes 9 seconds

Memory Usage: 480.805 megabytes

FormalCheck Query Report

Query: cmdack_invalidates

Property: cmdack_invalidates_prop
Type: Eventually

After: (xlator.reset L == 1) && (xlator.cmdack == 1) &&
(xlator.clk == rising)
Eventually: (xlator.cmdack == 0) && (xlator.clk == rising)

Options: (None)

CONSTRAINTS: clk cmdval_after_reset cmdval_until_cmdack
eventually_arbitrate eventually_not_retry eventually_rspack
eventually_trdy no_rspack_wo_rspval read_or_write only req_until_gnt
reset L

STATE VARIABLES: (None)

RUN OPTIONS:

Reduction Technique: 1-Step
Reduction Seed: Empty

Verification Query cmdack_invalidates VERIFIED! Tue Jan 15 19:39:40
2002 on server: hanuman

Query Data:

820 combinational variables

256 Possible input combinations per state
71 State variables: 3.54e+21 states

Verification Data:

Reachable space: 6.16e+06 states

6.16e+06 states reached.

State variable coverage: 71 variables, 100.00% average coverage
Search Depth: 134

Real time: 4 minutes 54 seconds

Memory Usage: 482.984 megabytes

FormalCheck Query Report

Query: no_extra_cmdacks

Property: no_extra_cmdacks_prop
Type: Never

After: (xlator.reset L == 1) && (xlator.clk == rising)
Never: (xlator.cmdack == 1) && (xlator.clk == rising)
Unless: (xlator.cmdval == 1) && (xlator.clk == rising)

Options: (None)

CONSTRAINTS: clk cmdval _after_reset cmdval_until_cmdack
eventually_arbitrate eventually not_retry eventually_ rspack
eventually_trdy no_cmdack wo_cmdval no_rspack wo_rspval

read_or_write_only reg_until_gnt reset L

STATE VARIABLES: (None)

RUN OPTIONS:

Reduction Technique: 1-Step
Reduction Seed: Empty

Verification Query no_extra_cmdacks VERIFIED! Tue Jan 15 19:44:58 2002
on server: hanuman

Query Data:

806 combinational variables

256 Possible input combinations per state
67 State variables: 4_.4e+20 states

Verification Data:

8.56e+05 states reached.

State variable coverage: 67 variables, 99.25% average coverage
Search Depth: 84

Real time: 2 minutes 40 seconds

Memory Usage: 473.473 megabytes

FormalCheck Query Report

Query: eventually rdata

Property: eventually_rdata_prop
Type: Eventually

After: (xlator.cmdval == 1) && (xlator.clk == rising)
Eventually: (xlator.rdata == stable) && (xlator.rspval == 1) &&
(xlator.clk == rising)

Options: (None)

CONSTRAINTS: clk cmdval _after_reset cmdval_until_cmdack
eventually_arbitrate eventually not_retry eventually_ rspack
eventually_trdy no_rspack wo_rspval read or_write_only req_until_gnt

reset_L

STATE VARIABLES: (None)

RUN OPTIONS:

Reduction Technique: 1-Step
Reduction Seed: Empty

Verification Query eventually rdata Terminated - At user request

Query Data:

1.29e3 combinational variables

1.04e6 Possible input combinations per state
143 State variables: 1.67e+43 states

Real time: 9 minutes 10 seconds
Memory Usage: 472.162 megabytes

FormalCheck Query Report

Query: rdata_invalidates

Property: rdata_invalidates_prop
Type: Eventually

After: (xlator.rdata == stable) && (xlator.rspval == 1) &&
(xlator.clk == rising)
Eventually: (xlator.rspval == 0) && (xlator.clk == rising)

Options: (None)

CONSTRAINTS: clk cmdval _after_reset cmdval until_cmdack
eventually arbitrate eventually not _retry eventually_rspack
eventually_trdy no_rspack wo rspval read or write only req_until_gnt
reset_L

STATE VARIABLES: (None)

RUN OPTIONS:

Reduction Technique: 1-Step
Reduction Seed: Empty

Verification Query Data:

1.29e3 combinational variables

1.04e6 Possible input combinations per state
143 State variables: 1.67e+43 states

