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Abstract

Although B-spline curves and surfaces have enjoyed a long established place in the graphics
community as constructive modeling tools, the use of B-spline approximation techniques
has received relatively little attention in rendering. In this work we explore the use of
4D and 5D tensor product B-spline functions to represent surface radiance, and establish
that, when appropriately applied, they can be used effectively for static scenes with diffuse
to moderately specular elements. Once computed, the surface radiance representation is
view independent, can be evaluated quickly, and is equally suited for incorporation into
ray tracing or scan-line rendering algorithms. Furthermore, we use B-spline approxima-
tion techniques to solve the problem of global illumination for general parametric surfaces
with a wide range of reflectance and transmission properties. We conclude that address-
ing functional approximation aspects offers a fertile research ground relative to the already
impressive gains that splines have made in other fields.
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1 Introduction

A fundamental quantity in radiometry and therefore in physically-
based rendering, radiance can intuitively be thought of as radiant
power carried along a line. Spectral radiance depends on both spa-

tial position and direction as well as wavelength. More formally, in
an arbitrary environment either synthetic or real, radiance is given
by theplenoptic functionof spatial position, direction, time, and
wavelength and therefore represents the appearance of an environ-
ment from all possible vantage points for all time. To have access to
the plenoptic function, therefore, is to make rendering a simple mat-
ter. The problem of representing and storing a good approximation
to the plenoptic function for subsequent evaluation is the problem
of image-based rendering. Computing the plenoptic function itself
is more closely related to the problem of global illumination.

Computer graphics environments typically consist of a collec-
tion of surfaces with specified reflection and transmission proper-
ties. Any emitting surface in the environment has an intrinsic radi-
ance emission and directly illuminates the rest of the environment.
A surface can also self-illuminate if it is not convex. All surfaces
can contribute indirect illumination by reflected radiance. Global
illumination is the problem of computing final surface radiance ac-
cording to light transport theory. If the region between surfaces in
graphics environments does not attenuate or scatter light, then the
radiance leaving a surface remains constant along a line. With this
simplification representing the plenoptic function reduces to repre-
senting all surface radiance functions.

One of our goals here is to illustrate the advantage of good ap-
proximation methods by using tensor product B-splines to represent
surface radiance functions directly. While it is well understood that
this method can work for a wide variety of situations when enough
knots are introduced in each dimension, the approach must be care-
fully managed to avoid an explosion in the storage requirements.
Therefore, in what follows, it is imperative to find good represen-
tations of surface radiance by exploiting the intrinsically powerful
properties of B-spline approximation. In pursuing these goals we
favor visual appearance above numerical accuracy.



Using a B-spline representation for radiance in a scene modeled
with B-spline surface geometry yields a unification leading to a
more tractable global illumination problem.

1.1 Previous Work

Central to this paper is the concept of representing radiance to cap-
ture surface appearance. This is a core part of realistic image syn-
thesis, and area where there has been a long and impressive history
of research in this area. Determining surface radiance entails solv-
ing the global illumination problem.

Computing global illumination (GI) involves the solution of a
system of integral equations in the surface radiance functions. One
of the earliest methods for GI is the radiosity method [Cohen and
Wallace 1993; Sillion and Puech 1994] in which constant radiance
is assumed on a finite collection of surface patches. The basic ra-
diosity method has been improved in a variety of ways and it has
been extended to more general types of light transport (e.g., [Rush-
meier and Torrance 1990; Christensen et al. 1997]).

Many of numerous global illumination methods that have been
developed in recent years are currently being used in practice. Sta-
tistical ray tracing methods such as Monte Carlo integration, path
tracing[Shirley 2000], and Metropolis sampling [Veach and Guibas
1997] solve the GI problem by simulating the path light takes
through the environment. More recently, the photon map technique
has been successfully applied both for radiance representation and
global illumination [Jensen 2001].

Much investigation has into representing the plenoptic function,
general radiance, and thelight field has been done in recent years,
emphasizing both efficiency of representation and interactive evalu-
ation. [Peter and Straßer 2001; Gortler et al. 1996; Levoy and Han-
rahan 1996; Peter and Straßer 2001; Christensen et al. 1994]

1.2 Overview

In this research we use tensor product B-splines to represent surface
radiance. Section 2 contains mathematical background, including a
review of tensor product B-spline functions and their approximation
properties. Using something akin to an image-based approach, Sec-
tion 3 develops the approximation method for existing surface ra-
diance. Section 4 then exploits the B-spline representation to solve
the radiance integrals and develops a global illumination algorithm
in the spirit of the gathering approach used in radiosity. Section 5
discusses implementation issues, including how the tensor product
B-splines are incorporated into the renderer, and performance ob-
servations. In Section 6, we discuss future directions indicated by
this research.

2 Mathematical Problem Formulation

In this section we present a mathematical formulation of the prob-
lem of representing and computing surface radiance. Additionally
we recall some relevant properties of B-splines.

