Formalizing the Java Memory Model
for Multithreaded Program
Correctness and Optimization

Yue Yang, Ganesh Gopalakrishnan, and
Gary Lindstrom

UUCS-02-011

School of Computing
University of Utah
Salt Lake City, UT 84112, USA

April 2, 2002

Abstract

Standardized language level support for threads is one of the most important features of Java. However,
defining and understanding the Java Memory Model (JMM) has turned out to be a big challenge. Several
models produced to date are not as easily comparable as first thought. Given the growing interest in multi-
threaded Java programming, it is essential to have a sound framework that would allow formal specification
and reasoning about the JMM.

This paper presents the Uniform Memory Model (UMM), a formal memory model specification frame-
work. With a flexible architecture, it can be easily configured to capture different shared memory semantics
including both architectural and language level memory models. Based on guarded commands, UMM is
integrated with a model checking utility, providing strong built-in support for formal verification and pro-
gram analysis. A formal specification of the JMM following the semantics proposed by Manson and Pugh
is presented in UMM. Systematic analysis has revealed interesting properties of the proposed semantics. In
addition, several mistakes from the original specification have been uncovered.

Formalizing the Java Memory Model for Multithreaded Program
Correctness and Optimization

Yue Yang, Ganesh Gopalakrishnan, and Gary Lindstrom
School of Computing, University of Utah
{yyang | ganesh | gary}@cs.utah.edu

Abstract

Standardized language level support for threads is one of the most important features of Java. How-
ever, defining and understanding the Java Memory Model (JMM) has turned out to be a big challenge.
Several models produced to date are not as easily comparable as first thought. Given the growing interest
in multithreaded Java programming, it is essential to have a sound framework that would allow formal
specification and reasoning about the JMM.

This paper presents the Uniform Memory Model (UMM), a formal memory model specification frame-
work. With a flexible architecture, it can be easily configured to capture different shared memory se-
mantics including both architectural and language level memory models. Based on guarded commands,
UMM is integrated with a model checking utility, providing strong built-in support for formal verification
and program analysis. A formal specification of the JMM following the semantics proposed by Manson
and Pugh is presented in UMM. Systematic analysis has revealed interesting properties of the proposed
semantics. In addition, several mistakes from the original specification have been uncovered.

1 Introduction

Java programmers routinely rely on threads for structuring their programming activities, sometimes even
without explicit awareness. As future hardware architectures become more aggressively parallel, multi-
threaded Java also provides an appealing platform for high performance application development, especially
for server applications. The Java Memory Model (JMM), which specifies how threads interact with each
other in a concurrent system, is a critical component in the Java threading system. It imposes significant
implications to a broad range of engineering activities such as programming pattern developments, compiler
optimizations, Java virtual machine (JVM) implementations, and architectural designs.

Unfortunately, developing a rigorous and intuitive JMM has turned out to be a big challenge. The
existing JMM is given in Chapter 17 of the Java Language Specification [1]. As summarized by Pugh [2],
it is flawed and very hard to understand. On the one hand, it is too strong and prohibits many common
optimization techniques. On the other hand, it is too weak and compromises safety guarantees.

The need for improvements in JMM has stimulated broad research interests. Two new semantics have
been proposed for Java threads, one by Manson and Pugh [3], the other by Maessen, Arvind, and Shen [4].
We refer these two proposals as JMMyp and JMMcgrr respectively in this paper. The JMM is currently
under an official revisionary process [5] and will be replaced in the future. There is also an ongoing discussion
in the JMM mailing list [6].

Although [3] and [4] have initiated promising improvements on Java thread semantics, the specification
framework can be enhanced in several ways. One area of improvement is towards the support of formal
verification. Being able to provide a concise semantics is only part of the goal. People also need to reason their
programs against the JMM for compliance. Multithreaded programming is notoriously difficult. Developing
efficient and reliable compilation techniques for multithreading is also hard. The difficulty of being able to
understand and reason about the JMM has become a major obstacle for allowing Java threading to reach
its full potential. Although finding an ultimate solution is not an easy task, integrating formal verification
techniques does provide an encouraging first step towards this goal.

Another problem is that both proposals are somewhat limited to the data structures chosen for their
specific semantics. Since they use totally different notations, it is hard to formally compare the two models.
In addition, none of the proposals can be easily re-configured to support different desired memory model
requirements. JMMcgyp inherits the architecture from its predecessor hardware model [7]. Java memory
operations have to be divided into fine grained Commit/Reconcile/Fence (CRF) instructions to capture
the precise thread semantics. This translation process adds unnecessary complexities for describing memory
properties. On the other hand, the dependency on cache based architecture prohibits it from describing more
relaxed models. JMMyp uses multiset structures to record the history of memory operations. In stead of
explicitly specifying the intrinsic memory model properties, e.g., the ordering rules, it resorts to nonintuitive
mechanisms such as splitting a write instruction and using assertions to enforce certain conditions. While this
is sufficient to express the proposed synchronization mechanism, adjusting it to specify different properties
is not trivial.

Similar to any software engineering activities, designing a memory model involves a repeated process of
fine-tuning and testing. Therefore, a generic specification framework is needed to provide such flexibilities.
In addition, a uniform notation is desired to help people understand the differences among different models.

In this paper, we present the Uniform Memory Model (UMM), a formal framework for memory model
specification. It explicitly specifies the intrinsic memory model properties and allows one to configure them at
ease. It is integrated with a Model Checking tool using Mure, facilitating formal analysis of corner cases. To
aid program analysis, it extends the scope of traditional memory models by including the state information
of thread local variables. This enables source level reasoning about program behaviors. The JMM based
on the semantics from JMMyp is formally specified and studied using UMM. Subtle design flaws from the
proposed semantics are revealed by our systematic analysis using idiom-driven test programs.

We review the related work in the next section. Then we discuss the problems of the current JMM specifi-
cation. It is followed by an introduction of JMMy;p. Our formal specification of the JMM in UMM, primarily
based on the semantics proposed in JMMyp, is described in Section 5. In Section 6, we discuss interesting
results and compare JMMyp with JMMcgrp. We conclude and explore future research opportunities in
Section 7 . An equivalence proof between our model and JMMyp is outlined in the Appendix.

2 Related Work

A memory model describes how a memory system behaves on memory operations such as reads and writes.
Much previous research has concentrated on the processor level memory models. One of the strongest
memory models for multiprocessor memory systems is Sequential Consistency [8]. Many weaker memory
models [9] have been proposed to enable optimizations. One of them is Lazy Release Consistency [10],
where synchronization is performed by releasing and acquiring a lock. When a lock is released, all previous
operations need to be made visible to other processors. When the lock is subsequently acquired by another
processor, that processor needs to reconcile with the shared memory to get the updated data. Lazy Release
Consistency requires an ordering property called Coherence. Using the definition given by [11], Coherence
requires a total order among all write instructions at each individual address. Furthermore, this total order
respects the program order from each processor. This requirement is further relaxed by Location Consistency
[12]. The write operations in Location Consistency are only “partially” ordered if they are issued by the
same processor or if they are synchronized through locks. With the verification capability in UMM, we can
formally compare the JMM with some of these conventional models.