Real time: 60 minutes 7 seconds

Memory Usage: 472.187 megabytes

FormalCheck Query Report

Query: eventually_reop

Property: eventually reop_prop
Type: Eventually

After: (xlator.cmdval == 1) && (xlator.clk == rising)
Eventually: (xlator.reop == stable) && (xlator.rspval == 1) &&
(xlator.clk == rising)

Options: (None)

CONSTRAINTS: clk cmdval_after_reset cmdval _until_cmdack eventually_arbitrate
eventually not_retry eventually rspack eventually trdy no_rspack wo_rspval
read_or_write_only req_until_gnt reset L

STATE VARIABLES: (None)

RUN OPTIONS:

Reduction Technique: 1-Step
Reduction Seed: Empty

RESULT:

Verification Query Data:

960 combinational variables

512 Possible input combinations per state
87 State variables: 2.32e+26 states

Real time: 65 minutes 18 seconds

Memory Usage: 471.302 megabytes

FormalCheck Query Report

Query: reop_invalidates

Property: reop_invalidates_prop
Type: Eventually

After: (xlator.reop == stable) && (xlator.rspval == 1) &&
(xlator.clk == rising)
Eventually: (xlator.rspval == 0) && (xlator.clk == rising)

Options: (None)

CONSTRAINTS: clk cmdval _after_reset cmdval_until_cmdack
eventually_arbitrate eventually not_retry eventually_ rspack
eventually_trdy no_rspack wo_rspval read or_write_only reqg_until_gnt
reset_L

STATE VARIABLES: (None)

RUN OPTIONS:

Reduction Technique: 1-Step
Reduction Seed: Empty

Verification Query Data:

960 combinational variables

512 Possible input combinations per state
87 State variables: 2.32e+26 states

Real time: 76 minutes 4 seconds

Memory Usage: 471.302 megabytes

FormalCheck Query Report

Query: eventually rerror

Property: eventually rerror_prop
Type: Eventually

After: (xlator.cmdval == 1) && (xlator.clk == rising)
Eventually: (xlator.rerror == stable) && (xlator.rspval == 1) &&
(xlator.clk == rising)

Options: (None)

CONSTRAINTS: clk cmdval_after_reset cmdval_until_cmdack
eventually_arbitrate eventually not _retry eventually rspack
eventually_trdy no_rspack wo_rspval read or write only req_until_gnt
reset L

STATE VARIABLES: (None)

RUN OPTIONS:

Reduction Technique: 1-Step
Reduction Seed: Empty

Verification Query eventually_rerror VERIFIED! Wed Jan 16 14:21:14
2002 on server: hanuman

Query Data:

868 combinational variables

256 Possible input combinations per state
78 State variables: 4.53e+23 states

Verification Data:

Reachable space: 5.68e+07 states

5.68e+07 states reached.

State variable coverage: 78 variables, 100.00% average coverage
Search Depth: 146

Real time: 28 minutes 56 seconds

Memory Usage: 562.995 megabytes

FormalCheck Query Report

Query: rerror_invalidates

Property: rerror_invalidates_prop
Type: Eventually

After: (xlator.rerror == stable) && (xlator.rspval == 1) &&
(xlator.clk == rising)
Eventually: (xlator.rspval == 0) && (xlator.clk == rising)

Options: (None)

CONSTRAINTS: clk cmdval _after_reset cmdval _until_cmdack
eventually_arbitrate eventually not_retry eventually_ rspack
eventually_trdy no_rspack wo_rspval read_or _write only req_until_gnt
reset L

STATE VARIABLES: (None)

RUN OPTIONS:

Reduction Technique: 1-Step
Reduction Seed: Empty

Verification Query rerror_invalidates VERIFIED! Wed Jan 16 14:50:35
2002 on server: hanuman

Query Data:

868 combinational variables

256 Possible input combinations per state
78 State variables: 4.53e+23 states

Verification Data:

Reachable space: 5.22e+07 states

5.22e+07 states reached.