2.1 The Environment

We assume the environmentE consists of a collection of surfaces
E = {S1, . . . , Sp} in 3-space, eachSi having a regular parametric
representationsi(u, v), where the parameter domain is a connected
subset of[0, 1]×[0, 1]. At each surface points(u, v) of someS ∈ E
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Figure 1:Geometry for surface radiance and light transport. The
outgoing surface radiance along a rayLR is a function of both
surface position as well as the angle the ray makes with the local
coordinate axes.LR can be computed by integrating incoming ra-
diance over the hemisphereΩ above the surface, or from a surface
integral over all emitting surfacesE.

there is a local coordinate system, or local frame, given by

xS =
su

‖su‖ (1)

zS =
su × sv

‖su × sv‖ (2)

yS = zS × xS , (3)

where‖ ‖ denotes Euclidean distance. Note that the local coor-
dinate axes are functions of the parametersu andv and that the
vectorzS is the unit surface normal at parameter values(u, v). The
local frame coordinates of a vectord at the surface points(u, v)
are given by(d ·xS ,d ·yS ,d ·zS). The local frame also induces
a coordinate system in(θ, φ) for the local unit hemisphere above
the surface. These spherical coordinates are used to specify a di-
rection on the surface. Ifr is a point in space different from the
surface points(u, v), then the spherical coordinates of the direc-
tion d = r− s(u, v) are given by

θ = arccos
d·zS

‖d‖ (4)

φ = arctan (d·yS ,d·xS) (5)

where the functionarctan(a, b) denotes the two dimensional arctan
function. Note the spherical coordinates are dependent on the local
frame, so the same vector may have different spherical coordinates
at different positions on the surface.

2.1.1 Radiance

A fundamental radiometric quantity,radiance, measures radiant
power per unit projected area per unit solid angle (in units of
W/m2sr.) Radiance depends on spatial position and direction, and,
intuitively, can be thought of the radiant power carried along a line.

Following [Arvo 1995], the radiance at the pointx ∈ R3 in the
directionω is often denoted byL(x, ω). If nothing blocks the line
segment between two pointsx andx′, then the radiance leavingx
in the direction ofx′−x is the radiance coming tox′ in the opposite
direction. That is, radiance is constant along a line provided there
is no participating (attenuating) medium.



General graphics environments consist of a collection of surfaces
perhaps with someparticipating media, such as smoke or fog, that
attenuate radiance in the space between surfaces. Each point on
every surface may have an associated radiance exitance, although
computing this overall involves energy transfer between surfaces
and is the problem of global illumination. The radiance exiting
from each surface is used for the final rendering of a scene. A ray
tracer, for example, renders by tracing ray from an vantage point,
or through a virtual camera system, and then reports the radiance at
each ray-surface intersection. Similarly, a scan-line renderer might
decompose the surface into micro-facet polygons and use the radi-
ance value in the direction of the eye point for a color.

In general, each surfaceS in a sceneE has an outgoing spectral
radianceLS(u, v, θ, φ, λ). This surface radiance is a function both
of surface position(u, v), direction(θ, φ) in the local frame and
wavelengthλ. This value gives the radiant spectrum at render time,
when the surface point at(u, v) is viewed from direction(θ, φ).
Our goal is to approximateLS with a tensor product B-spline.

2.1.2 Radiance Integrals

In many cases radiance in a sceneE can be computed by a method
based on the global or hemispherical integral formulation. Each
surfaceS in the environment has an intrinsic emissive radiance
functionLemit

S (u, v, θ, φ, λ), and a Bi-directional Reflectance Dis-
tribution Function (BRDF)ρS(u, v, θ, φ, θin, φin, λ). Except for a
few light sources in the scene the emission is zero in most cases.
The light sources illuminate the other surfaces of the scene by di-
rect energy transfer. Subsequently surfaces become indirectly illu-
minated by reflection from other surfaces not initially light sources.
The total amount of outgoing radianceLS is determined by inte-
grating the incoming radianceLin

S against the BRDFρ over the
hemisphere and add the result to the emitted radiance,

LS(u, v, θ, φ, λ) = Lemit
S (u, v, θ, φ, λ)+ ∫

Ω

Lin
S (u, v, θ, φ, λ)ρ(u, v, θ, φ, θin, φin, λ) cos θin dω (6)

wheredω = sin θindθindφin. Note that the outgoing spectral radi-
anceLS(u, v, θ, φ, λ) is a function of surface position(u, v), direc-
tion (θ, φ) in the local frame and wavelengthλ. This value yields
the radiant spectrum at render time, when the surface point at(u, v)
is viewed from direction(θ, φ). In generalS can be illuminated by
radiance from all the other surfaces in the sceneE including itself.

When we write down equation (6) for eachS ∈ E we obtain
a system of coupled integral equations which defines theglobal or
hemisphericalintegral formulation ofLS . To solve this system of
integral equations is to solve the global illumination problem. We
need to compute the final, or steady-state surface radiance after re-
flected light is sufficiently attenuated by reflection. In pursuit of
this goal we approximateLS with a tensor product B-spline.