To categorize different memory models, Collier [13] specified them based on a formal theory of memory
ordering rules. Architectural testing programs can be executed on a target system to test these orderings.
Using methods similar to Collier’s, Gharachorloo et al. [11] [14] developed a generic framework for specifying
the implementation conditions for different memory consistency models. The shortcoming of their approach
is that it is nontrivial for people to infer program behaviors from a compound of ordering constraints.

Park and Dill [15] developed an executable specification framework with formal verification capabilities
for the Relazed Memory Order (RMO [16]) [17]. We extended this method to the domain of the JMM in our
previous work on the analysis of JMMcgry [18]. After adapting JMMcrr to an executable specification, we
exercised the model with a suite of test programs to reveal pivotal properties and verify common program-
ming idioms. Roychoudhury and Mitra [19] also applied the same technique to verify the existing JMM,

‘ Buffer ‘ ‘ Buffer ‘

[Main Memory]

Figure 1: Architecture of the existing Java Memory Model

achieving similar success. However, these previous executable specifications are all restricted to the specific
architectures of their target memory models. UMM provides a generic abstraction mechanism for capturing
different memory consistency requirements into a formal executable specification.

3 Problems of the Existing JMM

The existing JMM uses a memory hierarchy illustrated in Figure 1. In this framework, every variable has
a working copy stored in the working memory. Eight actions are defined. As a thread executes a program,
it operates on the working copies of variables via use, assign, lock, and unlock actions as dictated by the
semantics of the program it is executing. Data transfers performed by JVM between the main memory
and the working memory are not atomic. A read action initiates the activity of fetching a variable from
main memory and is completed by a corresponding load action. Similarly, a store action initiates the
activity of writing a variable to main memory and is committed by a corresponding write action. The lock
and unlock actions enforce a synchronization mechanism similar to Lazy Release Consistency. The current
JMM informally describes sets of rules to impose constraints to the actions. There are many non-obvious
implications that can be deduced by combining different rules. As a result, this framework is hard to
understand and the lack of rigor in specification has led to some flaws as listed below.

e Strong ordering restrictions prohibit standard compiler optimizations.

The existing JMM requires a total order for operations on each individual variable [20]. Because of
this requirement, important compiler optimization techniques such as fetch elimination are prohibited.
Consider figure 2, where p.x and q.x may become the same variable due to aliasing during execution.
The statement k = p.x can not be replaced by k = i by the compiler because a total order among
operations on the same variable is required. As a result, adding a seemingly innocuous read instruction
j = g.x introduces additional constraints. This is an annoying side effect in a threading system because
people need to be able to add debugging read instructions without changing program behaviors. This
ordering restriction is actually ignored by some commercial JVM implementations.

Initially, p.x == 0
Thread 1 | Thread 2
1=Dpx; px=1;
q=DP;

J=ax
k = p.x;
Problem: k = p.x can not be replaced by k =i

Figure 2: Current JMM prohibits fetch elimination

Initially, p == null

Thread 1 Thread 2
synchronized(this) { if(p != null) {
p = new Point(1,2); I = p.X;

} }
Finally,

can result in r ==

Figure 3: Current JMM allows premature release of object reference

o The existing JMM prohibits the removal of “redundant” synchronizations.

The present JMM requires a thread to flush all variables to main memory before releasing a lock.
Because of this strong requirement on visibility effect, a synchronization block can not be optimized
away even if the lock it owns is thread local.

e Java safety might be compromised.

The existing JMM does not guarantee an object to be fully initialized by its constructor before the
returned object reference is visible to other threads if there exists a race condition, which might only
occur under some weak memory architectures such as Alpha. Take Figure 3 as an example, when
thread 2 fetches the object field without locking, it might obtain uninitialized data in the statement r
= p.x even if p is not null. Although this loophole is an extremely rare corner case, it does have serious
consequences. Java safety is compromised since it opens the security hole to malicious attacks via race
conditions. In particular, many Java objects, such as a String object, are designed to be immutable. If
default values before initialization can be observed, the object becomes mutable. Furthermore, popular
programming patterns, such as the double-checked locking [21] algorithm, are broken under the existing
JMM due to the same problem.

e Semantics for final variables is omitted.

Being able to declare a variable as a constant is a useful feature in multithreading systems because it
offers more compilation flexibility. Unfortunately, the existing JMM does not mention final variables.
In fact, final variables have to be reloaded every time at a synchronization point.

o Volatile variables are not useful enough.

The existing JMM requires operations on volatile variables to be Sequentially Consistent. But volatile
variable operations do not affect visibility on normal variable operations. Therefore, volatile and non-
volatile operations can be reordered. In traditional languages such as C, volatiles are used in device
drivers for accessing memory mapped device registers. A volatile modifier tells the compiler that the
variable should be reloaded for each access. In Java, low level device access is no longer a priority.
Volatile variables are mostly used as synchronization flags. Because the existing volatile semantics
does not offer sufficient synchronization constraints on normal variables, it is not intuitive to use in
practice. Consequently, many JVM implementations do not comply with the present specification.

4 Semantics Proposed by Manson and Pugh

In order to fix the problems listed in Section 3, JMMyp is proposed as a replacement semantics for Java
threads. After extensive discussions and debates through the JMM mailing list, some of the thread properties
have emerged as leading candidates to appear in the new JMM.

4.1 Desired Properties

o [t should enable the removal of “redundant” synchronizations.

Similar to the existing JMM, JMMyp uses a release/acquire process for synchronization. However,
the visibility restrictions are much relaxed. Instead of permanently flushing all variables when a lock
is released, visibility states are only synchronized through the same lock. Consequently, if the lock is
not used by other threads, the synchronization can be removed since it would never cause any visibility
effects.

o [t should relax the total order requirement for operations on the same variable.

JMMyyp essentially follows Location Consistency, which only requires a “partial” order among write in-
structions on the same variable established through the same thread or synchronization. Most standard
compiler optimizations such as fetch elimination are enabled.

e [t should maintain safety gquarantees even under race conditions.

JMMypp guarantees that all final fields can be initialized properly. To design an immutable object, it
is sufficient to declare all its fields as final fields. Variables other than final fields are allowed to be
observed prematurely.

e [t should specify reasonable semantics for final variables.

A final field v is only initialized once in the constructor of its containing object. At the end of the
constructor, v is frozen before the reference of the object is returned. If the final variable is improperly
exposed to other threads before it is frozen, v is said to be a pseudo-final field. Another thread would
always observe the initialized value of v unless it is pseudo-final, in which case it can also obtain the
default value.

e [t should make volatile variables more useful.

JMMyyp proposes two changes to the volatile variable semantics. One is weaker and the other is
stronger comparing to the original JMM. First, the ordering requirement for volatile operations is
relaxed to allow non-atomic volatile writes. Second, the release/acquire semantics is added to volatile
variable operations to achieve synchronization effects for normal variables. A write to a volatile field
acts as a release and a read of a volatile field acts as an acquire.

4.2 JMM,;p Notations

JMM\p is based on an abstract global system that executes one operation from one thread in each step. An
operation corresponds to a JVM opcode. Actions occur in a total order which respects the program orders in
each thread. The only ordering relaxation explicitly allowed is for prescient writes under certain conditions.