State variable coverage: 78 variables, 100.00% average coverage
Search Depth: 146

Real time: 21 minutes 45 seconds

Memory Usage: 530.416 megabytes

FormalCheck Query Report

Query: eventually_rspval

Property: eventually rspval_prop
Type: Eventually

After: (xlator.reset L == 1) && (xlator.cmdval == 1) &&
(xlator.clk == rising)
Eventually: (xlator.reset L == 1) && (xlator.rspval == 1) &&
(xlator.clk == rising)

Options: (None)

CONSTRAINTS: clk cmdval _after_reset cmdval _until_cmdack
eventually_arbitrate eventually not_retry eventually rspack
eventually_trdy no_rspack wo_rspval read or_write_only req_until_gnt
reset_L

STATE VARIABLES: (None)

RUN OPTIONS:

Reduction Technique: 1-Step
Reduction Seed: Empty

Verification Query eventually rspval VERIFIED! Tue Jan 15 18:11:42
2002 on server: hanuman

Query Data:

820 combinational variables

256 Possible input combinations per state
71 State variables: 3.54e+21 states

Verification Data:

Reachable space: 7.34e+06 states

7.34e+06 states reached.

State variable coverage: 71 variables, 100.00% average coverage

Search Depth: 136
Real time: 7 minutes 31 seconds
Memory Usage: 496.886 megabytes

FormalCheck Query Report

Query: rspval_invalidates

Property: rspval_invalidates_prop
Type: Eventually

After: (xlator.rspval == 1) && (xlator.clk == rising)
Eventually: (xlator.rspval == falling)

Options: (None)

CONSTRAINTS: clk cmdval _after_reset cmdval _until_cmdack
eventually_arbitrate eventually not_retry eventually_ rspack
eventually_trdy no_rspack wo_rspval read or_write_only req_until_gnt
reset_L

STATE VARIABLES: (None)

RUN OPTIONS:

Reduction Technique: 1-Step
Reduction Seed: Empty

Verification Query rspval_invalidates VERIFIED! Wed Jan 16 03:55:15 2002 on
server: hanuman

Query Data:

820 combinational variables

256 Possible input combinations per state
72 State variables: 7.08e+21 states

Verification Data:

Reachable space: 6.62e+06 states

6.62e+06 states reached.

State variable coverage: 72 variables, 100.00% average coverage

Search Depth: 134
Real time: 6 minutes 34 seconds
Memory Usage: 499.024 megabytes

FormalCheck Query Report

Query: no_extra_rspvals

Property: no_extra_rspvals_prop
Type: Never

Never: (xlator.rspval == 1) && (xlator.clk == rising)
Unless: (xlator.cmdval == 1) && (xlator.clk == rising)

Options: (None)
CONSTRAINTS: clk cmdval_after_reset cmdval _until_cmdack eventually_arbitrate
eventually_not_retry eventually rspack eventually trdy no_cmdack_wo_cmdval
no_rspack wo_rspval read or_write_only req_until_gnt reset L

STATE VARIABLES: (None)

RUN OPTIONS:

Reduction Technique: 1-Step
Reduction Seed: Empty

Verification Query no_extra_rspvals VERIFIED! Wed Jan 16 04:02:13 2002
on server: hanuman

Query Data:

805 combinational variables

256 Possible input combinations per state
66 State variables: 2.21e+20 states

Verification Data:

7 states reached.

State variable coverage: 66 variables, 53.03% average coverage
Search Depth: 7

Real time: 2 minutes 15 seconds

Memory Usage: 470.786 megabytes

FormalCheck Query Report

Query: eventually_req

Property: eventually_req_prop
Type: Eventually

After: (xlator.cmdval == 1) && (xlator.clk == rising)
Eventually: (xlator.reg_l == 0) && (xlator.clk == rising)

Options: (None)

CONSTRAINTS: clk cmdval _after_reset cmdval _until_cmdack
eventually_arbitrate eventually not _retry eventually_ rspack
eventually_trdy no_cmdack_wo_cmdval no_rspack wo_rspval
read_or_write_only req_until_gnt reset L

STATE VARIABLES: (None)

RUN OPTIONS:

Reduction Technique: 1-Step
Reduction Seed: Empty

Verification Query eventually_req VERIFIED! Wed Jan 16 04:04:53 2002
on server: hanuman

Query Data:

821 combinational variables

256 Possible input combinations per state
72 State variables: 7.08e+21 states

Verification Data:

Reachable space: 6.04e+06 states

6.04e+06 states reached.