To start we first consider the case where the scene consists of
only two objectsR andE, and reformulate the contribution to the
receiving surfaceR from the emitting surfaceE. SupposeE is
parameterized bye(s, t), with derivatives and local frame coordi-
nates as above, and that we have an outgoing emission function
LE(s, t, θ, φ, λ). A change of variables can be applied to the inte-
gral of (6), to obtain the surface integral

LR(u, v, θ, φ, λ) =

+

∫
E

vis(r, e)
cos θin

R cos θE

d2
LE(s, t, θE , φE , λ)

ρ(u, v, θ, φ, θin
R , φin

R , λ) dE, (7)

wherevis(r, e) = 1 if the pointe(s, t) is visible fromr(u, v) and
0 otherwise. The surface integral can be expressed directly in terms

of the surface functione over

LR = Lemit
R +

∫ 1

0

∫ 1

0

χevis(r, e)
(e− r)·zR (r − e)·zE

‖r − e‖4
·

LEρ‖rs × rt‖ dsdt (8)

whereχe denotes the characteristic function of the parameter do-
main ofe(s, t): χe(s, t) is 1 if (s, t) is in the parameter domain of
e(s, t), and 0 otherwise.

2.2 A Review of B-Spline Approximation

B-spline curves and surfaces have been well established in the
graphics community since they were introduced by Riesenfeld as
modeling primitives [Riesenfeld 1973]. However, B-splines were
studied by Schoenberg many years earlier as a technique for ap-
proximating functions. Outside of graphics they have found a solid
place in numerical analysis as a powerful approximation technique,
and have numerous applications to industrial problems.

Formally we define a spline-spaceSd,t of splines of degreed
with knotst as

Sd,t = span{B0, . . . , Bn−1}, (9)

whereBi(x) = Bi;d,t(x) is the ith B-spline of degreed on the
knot vectort = (τ0, . . . , τn+d) of non-decreasing real values.
Thus every spline can be written as a linear combination of B-
splines. The B-splineBi is a nonnegative piecewise polynomial,
is zero outside the interval[τi, τi+d+1] and

∑
i Bi(x) = 1 for all

x ∈ (τd, τn). MoreoverBi hasd − m continuous derivatives
at a knotx = τj which occursm-times amongτi, . . . , τi+d+1.
If f(x) =

∑n−1
i=0 aiBi;d,t(x) is a spline of degreed and x ∈

[τI , τI+1] thenf(x) is a sum of onlyd + 1 terms

f(x) =
I∑

i=I−d

aiBi(x) (10)

Because splines are piecewise polynomials they are easily differ-
entiated and integrated and there are stable and efficient algorithms
for computing with them. We will make use of the formula for
integrating a spline of degreed ont∫ τn+d

τ1

n−1∑
i=0

aiB;i,(x) dx =

n−1∑
i=0

ai
τi+d+1 − τi

d + 1
. (11)

2.2.1 B-Spline Approximation

To approximate a functionf entails two tasks. We need to choose
a suitable spline spaceSd,t and then compute the B-spline coeffi-
cientsai of a splineg ∈ Sd,t so thatg =

∑n−1
i=0 aiBi is a good

approximation tof . Existing methods for computing spline approx-
imations can be divided into two classes, local and global methods.
A method is local if the value of the approximationg(x) at a point
x depends only on values off in a neighborhood ofx and global
otherwise. A global method generally requires solving an-by-n
linear system of equations for the unknown B-spline coefficients.
Examples of global methods are cubic spline interpolation and least
squares. In a local method the coefficients are given explicitly. For
example in Schoenberg’s variation diminishing spline approxima-
tion method theith B-spline coefficient is given byai = f(t∗i ),
with the evaluation nodet∗i an average of contiguous knot values

t∗i =
τi+1 + · · ·+ τi+d

d
. (12)

The Schoenberg method belongs to a class of methods known as
quasi-interpolants([Lee et al. 2000]). We obtain an example of a



quadratic quasi-interpolant by choosing the B-spline coefficient of
theith quadratic B-splineBi,2 as

ai = −1

2
f(τi+1) + 2f(t∗i )− 1

2
f(τi+2),

wheret∗i = (τi+1+τi+2)/2. This method has approximation order
O(h3), while the Schoenberg method isO(h2) for all degreesd.
On the other hand the words “Variation Diminishing” alludes to
the fact that the Schoenberg method has desirable shape preserving
properties. For anO(h4) cubic quasi-interpolant see [Lee et al.
2000].

2.2.2 Tensor Product B-spline Functions

There are several natural ways of generalizing univariate B-spline
functions to multivariate functions. Since speed is an issue in this
the paper tensor product form of B-splines is a natural choice.

Tensor product spline functions are defined on a rectangular
grid using a knot vector in each space dimension. In the two-
dimensional case there are two knot vectorstx andty, two degrees
dx anddy, and two dimensionsm andn. The coefficientsaij can
be stored in am× n matrix, and the tensor product spline function
is written as the double summation

f(x, y) =

m−1∑
i=0

n−1∑
j=0

aijBj;dy,ty (y)Bi;dx,tx(x). (13)

Notice the terms have one basis function in each variable, and all
product pairs are represented. Also notice the degrees and knot
vectors are independent in each dimension, so, for example, the
tensor product of a quadratic having 100 knots with a cubic having
only 4 is perfectly valid.