4.2.1 Data Structures

A write is defined as a unique tuple of (variable, value, GUID). JMMyp uses the multiset data structure to
store history information of memory activities. In particular, the allWrites set is a global set that records
every write events that have occurred. Every thread, monitor, or volatile variable k also maintains two local
sets, overwritteny and previousy. The former stores the obsolete writes that are known to k. The latter
keeps all previous writes that are known to k. When a variable v is created, a write w with the default
value of v is added to the allWrites set and the previous set of each thread. Every time a new write is
issued, writes in the thread local previous set become obsolete to that thread and the new write is added
to the previous set and the allWrites set. When a read action occurs, the return value is chosen from the
allWrites set. But the writes stored in the overwritten set of the reading thread are not eligible results.

4.2.2 Prescient Write

A write w may be performed presciently, i.e., executed early, if (a) w is guaranteed to happen, (b) w can
not be read from the same thread before where w would normally occur, and (¢) any premature reads of w
from other threads must not be observable by the thread that issues w via synchronization before where w
would normally occur. To capture the prescient write semantics, a write action is splitted into initWrite and
performWrite. Special assertion is used in performWrite to ensure that the prescient write conditions are met.

Prescient reads do not need to be explicitly specified. Eligible reordering of read instructions can be
deduced as long as it does not result in an illegal execution.

4.2.3 Synchronization Mechanism

The thread local overwritten and previous sets are synchronized between threads through the release/acquire
process. A release operation passes the local sets from a thread to a monitor. An acquire operation passes
the local sets from a monitor to a thread. Any non-synchronized write instruction on the same variable from
another thread is an eligible write for a read request.

4.2.4 Non-atomic Volatile Writes

Non-atomic volatile writes enable writes on different variables to arrive at different threads in different orders.
To capture the semantics, a volatile write is splitted into two consecutive instructions, initVolatileWrite and
performVolatileWrite. If thread ¢1 has issued initVolatileWrite but has not completed performVolatileWrite, no
other thread can issue initVolatileWrite on the same variable. During this interval, another thread ¢2 can
observe either the new value or the previous value of the volatile variable. As soon as t2 sees the new value,
however, t2 can no longer observe the previous value. When performVolatileWrite is completed, no thread
can see the previous value.

4.2.5 Final Field Semantics

A very tricky issue in final field semantics arises from the fact that Java does not allow array elements to
be declared as final. For example, the implementation of a String class may use a final field r to point to
its internal character array. Because the elements pointed by r can not be declared as final, another thread
might be able to observe their default values even if they have been initialized before r is frozen.

JMMyp proposes to add a special guarantee to these elements that are referenced by a final field. The
visible state of such an element must be captured when the final field is frozen and later synchronized to
another thread when these elements are accessed through the final field. Therefore, every final variable
v is treated as a special lock. A special release is performed when v is frozen. Subsequently, an acquire
is performed when v is read to access its sub-fields. With this mechanism, an immutable object can be
implemented by declaring all its fields as final. If any field is a reference to an array or object, it is sufficient
to just declare this reference as final.

Adding this special final field requirement substantially complicates JMMyp because synchronization
information needs to be passed between the constructing thread and every object pointed by a final field.
The variable structure is extended to a local, which is a tuple of (a,oF, kF') where a is the reference to an
object or a primitive value, oF is the overwritten set caused by freezing the final fields, and kF is a set
recording what variables are known to have been frozen. Whenever a final object is read, its knownFrozen
set associated with its initializing thread is synchronized to the reference of the final object. This allows any
subsequent access to its sub-field to know if the sub-field has been initialized.

5 Specifying JMM)yp Using UMM

In this section we present a formal specification of the Java Memory Model using the UMM framework. The
JMM semantics, except for rules of final fields and control dependency, is based on JMMyyp. JMMyp has
two versions. [3] is an evolving specification that describes the full semantics of Java threads and [22] is a
core subset of it. The one we use in UMM is based on the latest revision of [3] dated as January 11, 2002.
Although we follow the specific rules outlined by JMMyp, the exact semantics can be easily adjusted to
meet different memory model requirements. The equivalence proof of the semantics, except for volatile and
final fields, is given in the Appendix.

5.1 Overview

The UMM uses an abstract machine to define thread interactions in a shared memory environment. Memory
instructions are categorized as events, which may be completed by carrying out certain actions if and only if

Thread; Thread

LV, LI B

: LI B, LV,
(TTLTTHA

]
T TTT]

LK

Figure 4: The UMM architecture

specific conditions are satisfied. A transition table defines all possible events along with their corresponding
conditions and actions for the abstract machine.

At any given step, any legal event may be nondeterministically chosen and atomically completed by
the abstract machine. The sequence of permissible actions from various threads constitutes an execution.
A memory model M is defined by all possible executions allowed by the abstract machine. An actual
implementation, Z ¢, may choose different architectures and optimization techniques as long as the executions
allowed by Z, are also permitted by M.

5.2 The Architecture

As shown in Figure 4, each thread k has a local instruction buffer LIBy that stores its pending instructions
in program order. It also maintains a set of local variables in a local variable array LVy. Each element
LVi[v] contains the data value of the local variable v. LIBj, and LV) are not directly exposed to other
threads. Thread interactions are communicated through a global instruction buffer GIB, which is visible to
all threads. GIB stores all previously completed write and synchronization instructions. In general, a read
instruction completes when the return value is bound to its target local variable. A write or synchronization
instruction completes when it is added to the global instruction buffer. A multithreaded program terminates
when all instructions from all threads complete.

The usage of LIB and GIB is motivated by the observation that local ordering rules and global observability
rules are two pivotal properties for understanding thread behaviors. The former dictates when an instruction
can be issued by a thread and the latter determines what value can be read back. In UMM, these properties
are explicitly specified as conditions in the transition table.

The local instruction buffers can be used to represent effects caused by both instruction scheduling and
data replication. Therefore, there is no need for intermediate layers such as cache.

Although we can store all necessary bookkeeping information in LV, LIB, and GIB to describe any impor-
tant thread properties, a dedicated global lock array LK is also used for clarity. Each element LK[(] is a tuple
(count, owner), where count is the number of recursive lock acquisitions and owner records the thread that
owns the lock (.

5.3 Definitions

Definition 1 Variable

A global variable in UMM refers to a static field of a loaded class, an instance field of an allocated object,
or an element of an allocated array in Java. It can be further categorized as a normal, volatile, or final
variable. A local variable in UMM corresponds to a Java local variable or an operand stack location.