State variable coverage: 72 variables, 100.00% average coverage
Search Depth: 136

Real time: 4 minutes 25 seconds

Memory Usage: 483.222 megabytes

FormalCheck Query Report

Query: eventually_frame

Property: eventually frame_prop
Type: Eventually

After: (xlator.cmdval == 1) && (xlator.clk == rising)
Eventually: (xlator.frame I == 0) && (xlator.clk == rising)

Options: (None)

CONSTRAINTS: clk cmdval _after_reset cmdval _until_cmdack
eventually_arbitrate eventually not_retry eventually_ rspack
eventually_trdy no_cmdack_wo_cmdval no_rspack wo_rspval
read_or_write_only reqg_until_gnt reset L

STATE VARIABLES: (None)

RUN OPTIONS:

Reduction Technique: 1-Step
Reduction Seed: Empty

Verification Query eventually_ frame VERIFIED! Wed Jan 16 04:09:42 2002
on server: hanuman

Query Data:

821 combinational variables

256 Possible input combinations per state
72 State variables: 7.08e+21 states

Verification Data:

Reachable space: 7.23e+06 states

7.23e+06 states reached.

State variable coverage: 72 variables, 100.00% average coverage
Search Depth: 141

Real time: 5 minutes 46 seconds

Memory Usage: 487.776 megabytes

FormalCheck Query Report

Query: eventually_cbe

Property: eventually cbe prop
Type: Eventually

After: (xlator.cmdval == 1) && (xlator.clk == rising)
Eventually: (xlator.c_be I == stable) && (xlator.clk == rising)

Options: (None)

CONSTRAINTS: clk cmdval _after_reset cmdval _until_cmdack
eventually_arbitrate eventually not_retry eventually_ rspack
eventually_trdy no_cmdack_wo_cmdval no_rspack wo_rspval
read_or_write_only req_until_gnt reset L

STATE VARIABLES: (None)

RUN OPTIONS:

Reduction Technique: 1-Step
Reduction Seed: Empty

Verification Query eventually_cbe VERIFIED! Wed Jan 16 09:21:40 2002
on server: hanuman

Query Data:

1.02e3 combinational variables

4_.09e3 Possible input combinations per state
103 State variables: 1.52e+31 states

Verification Data:

Reachable space: 7.73e+1l states

7.73e+11l states reached.

State variable coverage: 103 variables, 100.00% average coverage
Search Depth: 136

Real time: 9 minutes 1 seconds

Memory Usage: 504.381 megabytes

FormalCheck Query Report

Query: eventually_irdy

Property: eventually_irdy_prop
Type: Eventually

After: (xlator.cmdval == 1) && (xlator.clk == rising)
Eventually: (xlator.irdy_I == 0) && (xlator.clk == rising)

Options: (None)

CONSTRAINTS: clk cmdval _after_reset cmdval _until_cmdack
eventually_arbitrate eventually not_retry eventually_ rspack
eventually_trdy no_cmdack_wo_cmdval no_rspack wo_rspval
read_or_write_only reqg_until_gnt reset L

STATE VARIABLES: (None)

RUN OPTIONS:

Reduction Technique: 1-Step
Reduction Seed: Empty

Verification Query eventually_irdy VERIFIED! Wed Jan 16 09:31:06 2002
on server: hanuman

Query Data:

830 combinational variables

256 Possible input combinations per state
73 State variables: 1.42e+22 states

Verification Data:

Reachable space: 6.82e+06 states

6.82e+06 states reached.

State variable coverage: 73 variables, 100.00% average coverage
Search Depth: 134

Real time: 17 minutes 8 seconds

Memory Usage: 518.283 megabytes

FormalCheck Query Report

Query: eventually_trdy

Property: eventually_trdy_prop
Type: Eventually

After: (xlator.cmdval == 1) && (xlator.cmd == 1) &&
(xlator.clk == rising)
Eventually: (xlator.trdy_I == 0) && (xlator.clk == rising)

Options: (None)

CONSTRAINTS: clk cmdval_after_reset cmdval_until_cmdack
eventually_arbitrate eventually_not_retry eventually_rspack
eventually_trdy no_cmdack_wo_cmdval no_rspack_wo_rspval
read_or_write_only reg_until_gnt reset L

STATE VARIABLES: (None)

RUN OPTIONS:

Reduction Technique: 1-Step
Reduction Seed: Empty

Verification Query eventually_trdy VERIFIED! Wed Jan 16 09:48:40 2002
on server: hanuman

Query Data:

821 combinational variables

256 Possible input combinations per state
72 State variables: 7.08e+21 states

Verification Data:

Reachable space: 9.34e+06 states

9.34e+06 states reached.