Higher-dimensional tensor product B-spline functions follow
naturally. The coefficient matrix becomes a general tensor. Ak-
dimensional tensor product spline function is thek-fold sum

f(x1, . . . , xk) =

n1−1∑
i1=0

· · ·
nk−1∑
ik=0

ai1···ikBik(xk) · · ·Bi1(x1).

(14)
where the coefficients form akthorder tensor. Notice the knot vec-
tor and degree subscripts on the basis functions have been omitted
for brevity. In general we will use an even simpler notation, where
the explicit variable dependence and the summation limits are omit-
ted. For a four-dimensional tensor product B-spline, a function of
particular interest to this paper, we will write simply∑

ijkl

aijklBlBkBjBi. (15)

2.2.3 Evaluation of Tensor Product B-Spline Functions

Evaluating a tensor product spline is fast because for a spline of de-
greed onlyd+1 B-splines are nonzero at any value. For example, a
two-dimensional cubic spline has only four nonzero basis functions
in each variable, and the summation in this case can be written as
the matrix product

[BI−3 · · ·BI ]




aI−3,J−3 · · · aI−3,J

...
...

aI,J−3 · · · aI,J






BJ−3

...
BJ


 (16)

whereI andJ are determined by the knot intervals as in (10). This
matrix product is amenable to hardware vectorization.

Higher-order evaluations require a more involved formulation,
but the idea is the same. It is worth noting that if fast computation
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Figure 2: Tensor product knots and knot lines. (a) Uniform knot
spacing. (b) Nonuniform spacing. The knots can be chosen inde-
pendently in each dimension, but not arbitrarily over the domain.
(c) The domain is inherently rectangular. In the case of a non-
rectangular domain, the knots are chosen around the domain as
tightly as possible, and evaluation points can be moved inside the
domain.

of 1D and 2D B-splines is available (e.g., in hardware) a simple re-
association of the tensor product summations shows how 3D and
4D splines can be quickly evaluated using well known univariate
spline algorithms:

∑
ijk

aijkBkBjBi =
∑

i


∑

jk

aijkBkBj


Bi (17)

∑
ijkl

aijklBlBkBjBi =
∑
ij

(∑
kl

aijklBlBk

)
BjBI (18)

and of course higher-dimensional extensions follow.

3 B-splines for Radiance

This section is concerned with the approximation of the spectral ra-
diance on the surface assuming that the actual value ofLS is avail-
able at each point. AsLS(u, v, θ, φ, λ) is a five-variate function, a
five-dimensional tensor product B-spline is indicated. We need to
construct an appropriate spline space and approximation method.

3.1 Lambertian Surfaces

To develop the B-spline approximation technique, we first assume
that the surface is Lambertian, that is, the outgoing radiance is in-
dependent of the direction. If the wavelength dependence is also
ignored, the surface exitant radiance reduces to a functionL(u, v)

of only two variables. To construct an approximationL̃(u, v) to
L involves choosing the degrees and the knot vectors inu and
v, and applying an approximation method (Schoenberg or quasi-
interpolation).

For knot vectors we can for example use uniform knots with mul-
tiple knots at each end:

[a, . . . , a︸ ︷︷ ︸
d+1

, a + h, a + 2h, . . . , b− h, b, . . . , b︸ ︷︷ ︸
d+1

] (19)

whered is the degree,m ≥ 0 is the number of internal knots,
h = (b − a)/(m + 1) and the domain of the parameter (u or v)
is the closed interval[a, b]. Normally the domain[a, b] is the unit
interval [0, 1], but for practical reasons the radiance function might
not be defined on the edge of a surface patch so we use instead
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Figure 3: Knots on the hemisphere, for the angular parameters.
(a) The standardθ, φ spherical parameterization results in poor
knot spacing. (b) Our trimmed square-to-sphere mapping is much
more uniform. (c) Nonuniform knot spacing can be used with our
mapping, to better approximate a highlight, for example.

[ε, 1− ε] for some smallε, this having the effect of pulling evalua-
tion points away from the edges. Technically this makes parameter
values less thanε or greater than1 − ε outside the domain of B-
spline function, but in practice this causes little difficulty due to the
continuous dependence of a spline as a function of its knots.

The knot vectors need not be uniform. If there is extra detail
in on one part of the surface, for example, the knots can be clus-
tered there. However, since we are using tensor products knot lines
extend through the entire domain.

3.2 View-Dependent Radiance

The spherical coordinate parameterization for the hemisphere given
by (θ, φ) above is a candidate for the spline parameters, as the do-
main is rectangular:0 ≤ θ < π/2, −π ≤ φ < π. However, there
are two difficulties. First, we need periodicity in theφ-variable.
This can be handled by a simple periodic extension of the corre-
sponding knot vector so that the resulting spline function becomes
periodic inφ.

The more serious difficulty, however, is that the standard spher-
ical parameterization is highly nonuniform: knot values inφ get
pinched together near the pole. See Figure 3.

To solve this problem we use a different set of local parameters
for the spline approximation. For any point in the tangent plane at
a surface points(u, v) on a surfaceS we let (α, β) be the coordi-
nates of that point with respect to the coordinate system defined by
(xS ,yS) given by (1),(3).