Definition 2 Instruction
An instruction i is represented by a tuple (t, pc, op,var, data,local, useLocal, useNew,lock, time) where

t(i) = t: thread that issues the instruction

pe(i) = pe: program counter of the instruction

op(i) = op: imstruction operation type

var(i) = var: variable operated by the instruction

data(i) = data: data value in a write instruction

local(i) = local: local variable used to store the return value in a read instruction or

local variable to provide the value in a write instruction
useLocal(i) = useLocal: tag in a write instruction i indicating whether the write value data(i) needs
to be obtained from the local variable local(i)

useNew(i) = useNew: tag in a read volatile instruction to support non-atomic volatile writes
lock(i) = lock: lock in a lock or an unlock instruction
time(i) = time: global counter incremented each time when a local instruction is added to GIB

5.4 Need for Local Variable Information

Because traditional memory models are designed for processor level architectures, aiding software program
analysis is not a common priority in those specifications. They only need to describe how data can be shared
between different processors through the main memory. Consequently, a read instruction is usually retired
immediately when the return value is obtained. Following the same style, neither JMMyp nor JMMcrr
keeps the returned values from read operations. However, Java poses a new challenge to memory model
specification with an integrated threading system as part of the programming language. In Java, most
programming activities such as computation, flow control, and method invocation, are carried out using
local variables. Programmers have a clear need for understanding memory model implications caused by
the nondeterministically returned values in local variables. Therefore, it is desired to extend the scope of
the memory model by recording the values obtained from read instructions as part of the global state of the
transition system.

Based on this observation, we use local variable arrays to keep track thread local variable information.
Not only does this reduce the gap between program semantics and memory model semantics, it also provides
a clear delimitation between them. This allows us to define the JMM at the Java byte code level as well as the
source program level, giving Java programmers an end-to-end view of the memory consistency requirement.

5.5 Memory Operations

A global variable in Java is represented by object.field, where object is the object reference and field is the field
name. In this paper, the object.field entity is abstracted to a single variable v. We also follow a convention
that uses a, b, ¢ to represent global variables, r1, 72, r3 to represent local variables, and 1, 2, 3 to represent
primitive values.

A read operation on a global variable corresponds to a Java program instruction r1 = a. It always has
a target local variable to store the returned data. A write operation on a global variable can have two
formats, a = r1 or a = 1, depending on whether the useLocal tag is set or not. The data value of the
write instruction is obtained from a local variable in the former case and is provided by the instruction
directly in the latter case. The format a = r1 allows one to examine the data flow implications caused by
the non-determinism from memory behaviors. If all write instructions have useLocal = false and all read
instructions use different local variables, the UMM degenerates to the traditional models that do not keep
local variable information.

The local variables are not initialized. Java requires them to be assigned before being used. This is
implicitly enforced in UMM by data dependency on local variables.

Since we are defining the memory model, only memory operations are identified in our transition system.
Instructions such as r1 = 1 and r1 = r2 4+ r3 are not included. However, the UMM framework can be easily
upgraded to a full blown program analysis system by adding semantics for computational instructions.

Lock and unlock instructions are injected as dictated by Java synchronized keyword. They are used to
model the mutual exclusion effect as well as the visibility effect.

| Event ’ Condition ‘ Action
readNormal | 3i € LIBy;) : ready(i) ” op(i) = ReadNormal * | LV, [local(i)] := data(w);
(Jw € GIB : legal NormalWrite(i, w)) LIBy(; := delete(LIBy(;,1);
writeNormal | 3i € LIBy;) : ready(i) op(i) = WriteNormal if (useLocal(1))
i.data := LV [local (i)];
end;
GIB := append(GIB, i);
LIB,(;) := delete(LIBy), 1);
lock 3i € LIBy(; : ready(i) " op(i) = Lock " LK[lock(i)].count := LK[lock(i)].count + 1;
(LK[lock(i)].count =0 ¥ LK[lock(i)].owner := t(i);
LK[lock(i)].owner = t(3)) GIB := append(GIB, i);
LIB,(;) := delete(LIBy), 1);
unlock 3i € LIBy(; : ready(i) * op(i) = Unlock " LK[lock(#)].count := LK[lock(i)].count — 1;
(LK[lock(2)].count > 0 GIB := append(GIB, w);
LK[lock(i)].owner = t(i)) LIB,(;) := delete(LIBy),);
readVolatile | 3i € LIBy;) : ready(i) op(i) = ReadVolatile " | LV, [local(i)] := data(w);
(Gw € GIB : if (legal NewWrite(i,w))
(legalOldWrite(i,w) ¥ legal NewWrite(i, w))) i.useNew := true;
end;
GIB := append(GIB,i);
LIBt(Z) = delete(LIBt(i), i);
writeVolatile | 3i € LIBy;) : ready(i) op(i) = WriteVolatile | if (useLocal(i))
i.data := LV [local (i)];
end;
GIB := append(GIB,i);
LIB, ;) := delete(LIB,), i);
readFinal Ji € LIBy(; : ready(i) " op(i) = ReadFinal * LV, llocal(i)] := data(w);
(3w € GIB : legal FinalWrite(i, w)) LIB,(;) := delete(LIBy), 1);
writeFinal Ji € LIBy(; : ready(i) " op(i) = WriteFinal if (useLocal(1))
i.data := LV [local(i)];
end;
GIB := append(GIB,i);
LIB, ;) = delete(LIB,), i);
freeze Ji € LIBy(;) : ready(i) " op(i) = Freeze GIB := append(GIB, 1);
LIBt(Z) = delete(LIBt(i), i);
Table 1: Transition Table
2nd = Read Write | Lock Unlock | Read Write | Read Write Freeze
1st |} Normal Normal Volatile Volatile | Final Final
Read Normal no diffVar no no no no no no no
Write Normal no yes no no no no no no no
Lock no no no no no no no no no
Unlock no yes no no no no no no no
Read Volatile no no no no no no no no no
Write Volatile no yes no no no no no no no
Read Final no yes no no no no no no no
Write Final no yes no no no no no no no
Freeze no no no no no no no no no

Table 2: The Bypassing Table (Table BYPASS)

10

Finally, a special Freeze instruction for every final field v is added at the end of the constructor that
initializes v to indicate v has been frozen.

5.6 Initial Conditions

Initially, instructions from each thread are added to the local instruction buffers according to their original
program order. The useNew fields are set to false. GIB is initially cleared. Then for every variable v, a
write instruction w;,;; with the default value of v is added to GIB. A special thread ID t;,;; is assigned in
Winit- Finally, the count fields in LK are set to 0.

After the abstract machine is set up, it operates according to the transition table specified in Table 1.
The conditions and actions corresponding to memory instructions are defined as events in the transition
table. Our notation based on guarded commands has been widely used in architectural models [23], making
it familiar to many hardware designers.

5.7 Ordering Rules

The execution of an instruction 7 is only allowed when either all the previous instructions in the same thread
have been completed or 7 is permitted to bypass previous pending instructions according to the memory
model and local data dependency. This is enforced by condition ready, which is required by every event in
the transition table.

Condition ready consults the bypassing table BYPASS and guarantees that the execution of an instruction
would not violate the ordering requirements from the memory model. The BYPASS table as shown in Table 2
specifies the ordering policy between every pair of instructions. An entry BYPASS[op1][op2] indicates whether
an instruction with type op2 can bypass a previous instruction with type opl, where the value yes permits
the bypassing, the value no prohibits it, and the value diffVar allows the bypassing only if the the variables
operated by the two instructions are different and not aliased. JMMyp specifies that within each thread
operations are usually done in their original order. The exception is that writes may be done presciently.
The straightforward implementation of UMM follows the same guideline by only allowing normal write
instructions to bypass certain previous instructions as shown in Table 2. The equivalence proof in the
Appendix is based on Table 2. A more relaxed bypassing policy can also be deduced, which is discussed in
Section 5.12.