State variable coverage: 72 variables, 100.00% average coverage
Search Depth: 134

Real time: 4 minutes 21 seconds
Memory Usage: 481.01 megabytes

FormalCheck Query Report

Query: no_extra_frames

Property: no_extra_frames_prop
Type: Never

Never: (xlator.frame_I == 0) && (xlator.clk == rising)
Unless: (Xlator.cmdval == 1) && (xlator.cmdack == 1) &&
(xlator.clk == rising)

Options: (None)

CONSTRAINTS: clk cmdval _after_reset cmdval _until_cmdack
eventually_arbitrate eventually not_retry eventually_ rspack
eventually_trdy no_cmdack wo_cmdval no_rspack wo_rspval
read or_write_only req _until _gnt reset L

STATE VARIABLES: (None)

RUN OPTIONS:

Reduction Technique: 1-Step
Reduction Seed: Empty

Verification Query no_extra_frames VERIFIED! Wed Jan 16 10:02:54 2002
on server: hanuman

Query Data:

814 combinational variables

256 Possible input combinations per state
67 State variables: 4.4e+20 states

Verification Data:

10 states reached.

State variable coverage: 67 variables, 58.96% average coverage
Search Depth: 8

Real time: 2 minutes 15 seconds
Memory Usage: 470.778 megabytes

Constraint address_stable_cmdval
Type: Always

After: (xlator.cmdval == 1)
Assume Always: (xlator.address == stable)
Unless: (xlator.cmdval == 0)

Options: (None)
Clock Constraint: clk
Signal: xlator.clk
Extract: No
Default: Yes

Start: Low
1st Duration: 1
2nd Duration: 1

Constraint cmdval after reset
Type: Never

Assume Never: (xlator.reset L == 0) && (xlator.cmdval == 1)

Options: Default

Constraint cmdval _until_cmdack
Type: Always

After: (xlator.cmdval == 1) && (xlator.clk == rising)

Assume Always: (xlator.cmdval == 1)

Unless: (xlator.cmdval == 1) && (xlator.cmdack == 1) &&
(xlator.clk == rising)

Options: Default

Constraint eventually_arbitrate
Type: Eventually

After: (xlator.reg_l == 0) && (xlator.clk == rising) &&
(xlator.reset L == 1)
Assume Eventually: (xlator.gnt_I == 0) && (xlator.clk == rising)

Options: Default

Constraint eventually not_retry
Type: Eventually

After: (@retry) && ((xlator.ul_curr_state == 4) ||
(xlator.ul .curr_state == 3)) && (xlator.clk == rising)
Assume Eventually: (xlator.stop I == 1) &&
(xlator.trdy_I == 0) && ((xlator.ul.curr_state == 4) ||
(xlator.ul _curr_state == 3)) && (xlator.clk == rising)

Options: Default

Constraint eventually_rspack
Type: Eventually

After: (xlator.rspval == 1) && (xlator.clk == rising)
Assume Eventually: (xlator.rspack == 1) && (xlator.clk == rising)

Options: Default

Constraint eventually_trdy
Type: Eventually

After: (xlator.reset L == 1) && (xlator.frame_l == 0)
Assume Eventually: (xlator.trdy_ I == 0) && (xlator.clk == rising)

Options: Default

Constraint no_cmdack wo_cmdval

Type: Never
Assume Never: (xlator.cmdack == 1) && (xlator.clk == rising)
Unless: (xlator.cmdval == 1) && (xlator.clk == rising)

Options: Default

Constraint no_rspack wo_rspval
Type: Never

Assume Never: (xlator.rspack == 1) && (xlator.clk == rising)
Unless: (xlator.rspval == 1) && (xlator.clk == rising)

Options: Default

Constraint read_or_write_only
Type: Always

Assume Always: (xlator.cmd == 1) |] (xlator.cmd == 2)

Options: Default

Constraint reqg_until_gnt
Type: Always

After: (xlator.req_l == 0) && (xlator.clk == rising)

Assume Always: (xlator.req_l == 0)

Unless: (xlator.reqg_l == 0) && (xlator.gnt_I == 0) &&
(xlator.clk == rising)

Options: Default

Reset Constraint: reset_ L
Signal: xlator.reset L
Default: Yes

Start: Low
Transition Duration Value

Start 4 0
forever 1

retry: ((xlator.stop I == 0) && (xlator.devsel 1 == 0)) &&
(xlator.trdy_I == 1)