What is needed then is a smooth, low distortion mapping of the
unit square to the unit hemisphere. Such mappings do exist, but we
also need something fast to evaluate because the inverse mapping,
must be computed at every radiance evaluation at render time. In-
stead we use a mapping from the unit disc to the unit hemisphere,
and apply the trick of pushing evaluation nodes inside the disc that
we use for trimming curves.

If r =
√

α2 + β2, then the rectangular coordinates (in the local
frame) of the corresponding point on the hemisphere are given by

z = 1− r2 (20)

x =

√
1− z2

r
α (21)

y =

√
1− z2

r
β. (22)

Here a point(α, β) in the unit disc is lifted to the paraboloid
z = 1−r2 and then moved out horizontally to the hemisphere. No-
tice the mapping is undefined outside the unit disc. To avoid this,
we “pull in” node values outside the disc: ifr > R thenα andβ are
scaled byR/r. Thus every point in the plane outside the unit disc

is moved radially to the disc of radiusR. NormallyR would be set
to 1, but radiances are properly zero (otherwise undefined) at nor-
mal angleπ/2, and this could cause unwanted darkening at grazing
angles—the opposite of the Fresnel effect exhibited by many reflec-
tive materials. If the maximum normal angleθ is to beπ/2 − δ,
thenR ≈ √

1− δ. We denote byθ = θ(α, β) andφ = φ(α, β) the
local spherical coordinates of the point(x, y, z) given by (20)-(22).

3.3 Approximation

Given the mappingsθ(α, β) andφ(α, β) in the previous subsec-
tion we can approximate the radianceL(u, v, θ, φ, λ) for a given
surface by a 5-dimensional tensor product spline in the variables
(u, v, α, β, λ). Thus

L(u, v, θ(α, β), φ(α, β), λ) ≈ L̃(u, v, α, β, λ),

where

L̃(u, v, α, β, λ) =
∑

i,j,k,l,m

aijklmBmBlBkBjBi. (23)

For the variablesu and v we use the knot vector given by (19),
while for α andβ we use

[−R, . . . ,−R︸ ︷︷ ︸
d+1

,−R + h,−R + 2h, . . . , R− h, R, . . . , R︸ ︷︷ ︸
d+1

], (24)

whereh = 2R/(m + 1). Finally, for the wavelength parameterλ
we can use a uniform knot vector, say from400nm to800nm.

The coefficients are computed from the Schoenberg method, the
surface radiance evaluated at the Schoenberg node values

aijklm = L(u∗
i , v∗j , θ(α∗

k, β∗
l ), φ(α∗

k, β∗
l ), λ∗

m) (25)

We note that they could also be constructed using a quasi-
interpolation method.

3.3.1 Wavelength Dependence

For many rendering applications, including our renderer,
wavelength-dependent radiance is represented using a tri-
chromatic representation with three real values. This can be done
with a 5D B-spline function, where the degree inλ is 0, and
there are 4 knot values. It is probably faster, though, to use a
tri-color value (RGB) for each B-spline coefficient, and reduce to
a 4D tensor product function. In the remainder of this paper we
frequently omit the wavelength dependence and use 4-dimensional
splines for surface radiance.

4 Global Illumination

Now we consider solving the global (hemispherical) integral equa-
tion in the form (8). This is a coupled system of integral equations,
one equation for each surface in the scene. We turn to the evalua-
tion of the integrals in terms of tensor product B-splines. Since the
integrands can be evaluated quickly at any sample point the (hemi-
spherical) integral can be evaluated using standard methods. The
impetus for storing the incremental radiances is to facilitate this
computation.

Consider first the hemispherical integral formulation. For the
radiance approximation, the B-spline coefficient is computed from

aijkl = Lemit
R (u∗

i , v∗j , θ∗kl, φ
∗
kl)

+

∫
Ω

Lin
R (u∗

i, v
∗
j, θ

∗
kl, φ

∗
kl)ρ(u∗

i, v
∗
j, θ

∗
kl, φ

∗
kl, θ

in, φin) cos θindω (26)



where the∗ variables indicate the evaluation nodes (θ∗kl andφ∗
kl are

functions ofα∗
k andβ∗

l ). For simplicity we shall useθ andφ in
this section, and note in practice they are functions of the spline
parametersα andβ. The incoming radianceLin is evaluated, in
our implementation, using the same ray-tracing method described
above for rendering. Given this, and the BRDFρ, the integral can
be evaluated using any standard numerical method that uses point
sampling. For example, the integral can be computed using an im-
portance sampling method based on the values of the BRDF.