In addition to the ordering properties set by the memory model, the data dependency imposed by the
usage of local variables also need to be obeyed. This is expressed in condition local Dependent. The helper
function isWrite(i) returns true if the operation of 4 is WriteNormal, WriteVolatile, or WriteFinal. Similarly,
isRead(i) returns true if the operation of i is ReadNormal, ReadVolatile, or ReadFinal. These operation types
are defined with respect to the global variables in the instructions. A read operation on a global variable
actually corresponds to a write operation on a local variable.

Condition 1 rea,dy(i) =
~3j € LIBy;) : pe(j) < pe(i) » (local Dependent(i, j) ¥
BYPASS[op(j)][op(i)] = no ¥ BYPASS[op(j)][op(:)] = diff Var " var(j) = var(i))

Condition 2 localDependent(i, Jj) =
t(j) = t(z) » local(j) = local (i) "
(isWrite(i) " useLocal(i) " isRead(j) V
1sWrite(j) useLocal(j) " isRead(i) v
isRead(i) ™ isRead(j))

5.8 Observability Rules

A write or a synchronization instruction carries out actions to update the global state of the abstract
machine. The state is observed by a read instruction that returns the value previously set by an eligible
write instruction. Besides the ordering rules, the criteria of choosing legal return values is another critical
aspect of a memory model.

11

The synchronization mechanism used by JMMyp plays an important role in selecting legal return values.
This is formally captured in condition synchronized. Instruction i1 can be synchronized with a previous
instruction 2 via a release/acquire process, where a lock is first released by ¢(i2) after i2 is issued and later
acquired by t(il) before il is issued. Release can be triggered by an Unlock or a WriteVolatile instruction.
Acquire can be triggered by a Lock or a ReadVolatile instruction.

Condition 3 synchronized(il, i2) <=
3l,u € GIB : (op(l) = Lock " op(u) = Unlock " lock(l) = lock(u) v
op(l) = ReadVolatile " op(u) = WriteVolatile * var(l) = var(u)) "
t(l) =t(i1) N (t(u) = t(12) Y t(12) = tina) "
time(i2) < time(u) ™ time(u) < time(l) ™ time(l) < time(il)

The synchronization mechanism follows Location Consistency. It requires an ordering relationship as
captured in condition LC'Order, which can be established if two instructions are from the same thread or
if they are synchronized. This ordering relationship is transitive, i.e., ¢1 and 2 can be synchronized by a
sequence of release/acquire operations across different threads. Therefore, LCOrder is recursively defined.

Condition 4 LCOrder(il, i2) <
((#(i1) = t(42) ¥ t(i2) = tinit) " pe(il) > pe(i2) » var(il) = var(i2)) v
synchronized(il,i2) v
(3’ € GIB : time(i') > time(i2) » time(i') < time(il) » LCOrder(il,7) » LCOrder(i,i2))

Condition legal NormalWrite(r,w) defines whether an instruction w is an eligible write for the read
request r. w provides a legal return value only if there does not exist another write w’ on the same variable
between r and w such that r is ordered to w’ and w’ is ordered to w following LCOrder.

Condition 5 legalNormalWrite(r, w) <=
op(w) = WriteNormal " var(w) = var(r)
("3w’" € GIB : op(w’) = WriteNormal * var(w’) = var(r) » LCOrder(r,w") » LCOrder(w',w))

A

5.9 Non-Atomic Volatiles

Conditions legalOldWrite(r, w) and legal NewWrite(r, w) are used to specify the semantics of non-atomic
volatile write operations. Suppose the value last written to a volatile variable is set by a WriteVolatile
instruction w. After another write instruction w’ is performed on the same variable, a ReadVolatile instruction
from thread ¢(w’) must always observe the new value set by w’ but other threads can get the value either
from w’ or w. However, once a thread sees the new value set by w’, that thread can no longer see the
previous value set by w. A special tag useNew in the ReadVolatile instruction is used to indicate whether the
new value has been observed by the reading thread. Furthermore, the new value set by w’ is “committed”
if the writing thread ¢t(w’) has completed any other instructions that follow w’ in thread ¢(w’).

According to condition legal NewWrite(r,w), any WriteVolatile instruction w can be an legal write if it
is the most recent write for that variable. Condition legalOldW rite(r,w) specifies that w can also be a legal
result if (a) w is the second most recent WriteVolatile instruction on the same variable, (b) the most recent
write has not been “committed” by its writing thread, and (c) the new value has not been observed by the
reading thread.

Condition 6 legalNewWrite(r, w) <
op(w) = WriteVolatile " var(w) = var(r)
(T3w’" € GIB : op(w') = WriteVolatile " var(w') = var(r) * time(w') > time(w))

A

Condition 7 legalOldWrite(r, w) <~

op(w) = WriteVolatile " var(w) = var(r) * t(w) # t(r) "

(Fil1 € GIB : op(il) = WriteVolatile " var(il) = var(r) * time(il) > time(w) "

(7342 € GIB : op(:2) = WriteVolatile " var(i2) = var(r) ™ time(i2) > time(w) " time(i2) # time(il1)) »
(733 € GIB : t(i3) = t(i1) " pc(i3) > pe(il))) »

(7344 € GIB : op(i4) = ReadVolatile " t(i4) = ¢(r) " var(id) = var(r) * time(i4) > time(w) " useNew(i4))

12

5.10 Final Variable Semantics

In Java, a final field can either be a primitive value or a reference to another object or array. When it is a
reference, the Java language only requires that the reference itself can not be modified in the Java code after
its initialization but the elements it points to do not have the same guarantee. Also, there does not exist a
mechanism in Java to declare array elements as final fields.

As mentioned in Section 4.2.5, JMMyp proposes to add a special requirement for the elements pointed
by a final field to support an immutable object that uses an array as its field. This requirement is that
if an element pointed by a final field is initialized before the final field is initialized, the default value of
this element must not be observable after normal object construction. JMMyp uses a special mechanism to
“synchronize” initialization information from the constructing thread to the final reference and eventually
to the elements contained by the final reference. However, without explicit support for immutability from
the Java language, this mechanism makes the memory semantics substantially more difficult to understand
because synchronization information needs to be carried by every variable. It is also not clear how the exact
semantics can be efficiently implemented by a Java compiler or a JVM since it involves runtime reachability
analysis.

While still investigating this issue and trying to find the most reasonable solution, we implement a
straightforward definition for final fields in the current UMM. It is slightly different from JMMpyp in that
it only requires the final field itself to be a constant after being frozen. The observability criteria for final
fields is shown in condition legal FinalWrite. The default value of the final field (when t(w) = t;n) can
only be observed if the final field is not frozen. In addition, the constructing thread can not observe the
default value after the final field is initialized.

Condition 8 legalFinalWrite(r, w) <=
op(w) = WriteFinal " var(w) = var(r)
(t(w) # tini ¥
(t(w) = tins ~ (73il € GIB : op(il) = Freeze " var(il) = var(r)) »
(73i2 € GIB : 0p(i2) = WriteFinal * var(i2) = var(r) " t(i2) = t(r))))

A

5.11 Control Dependency Issues

The bypassing policy specified in the BYPASS table dictates ordering behaviors of the memory operations on
global variables. Thread local data dependency is formally defined in local Dependent. In addition, thread
local control dependency on local variables should also be respected to preserve the meaning of the Java
program. However, how to handle control dependency is a tricky issue. A compiler might be able to remove
a branch statement if it can determine the control path through program analysis. A policy needs to be set
regarding what the criteria is to make such a decision.