Our approach to evaluating the radiance integrals is to perform a
B-spline approximation to the integrand, and evaluate this exactly
using existing techniques. The integrand for the hemispherical in-
tegral is six-variate, or seven-variate if the wavelength is included.
The approximation therefore has the form∫

Ω

Lin
Rρ cos θin dω (27)

=

∫ 2π

0

∫ π/2

0

Lin
Rρ cos θin sin θin dθin dφin (28)

=

∫ 2π

0

∫ π/2

0

f(u, v, θ, φ, θin, φin) dθin dφin (29)

=

∫ 2π

0

∫ π/2

0

∑
ijklpq

f(u∗
i , v∗j , θ∗kl, φ

∗
kl, θ

in∗
p , φin∗

q )

BqBpBlBkBjBi dθin dφin (30)

where the B-spline coefficientsaijklpq are the integrand, evaluated
at node valuesu∗

i , v∗j , θ∗kl, φ∗
kl, θin∗

p , andφin∗
q . The choice of the

first four is dependent on the knot vectors for th B-spline radiance
representation onR and is therefore fixed, but the latter two come
from knot vectors that can be arbitrarily chosen, and could even be
different for each integral evaluation. But given the knot vectorsσ
andτ for θin andφin, respectively, the B-spline approximation to
the integral can be evaluated exactly as∫ 2π

0

∫ π/2

0

∑
ijklpq

aijklpqBqBpBlBkBjBi dθin dφin (31)

=
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ijklpq

aijklpq

τq+d
φin+1−τq

dφin + 1

σp+d
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dθin + 1
BlBkBjBi (32)

from which the B-spline coefficients for̃LR may be taken.
The surface integral formulation can be approximated in the

same way.∫ 1

0

∫ 1

0

χevis(r, e)
(e− r)·zR (r − e)·zE

‖r − e‖4
LEρ‖rs × rt‖ dsdt (33)

=

∫ 1
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)
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and thus gives the explicit formula for the B-spline coefficients for
the outgoing radiancẽLR reflected off ofR from E. The total
actual outgoing radiance B-spline onR is the sum of these coeffi-
cients, from all other surfaces, includingR itself if it is non-convex.

4.1 Generalized Form Factors

Although this last equation gives a direct formula for each B-spline
coefficient for the exitant radiance reflected offR from E, it is in

terms of the integrand evaluated at node points. It would be more
natural, and closer to the classical radiosity method, to have the
coefficients in terms of the outgoing radiance onE directly. Theo-
retically this is not difficult.

Suppose that the knot vectors used for representation as well as
integration are the same, and fixed for the entire environment at the
outset. Then the terms in the integrand, except forLE are all con-
stant. Furthermore, for a given sample point ofLE , the B-spline
basis functions are constant, and thus the sampled values ofLE

are linear functions of the coefficients of the coefficients. Conse-
quently, the coefficients forLR are all linear functions of the coef-
ficients ofLE . In other words, the tensor of coefficientsTR for the
reflected radiance fromE off of R is a linear function of the tensor
TE of exitant radiance fromE. Writing this function as

TR = FRE(TE) (36)

the total gathered radiance tensor becomes

TR =
∑

S

FRS(TS) (37)

and this is directly analogous to the classical radiosity method.

4.2 Gathering

The solution process corresponds to a gathering approach similar
to that used in classical radiosity. Figure 4 shows the data struc-
tures. ABspline4D object contains the knot vectors as well as the
tensor or coefficients, and asurface radiance object stores
threeBspline4D objects: one for the cumulative gathered radi-
ance, one for an incremental radiance from the most recent gather,
and one temporary value for the gathered radiance. Algorithm 1
outlines the method.

Algorithm 1 Gathering Algorithm
// Direct Lighting Phase
for eachsurfaceS do

S.L← 0

for eachemitting surfaceE do
gather fromE to S, store the radiance inS.L

end for
add the gathered radiance to the cumulative radiance:S.Le← S.L

end for

// Indirect Lighting Phase
while each .L is too largedo

for eachsurfaceS do
gather globally from the scene toS.Ltmp
// the emission is taken from the .L functions on other surfaces

end for
for eachsurfaceS do

add the gathered radianceS.Ltmp toS.Le
replace the incremental radianceS.L with S.Ltmp

end for
end while

// Final Gather Phase
for eachsurfaceS do

refineS.L as necessary
gather globally from the scene toS.L
// the emission is taken from the .Le functions on other surfaces

end for

The first iteration is the “direct lighting” stage, where surfaces
are only illuminated by emissive surfaces,i.e, light sources. For
this we use the surface integral formulation because it is far more
efficient, as only a relatively small solid angle on the hemisphere is
producing radiance.



struct Bspline4D {
radiance tensor4D C // B-spline coefficients
real knots[4][] // knot vectors
int degree[4] // B-spline degrees
}

struct surface radiance {
Bspline4D Le // cumulative exitant radiance
Bspline4D L // incremental exitant radiance
Bspline4D Ltmp // temporary exitant radiance
}

Figure 4:Data structures for tensor product B-splines and surface
radiances.

After the direct lighting computation, the L field for each sur-
face contains the radiance due to direct illumination. From these
we gather to each surface, using the hemispherical integral, from
the entire environment, placing the result in the Ltmp field. This
radiance is the indirect lighting caused by a single reflection. We
add this to the cumulative radiance Le, and store this into the radi-
ance L field and repeat. Notice that the L fields contain the indirect
lighting after exactlyn reflections, while the cumulative radiance
Le is not used for any of the indirect lighting.

It might seem more natural to gather from the cumulative radi-
ance Le and indeed this would require only two B-spline functions
for each surface for the global illumination computation. One rea-
son for the extra temporary radiance is that we can usually get away
with a much coarser approximation to the surface radiances during
the global illumination computation.

The final gather is something like a radiosity reconstruction. A
finer approximation is usually required, and the integral evaluations
may need to be done with more knots. The gathering can be done
using the surface integral for brightly emitting objects (like the orig-
inal light sources) and the hemispherical integral can be used for the
rest—surfaces from which the surface-to-surface value is used are
treated as non-emissive by the hemispherical integral.

4.3 Transmission

The integrals in 6 and 7 govern the reflected transport, if a surface
also has a bi-directional transmission distribution function (BTDF).
To handle transmission, the radiance function must be extended to
directions below the local surface tangent plane,i.e., having normal
angleθ > π/2. We do this by adding a second radiance function
L′

R for the transmitted radiance.

5 Implementation

We have implemented the 4D B-spline techniques presented here
in the context of a standard ray tracer for both rendering and global
illumination computation. Our scenes consist of triangles, paral-
lelograms, B́ezier patches, and trimmed NURBS surfaces. For the
global illumination computation, ray tracing is required for evalu-
ating the visibility function in the surface integral formulation, and
for evaluating theLin value in the hemispherical integral. There-
fore our ray tracer must be able to compute ray intersections with
these surfaces and the corresponding parameter values as well as
surface derivatives to compute the local frame.

Regardless of how a surface radiance B-spline is computed (or
captured) it can be treated as a general surface shader. The shader,
shown in pseudo-code in Figure 6, is dependent on view direction
and surface position. Virtually any rendering system that can ren-
der the scene surfaces can render the scene using the B-spline ra-
diances. We incorporated the B-spline shader into GL-based ren-

derer. OpenGL does not currently support hardware B-spline func-
tion evaluation, nor does it support surface texturing from an arbi-
trary function, so we divide each surface into micro-faceted poly-
gons and render each using smooth shading. The vertex colors are
computed from our B-spline surface function, with the eye point
corresponding to the center of projection. Figure 7 shows a simple
scene so rendered.

5.1 Representation Issues

B-spline approximation functions are known to converge, so it is
clear that the methods presented in this paper will work—provided
enough knots are chosen. But a memory explosion could easily
result. For example, if a modest 100 coefficients are required in
each dimension, then one hundred million control points would be
required, pushing the limits of a modern workstation. A multi-
resolution approach could certainly cut down on the number of co-
efficients but we are investigating the tensor product approach as
an interactive technique. We are interested, therefore, in finding
good representations of surface radiances by exploiting the intrin-
sic properties of B-spline functions. Our goals emphasize visual
realism more than numeric accuracy.

The primary drawback of tensor product B-splines is their in-
ability to represent high frequency detail. In graphics, these occur
along shadow edges, at points of contact between surfaces, and in
near-mirror reflections. Only in the latter situation does the B-spline
approach method truly break down; tensor product B-splines tend
work well for glossy and moderately specular surfaces. Problems
with shadow discontinuities and points of contact can be largely
handled by re-meshing the surfaces as necessary. Figure 8 shows
an example of this.

The radiance from a purely diffuse surface is view independent
and could therefore be represented by a 2D spline. We propose a
simple decomposition

L(u, v, θ, φ) = D(u, v)F (θ, φ) + S(u, v, θ, φ). (38)

HereD is a diffuse component (i.e, irradiance) and is scaled by a di-
rectional dependent termF that captures, for example, the Fresnel
behavior of increasing specularity at grazing angles. A low spec-
ular surface with much surface detail will benefit greatly from this
decomposition.

In general we use quadratic (degree 2) splines in all four vari-
ables primarily because quadratic splines tend to represent the gen-
eral shape of the approximated function better than higher-order
splines, and they are faster to evaluate. Theoretically the second-
order discontinuities that exist in quadratic splines might be notice-
able, but we have not found this to be a problem. In some cases it
appears that using cubic splines in the spatial dimensions improves
the appearance along shadow discontinuities.

We have found that using 16 coefficients in each of the four di-
mensions is sufficient to represent radiance for a typical surface
patch—note this amounts to as many coefficients as there are pixels
in a 256 × 256 texture map image. Glossy surfaces with a small
diffuse component tend to require fewer spatial knots and more an-
gular knots, while diffuse surfaces require more spatial knots. The
number of spatial knots required also depends on the physical or ap-
parent size of the surface patch. A micro-facet, for example, might
need only one spatial coefficient. Surface that exhibit near mirror
reflection, however, can require many knots in both directions.

5.2 Performance

The most important performance consideration is the evaluation of
the 4D tensor product B-spline functions. Our evaluation is done
in software. Figure 5 shows a graph of some benchmarks run on a
(single) MIPS R12K 400 MHz processor. The general upward trend
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Figure 5: Benchmarks for 4D tensor product B-spline evaluation
(MIPS R12K, 400MHz, single CPU). The total computation time
per evaluation, including the hemispherical mapping, is shown
(thick lines), along with the time of computing the B-spline ba-
sis functions (thin lines). Three different degree combinations are
shown, with degree inu andv first. The horizontal labels indicate
the number of knots in each parameter.

of evaluation time with larger dimension is primarily due to degrad-
ing cache coherence. Quadratic 4D splines of modest dimensions
can generally be evaluated at rates of better than 200K.