JMMypp identifies some special cases and adds two more read actions, guaranteedRedundantRead and
guaranteedReadOfWrite which can suppress prescient writes to enable redundant load elimination and forward
substitution under specific situations. For example, the need for guaranteedRedundantRead is motivated by
a program shown in Figure 5. In order to allow r2 = a to be replaced by r2 = r1 in Thread 1, which would
subsequently allow the removal of the if statement, r2 = a must be guaranteed to get the previously read
value.

Initially, a ==b == 0

Thread 1 Thread 2
rl = a; r3 = b;
r2 = a; a=r3;
if(rl ==r2)

b=2;

Finally, can rl == 12 == 13 == 27

Figure 5: Motiation for guaranteedRedundantRead

Although we could follow the same style by adding similar events in UMM, we do not believe it is
a good approach to specify a memory model by enumerating special cases for every optimization need.

13

2nd = Read Normal | Write Normal | Lock Unlock | Read Volatile | Write Volatile
1st |}

Read Normal yes diff Var yes no yes no
Write Normal diffVar yes yes no yes no

Lock no no no no no no
Unlock yes yes no no no no
Read Volatile no no no no no no
Write Volatile yes yes no no no no

Table 3: The Relaxed Bypassing Table

Therefore, we propose a clear and uniform policy regarding control dependency: the compiler may remove
a control statement only if the control condition can be guaranteed in every possible execution, including
all interleaving results caused by thread interactions. This approach should still provide plenty of flexibility
for compiler optimizations. If desired, global data flow analysis may be performed. UMM offers a great
platform for such analysis. One can simply replace a branch instruction with an assertion. Then the model
checker can be run to verify whether the assertion might be violated due to thread interactions.

5.12 Relaxing Ordering Constraints

Although JMMyp does not explicitly relax ordering rules except for prescient writes, possible reordering
can be inferred. As long as the reordering does not result in any illegal execution, an implementation is free
to do so. In UMM, these effects can be directly described in the BYPASS table to provide a more intuitive
view about what is allowed by the memory model. A high performance threading environment requires
efficient supports from many components, such as compilation techniques, cache protocol designs, memory
architectures, and processor pipelining. Because more liberal ordering rules provide more optimization
opportunities at each intermediate layer, it is desired to have a clear view about the allowed reordering.

Table 3 outlines the relaxed bypassing policy for memory instructions except for final variable operations.
It does not cover all possible relaxations but it illustrates some of the obvious ones. A ReadNormal instruction
is allowed to bypass a previous WriteNormal instruction operated on a different variable or a ReadNormal
instruction. Because a presciently performed read instruction would get a value from a subset of the legal
results, its return data is still valid. A Lock instruction can bypass previous normal read/write instructions
and normal read/write instructions can bypass a previous Unlock instruction. This is motivated by the fact
that it is safe to move normal instructions into a synchronization block since it still generates legal results.
This relaxation also applies to volatile variable operations which have similar synchronization effects on
normal variables.

5.13 Mury Implementation

The UMM is implemented in Murp [24], a description language with a syntax similar to C that enables
one to specify a transition system based on guarded commands. In addition, Mury is also a model checking
system that supports exhaustive state space enumeration. This makes it an ideal tool for verifying our shared
memory system.

Our Murp program consists of two parts. The first part implements the formal specification of JMMyp,
which provides a “black box” that defines Java thread semantics. The transition table in Table 1 is specified
as Mury rules. Ordering rules and observability rules are implemented as Mury procedures. The second part
comprises a suite of test cases. Each test program is defined by specific Mury initial state and invariants. It
is executed with the guidance of the transition system to reveal pivotal properties of the underlying model.
Our system can detect deadlocks and invariant violations. To examine test results, two techniques can be
applied. The first one uses Mury invariants to specify that a particular scenario can never occur. If it does
occur, a violation trace can be generated to help understand the cause. The second technique uses a special
“thread completion” rule, which is triggered only when all threads are completed, to output all possible final
results. Our executable specification is a configurable system that enables one to easily set up different test

14

programs, abstract machine parameters, and memory model properties. Running on a PC with a 900 MHz
Pentium IIT processor and 256 MB of RAM, most of our test programs terminate in less than 1 second.

6 Analysis of JMMyp

By systematically exercising JMMyp with idiom-driven test programs, we are able to gain a lot of insights
about the model. Since we have developed formal executable models for both JMMcgryr [18] and JMMyp,
we are able to perform a comparison analysis by running the same test programs on both models. This can
help us understand subtle differences between them. As an ongoing process of evaluating the Java Memory
Models, we are continuing to develop more comprehensive test programs to cover more interesting properties.
In this section we highlight some of the interesting findings based on our preliminary results.

6.1 Ordering Properties
6.1.1 Coherence

JMMypp does not require Coherence. This can be detected by the program shown in Figure 6. If r1 = 2 and
r2 = 1 is allowed, the two threads have to observe different orders of writes on the same variable a, which
violates Coherence. For a normal variable a, this result is allowed by JMMyp but prohibited by JMMcgp.

Initially, a == 0

Thread 1 | Thread 2
a=1; a = 2;
rl = a; r2 = a;
Finally,
can it result in r1 == 2 and 2 == 17

Figure 6: Coherence Test

6.1.2 Write Atomicity for Normal Variables

JMMypp does not require Write Atomicity. This can be revealed from the test in Figure 7. For a normal
variable a, the result in Figure 7 is allowed by JMMypyp but forbidden by JMMcgrr. Because the CRF
model uses the shared memory as the rendezvous point between threads and caches, it has to enforce Write
Atomicity.

Initially, a == 0

Thread 1 | Thread 2
a=1; a = 2;
rl = a; r3 = a;
r2 = a; rd = a;
Finally,
can it result inrl ==1,r2==2,r3==2, and r4d == 17

Figure 7: Write Atomicity Test

6.2 Synchronization Mechanism

JMMyp follows Location Consistency, which does not require Coherence. When thread ¢ issues a read
instruction, any previous unsynchronized writes on the same variable issued by other threads can be observed,
in any order. Therefore, JMMyp is strictly weaker than Lazy Release Consistency. Without synchronization,
thread interleaving may result in very surprising results. An example is shown in Figure 8.

15

Initially, a == 0

Thread 1 | Thread 2
a=1; rl = a;
a = 2; r2 = a;
r3 = a;
Finally,
can it result in r1 == r3 == 1 and r2 == 27

Figure 8: Legal Result under Location Consistency

6.3 Constructor Property

The constructor property is studied by the program in Figure 9. Thread 1 simulates the constructing
thread. It initializes the field before releasing the object reference. Thread 2 simulates another thread trying
to access the object field without synchronization. Membarl and Membar2 are some hypothetic memory
barriers that prevents instructions from acrossing them, which can be easily implemented in our program
by simply setting some test specific bypassing rules. This program essentially simulates the construction
mechanism used by JMMcgrr, where Membarl is a special EndCon instruction indicating the completion of
the constructor and Membar2 is the data dependency enforced by program semantics when accessing field
through reference. If field is a normal variable, this mechanism works under JMMcggry but fails under
JMMpp. In JMMyp the default write to field is still a valid write since there does not exists an ordering
requirement on non-synchronized writes. However, if field is declared as a final variable and the Freeze
instruction is used for Membarl, Thread 2 would never observe the default value of field if reference is
initialized.