In our ray tracer, the cost of finding the surface intersections gen-
erally outweighs the cost evaluating the surface B-splines, particu-
larly when there are many NURBS surfaces in the scene. For the
GL implementation this is not the case. In both implementation
though, the B-spline evaluation time dominates the sphere mapping
and local frame coordinate conversion. The simple scene illustrated
in Figure 7 runs at roughly 10 frames per second on a fast PC. The
polygon and sphere are each divided into1282 micro-triangles.

The global illumination computation remains far from interac-
tive. A scene with only a few surfaces and modest sampling (a
coarse solution uses7 × 7 knots points for the surface integration
and10 × 10 points on the hemispherical integration) and only one
or two indirect gathers takes from a few seconds to a few minutes.
More complicated scenes, finer knot sampling, and more iterations
can push the computation time up to several hours on a single pro-
cessor.

5.3 Results

Figures 7–11 and the “teaser” images show some results using our
method. Except for the GL scene, all images are ray traced using
the B-spline shader. The global illumination was computed with
from 1 to 4 indirect gathers. The surfaces are polygons, Beziér
patches and trimmed NURBS. We generally used the Ashikhmin-
Shirley BRDF [Ashikhmin and Shirley 2000], because it is energy
conserving and exhibits the Fresnel behavior of increased specular-
ity at glancing angles. The specular exponents were limited to be
under 100.

6 Conclusion

In this paper we have demonstrated that we can effectively approx-
imate radiance using a suitably crafted high dimensional tensor

radiance BSPLINE SHADE (surface S, real u, real v, point eye)
// Returns the B-spline radiance function atu, v, as viewed from eye.

{
r ← S(u, v)

d̂← (eye − r)/‖eye − r‖
compute the surface framexS , yS , zS atu, v.
computeŵ, the direction of̂d in the local frame atu,v
mapŵ to spline parametersα, β

returnS.L(u, v, α, β)

}

radiance BSPLINE SHADE (surface S, point x, unit vector d̂ )
// Returns the B-spline radiance function atx, situated on the surfaceS
// as viewed from the direction̂d

{
compute theu, v parameter values ofx on the surfaceS
compute the surface framexS , yS , zS atu, v.
computeŵ, the direction of̂d in the local frame atu,v
mapŵ to spline parametersα, β

returnS.L(u, v, α, β)

}

Figure 6:Functions to render a surface point using a B-spline ra-
diance function. The first is more suited to scan-line rendering, the
second, to ray tracing.

product spline. Furthermore we can take advantage of the unifi-
cation accorded by representing both geometry and physical be-
havior by the same functional form. As the examples illustrate the
representation captures a wide variety of phenomena in a single
form. It is also amenable to fast evaluation and can deal with self-
illumination of free-form surfaces.

The standard tensor product B-splines are fast to evaluate, but
they may not be the most efficient representation. A multi-
resolution approach, using spline wavelets for example, is likely to
reduce the storage requirements. This could be particularly useful
for the high frequency detail the present method misses.

In this paper we have taken a rather direct approach to the ap-
proximation and integral evaluation. Our images all use uniform
knot spacing both for representation and for integration. Nonuni-
form knots could improve this. Knot clustering, for example, could
improve the representation on a specular surface, or a surface with
non-uniformly distributed detail.

Our approach to evaluating the illumination integrals is very
straightforward. We have not attempted to speed the computation
because we view it as a pre-process. For example, the hemispher-
ical integral could be importance sampled according to the BRDF,
and similarly the knot distribution for the surface integral evaluation
can be adjusted to capture a BRDF spike. Hierarchical or clustering
methods might also improve performance.

Finally, we note some natural extensions. Time varying radiance
is a relatively simple extension, as is the representation of volumet-
ric data, including scattering.

In summary we conclude that tensor product B-splines are a flex-
ible representation for encoding view-dependent surface radiances.
It is likely that more gains lie in this direction.
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Figure 7: OpenGL renderings of a simple scene (global illumina-
tion computed offline) using a B-spline shader. Each object is ren-
dered with1282 micropolygons.
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Figure 8:2D B-splines for a diffuse surface with varying degree and
knot density. Note the degree 1 case reduces to linear interpolation.
The tensor product nature is most noticable on shadow edges diag-
onal to the knot lines. Discontinuity meshing helps with this, here,
only one division was necessary for a good approximation at the
point of contact.

Figure 9:A rectangle with a phong-like transmission function cast-
ing light onto a plane (left), an isotropic and anisotropic sphere
(right).

Figure 10:A mug with much indirect lighting (5 indirect iterations)
and a translucent cup. The mug consists of only two surfaces, (one
for the handle, one for the cup) with 10 knots in each angular pa-
rameter and 41 in the spatial parameters. The cup is a single sur-
face, with 17 knots in each parameter.

Figure 11:An anisotropic sphere and a transparent sphere, illumi-
nated by a source in the shape of a light-bulb. The left sphere has
7 knots in each parameter; the right, 21. Notice there are sufficient
knots (25 in each dimension) on the table to reproduce the caustic,
but not the shadows.