This illustrates the different strategies used by the two models for preventing premature releases during
object construction. JMMcgr treats all fields uniformly and JMMyp only guarantees fully initialized fields
if they are final or pointed by final fields.

Initially, reference == field ==

Thread 1 Thread 2
field = 1; rl = reference;
Membarl; Membar2
reference = 1; | r2 = field,
Finally,
can it result in 71 == 1 and r2 == 07

Figure 9: Constructor Test

6.4 Subtle Mistakes in JMMp

Using our verification approach, several subtle yet critical specification mistakes in JMMyp are revealed.

6.4.1 Non-Atomic Volatile Writes

One of the proposed requirements for non-atomic volatile write semantics is that if a thread ¢ has observed
the new value of a volatile write, it can no longer observe the previous value. In order to implement this
requirement, a special flag readT'hisVolatile; (. info,) is initialized to false in initVolatileWrite [3, Figure
14]. When the new volatile value is observed in readVolatile, this flag should be set to true to prevent the
previous value from being observed again by the same thread. However, this critical step is missing and
the flag is never set to true in the original proposal. This mistake causes inconsistency between the formal
specification and the intended goal.

16

6.4.2 Final Semantics

A design flaw for final variable semantics has also been discovered. This is about a corner case in the
constructor that initializes a final variable. The scenario is illustrated in Figure 10. After the final field a is
initialized, it is read by a local variable in the same constructor. The readFinal definition [3, Figure 15] would
allow r to read back the default value of a. This is because at that time a has not been “synchronized” to
be known to the object that it has been frozen. But the readFinal action only checks that information from
the kF set which is associated with the object reference. This scenario compromises the program correctness
because data dependency is violated.

class foo {
final int a;

public foo() {

int r;
a =1;
r = a;
// can r == 07

Figure 10: Flaw in final variable semantics

7 Conclusions

As discussed in earlier sections, the importance of a clear and formal JMM specification is being increasingly
realized. In this paper we have presented a uniform specification framework for language level memory
models. This permits us to conduct formal analysis and pave the way towards future studies on compiler
optimization techniques in a multithreaded environment. Comparing to traditional specification frameworks,
UMM has several noticeable advantages.

1. It provides strong support for formal verification. This is accomplished by using an operational ap-
proach to describe memory activities, enabling the transition system to be easily integrated with a
model checking tool. Formal methods can help one to better understand the subtleties of the model by
detecting some corner cases which would be very hard to find through traditional simulation techniques.
Because the specification is executable, the memory model can be provided to the users as a “black
box” and the users are not necessarily required to understand all the details of the memory model. In
addition, the mathematical rules in the transition table makes the specification more rigorous, which
eliminates any ambiguities.

2. UMM addresses the special need from a language level memory model by reducing the gap between
memory semantics and program semantics. This enables one to study the memory model implications
in the context of data flow analysis. It offers the programmers, compiler writers, and hardware designers
an end-to-end view of the memory consistency requirement.

3. The model is flexible enough to enforce most desired memory properties. Many existing memory
models are specified in different notations and styles. This is due to the fact that the specification
is often influenced by the actual architecture of its implementation and there lacks a uniform system
that is flexible enough to describe all properties in a shared memory system. In UMM, any completed
instructions that may have any future visibility effects are stored in the global instruction buffer along
with the time stamps of their occurrence. This allows one to plug in different selection algorithms to
observe the state. In a contrast to most processor level memory models that use a fixed size main
memory, UMM applies a global instruction buffer whose size may be increased if necessary, which is
needed to specify relaxed memory models that require to keep a trace of multiple writes on a variable.

17

The abstraction mechanism in UMM provides a feasible common design interface for any executable
memory model with all the internal data structures and implementation details encapsulated from the
user. Different ordering rules and observability rules can be carefully developed in order to enable
a user to select from a “menu” of memory properties to assemble a desired formal memory model
specification.

4. The architecture of UMM is very simple and intuitive. The devices applied in UMM, such as instruction
buffers and arrays, are standard data structures that are easy for one to understand. Similar notations
have been used in processor memory model descriptions [16] [23], making this model intuitive to
hardware designers. Some traditional frameworks use multiple copies of the shared memory modules
to represent non-atomic operations [11]. In UMM, these multiple modules are combined into a single
global buffer which substantially simplifies state transitions.

Our approach also has some limitations. Based on the Model Checking techniques, it is exposed to the
state explosion problem. Effective abstraction and slicing techniques need to be applied in order to use UMM
to verify commercial multithreaded Java programs. Also, our UMM prototype is still under development.
The optimal definition for final variables needs to be identified and specified.

A reliable specification framework may lead to many interesting future works. Currently people need to
develop the test programs by hand to conduct verifications. To automate this process, programming pattern
annotation and recognition techniques can play an important role.

Traditional compilation techniques can be systematically analyzed for JMM compliance. In addition,
the UMM framework enables one to explore new optimization opportunities allowed by the relaxed memory
consistency requirement.

Architectural memory models can also be specified in UMM. Under the same framework, memory model
refinement analysis can be performed to aid the development of efficient JVM implementations.

Finally, we plan to apply UMM to study the various proposals to be put forth by the Java working
group in their currently active discussions regarding Java shared memory semantics standardization. The
availability of a formal analysis tool during language standardization will provide the ability to evaluate
various proposals and foresee pitfalls.

Acknowledgments

We sincerely thank all contributors to the JMM mailing list for their insightful and inspiring discussions for
improving the Java Memory Model.

References

[1] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification, chapter 17. Addison-Wesley,
1996.

[2] William Pugh. Fixing the Java Memory Model. In Java Grande, pages 89-98, 1999.

[3] Jeremy Manson and William Pugh. Semantics of multithreaded Java. Technical report, UMIACS-TR-
2001-09.

[4] Jan-Willem Maessen, Arvind, and Xiaowei Shen. Improving the Java Memory Model using CRF. In
OOPSLA, pages 1-12, October 2000.

[5] Java Specification Request (JSR) 133: Java Memory Model and Thread Specification Revision.
http://jcp.org/jsr/detail /133.jsp.

[6] The Java Memory Model mailing list.
http://www.cs.umd.edu/ pugh/java/memoryModel/archive.

[7) X. Shen, Arvind, and L. Rudolph. Commit-Reconcile & Fences (CRF): A New Memory Model for
Architects and Compiler Writers. In the 26th International Symposium On Computer Architecture,
Atlanta, Georgia, May 1999.

18

8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]
[17]

[18]

Leslie Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs.
IEEFE Transactions on Computers, C-28(9):690-691, 1979.

S. V. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial. IEEE Computer,
29(12):66-76, 1996.

Pete Keleher, Alan L. Cox, and Willy Zwaenepoel. Lazy release consistency for software distributed
shared memory. In the 19th International Symposium of Computer Architecture, pages 13-21, May 1992.

Kourosh Gharachorloo. Memory consistency models for shared-memory multiprocessors. Technical
report, CSL-TR-95-685.

Guang Gao and Vivek Sarkar. Location consistency - a new memory model and cache consistency
protocol. Technical report, 16, CAPSL, University of Delaware, February, 1998.

William W. Collier. Reasoning about Parallel Architectures. Prentice-Hall, 1992.

Kourosh Gharachorloo, Sarita V. Adve, Anoop Gupta, John L. Hennessy, and Mark D. Hill. Specifying
system requirements for memory consistency models. Technical report, CSL-TR93-594.

D. Dill, S. Park, and A. Nowatzyk. Formal specification of abstract memory models. In the 1993
Symposium for Research on Integrated Systems, pages 38-52, March 1993.

D. Weaver and T. Germond. The SPARC Architecture Manual Version 9. Prentice Hall, 1994.

Seungjoon Park and David L. Dill. An executable specification and verifier for Relaxed Memory Order.
IEEFE Transactions on Computers, 48(2):227-235, 1999.

Yue Yang, Ganesh Gopalakrishnan, and Gary Lindstrom. Analyzing the CRF Java Memory Model. In
the 8th Asia-Pacific Software Engineering Conference, pages 21-28, 2001.

Abhik Roychoudhury and Tulika Mitra. Specifying multithreaded Java semantics for program verifica-
tion. In International Conference on Software Engineering, 2002.

A. Gontmakher and A. Schuster. Java consistency: Non-operational characterizations for Java memory
behavior. In the Workshop on Java for High-Performance Computing, Rhodes, June 1999.

Philip Bishop and Nigel Warren. Java in Pratice: Design Styles and Idioms for Effective Java, chapter 9.
Addison-Wesley, 1999.

Jeremy Manson and William Pugh. Core semantics of multithreaded Java. In ACM Java Grande
Conference, June 2001.

Rob Gerth. Introduction to sequential consistency and the lazy caching algorithm. Distributed Com-
puting, 1995.

David Dill. The Mure verification system. In 8th International Conference on Computer Aided Verifi-
cation, pages 390-393, 1996.

19

Appendix: Equivalence Proof

Let the multithreaded Java semantics specified in Section 5 be referred as JMMuyyni. We present the
equivalence proof between JMMypny and JMMyp based on our straightforward implementation using the
bypassing table shown in Table 2. For the sake of brevity, we only outline the equivalence proof for the core
subset of the memory model including instructions ReadNormal, WriteNormal, Lock, and Unlock.

JMMymy and JMMyp are equivalent if and only if the execution traces allowed by both models are the
same. This is proven with two lemmas. We first demonstrate that both models impose the same ordering
restrictions for issuing instructions within each thread. We then prove that the legal values resulted from
the ReadNormal instruction in JMMuypn is both sound and complete with respect to JMMyp.

Lemma 1 Instructions in each thread are issued under the same ordering rules by JMMuynm and JMMyp.

Since prescient writes are the only ordering relaxation explicitly allowed by both models, it is sufficient
to prove that the ordering requirement on prescient writes are the same.

1. Soundness of JMMuynm: let w be any WriteNormal instruction allowed by JMMuyym, we show that
it must satisfy the conditions in JMMyp, which is enforced by the assertion w ¢ previousReads; in
performWrite. There are only two ways to add w to previousReads;.

(a) w is read from the same thread before where w would normally occur.
This can not happen in JMMuynym. Because a write instruction w can not bypass a previous
read instruction r issued by the same thread if they operate on the same variable, r would never
observe a later write instruction from the same thread.

(b) w is added to previousReadsy by another thread t' and then synchronized to thread t(r) before r
is 1ssued.

To make this happen, there must exists an acquire operation in ¢(r) that happens between where
w is issued and where w would normally occur. This is not allowed in JMMypny since w is not
allowed to bypass a previous acquire operation.

2. Completeness of JMMynm: let w be any normal write instruction allowed by JMMyp, we prove it is
also permitted by JMMypm-

Assume w is prohibited by JMMuynn. According to conditions of the WriteNormal instruction in
the transition table Table 1, w can only be prohibited when ready(w) = false. Therefore, w must
have bypassed a previous instruction prohibited by the BYPASS table. The only reordering that is
forbidden for a normal write instruction is the bypassing of a previous lock instruction or a previous
read instruction operated on the same variable. The former case is prohibited in JMMyp;p by the mutual
exclusion requirement of a lock instruction. The latter case is also forbidden by JMMyp because the
assertion in performWrite would have failed if a readNormal instruction were allowed to obtain a value
from a later write instruction in the same thread.

Lemma 2 The normal read instructions from both models generate the same legal results.

1. Soundness of JMMuynm: if w is a legal result for a read instruction r under JMMuyn, w is also legal
in JMMMP

We prove that w satisfies all requirements according to the definition of the readNormal operation
defined in JMMyp:

readNormal(Variable v) <= Choose (v, w, g) from allWrites(v)
— uncommitted; — overwritteny
previousReads; + = (v, w, g)
return w

20

(a)

(b)

The result is from allWrites(v)
This requirement is guaranteed by var(w) = wvar(r) and op(w) = WriteNormal in condition
legal NormalWrite(r, w).

w ¢ uncommitted,

Assume w € uncommitted;. To make this happen, w must be a write instruction that follows r
in program order but is observed by r. This is prohibited by JMMuyym because w is not allowed
to bypass r in this situation.

w & overwritten,

Assume w € overwritten;. w can only be added to overwritten; in two ways.

i. A write w’, which is on the same variable and from the same thread, is performed with its
corresponding performWrite operation. And w € previous at that time.

In order to have w exist in previous; when w’ is performed, w’ must be performed after w is
performed. Therefore, w is not the most recent write, which is illegal according to condition
legal N ormalWrite(r,w).

il. w is added to overwritteny by another thread t' and later acquired by t(r) via synchronization.

w can only be added to overwritten, by thread ¢’ when #' performs another write w’ on
the same variable and w has been added to previous; at that time. Furthermore, this must
occur before the release operation issued in #' which is eventually acquired by ¢. There-
fore, LCOrder(w',w) = true and LCOrder(r,w’) = true, which is prohibited in function
legal NormalWrite(r, w) by JMMuynm.

2. Completeness of JMMypv: if w is a legal result for a read instruction r in JMMyp, w is also legal in
JMMUMM

Assume w is prohibited by JMMuypnn. According to the conditions for the readNormal event in Table 1,
one of the following reasons must be true.

(a)

ready(r) = false

This indicates that there exists at least one pending instruction ¢ in the same thread such that ¢
precedes r. Because JMMyp does not issue a read instruction out of program order, this scenario
would not occur in JMMyp either.

legal NormalWrite(r,w) = false

Condition legal NormalWrite(r,w) only fails when w is not the most recent previous write on
the same variable in a path of a sequence of partially ordered writes according to LCOrder. This
is also forbidden by JMMyp.

21

