
1

An Interactive Parallel
Multiprocessor Level-Set Solver
with Dynamic Load Balancing

Suyash P. Awate and Ross T. Whitaker

UUCS-05-002

School of Computing
University of Utah

Salt Lake City, UT 84112 USA

Abstract

Level-set methods, which deform implicitly defined surfaces using partial differential equa-
tions, have applications in a wide range of fields including vision, image processing, visu-
alization, graphics, and computational physics. We propose a novel interactive parallel
scalable level-set algorithm, based on a narrow band method, which incorporates dynamic
load balancing. We show results on a distributed-shared-memory SGI multiprocessor. The
interactive update rates combined with real-time visualization allow users to dynamically
control the motion of the level set surface.



An Interactive Parallel Multiprocessor Level-Set

Solver with Dynamic Load Balancing

Suyash P. Awate, Ross T. Whitaker

Scientific Computing and Imaging Institute,

School of Computing

University of Utah

March 8, 2004

Abstract

Level-set methods, which deform implicitly defined surfaces using par-

tial differential equations, have applications in a wide range of fields in-

cluding vision, image processing, visualization, graphics, and computa-

tional physics. We propose a novel interactive parallel scalable level-set

algorithm, based on a narrow band method, which incorporates dynamic

load balancing. We show results on a distributed-shared-memory SGI

multiprocessor. The interactive update rates combined with real-time vi-

sualization allow users to dynamically control the motion of the level set

surface.

1 Introduction

Level-set methods [17, 14], which deform implicitly defined surfaces using partial
differential equations, have applications in wide ranging fields including com-
puter vision [8, 22, 11], image processing [24, 13, 20, 3], visualization [23, 19],
graphics [4, 18], and computational physics [17, 14]. Level-set methods form a
powerful tool in modeling surface deformations because they avoid many prob-
lems associated with deformations using parametric surfaces. For instance, the
deformation of parametric surfaces often requires frequent regularization of sur-
face elements without which the deterioration of the surface can lead to numer-
ical inaccuracies and instabilities [14]. Also handling topological changes like
merging and splitting of parametrically represented surfaces can be difficult.

The level-set method represents the deforming surface using a scalar func-
tion, which we will call the embedding, whose domain is the same as the range
of the associated surface. The motion of the surface is computed by solving a
corresponding partial differential equation (PDE) on the embedding. A straight-
forward strategy for computing the surface deformation is to solve the level-set
PDE on the entire embedding, and thus the nested family of level sets evolve
simultaneously. If one is interested only in a single level set (i.e. a single curve
or surface), this strategy is inefficient, because each level set evolves indepen-
dently from the others. The narrow band approach [1] exploits this fact and
solves the level-set PDE in a band of grid points around the level set of inter-
est, generating a computational speedup of an order of magnitude. Whitaker

1



[22] proposed the sparse-field method, which restricts the computational domain
to several layers around the designated level set. The layers are visited via a
linked-list data structure, and the domain is updated as the surface moves. This
approach, and related approach of [15], have a computational complexity like
that of parametric surfaces, which is proportional to the area of the surface
rather than the size of the space in which the surface is embedded. In spite of
these advances, most level-set applications do not run at interactive rates which
limits their application to real world problems.

A common technique of speeding up the computation of PDEs is to ex-
ploit the inherent, fine-grained, parallelism in finite difference schemes. Paral-
lel versions of such algorithms can be implemented on clusters of computers,
multiprocessor/shared-memory systems, or specialized hardware such as graph-
ics processing units [10, 9].

In this paper we introduce a parallel algorithm for the sparse-field method for
a distributed-shared-memory multiprocessor. The dynamic nature of the level
set and the corresponding computational domain calls for careful dynamic load
balancing. We propose a method which is simple yet effective. The algorithm
is demonstrated on an SGI Origin 3000. The code is written within the Insight
Toolkit (ITK) [6], which is an open-source software library for multidimensional
image processing, segmentation, and registration. The algorithm is implemented
as a solver within ITK as part of a general, modular framework that the toolkit
provides for solving PDEs. This paper also shows results from an interactive
application, using ITK and the proposed solver, that allows users to perform
level-set segmentations of volume data sets.

The organization of the remainder of paper is as follows. In Section 2 we
describe some recent papers on the computational aspects of level sets. Sec-
tion 3 describes the sparse-field algorithm, which is the basis for this paper, in
some detail. Later in Section 4 we talk about the various issues in parallelizing
the algorithm on multiprocessors, such as information transfer and synchro-
nization between threads, and then give the details of the parallel version of the
sparse-field algorithm. Section 5 gives some details about the SGI Origin 3000
multiprocessor and describes several important aspects of the implementation
relating to this particular architecture. Section 6 describes results of experi-
ments with our multiprocessor implementation, and Section 7 summarizes the
paper and our conclusions about this work.

2 Related Work

The related work to this paper covers several different areas. The first is the
development of the narrow-band algorithm [1] and related approaches [22, 15].
The narrow-band algorithm restricts the computation of the level-set PDE to a
band of 10–20 grid points around the level set of interest. Grid points outside
the band are set to a constant value and therefore do not get updated, as
shown in Figure 1. All grid points within the band undergo the same level-
set update equation. Where appropriate, the velocity is extended from the
position of the zero-level set (designated curve or surface) to the rest of the
computational domain using nearest distance. Special care must be taken at
the edge of the domain to ensure that the boundary conditions are appropriate.
As the level set approaches the edge of the computational domain, the solver

2



stops the Euler updates, computes the current position of the level set (to sub-
grid accuracy), and rebuilds the embedding within a new computational domain
centered around the current surface. A trade-off exists between the size of the
band and frequency at which the evolving surface requires a reinitialization of
the narrow band.

The sparse-field approach [22] performs computations on a narrow domain
that is one cell wide. A narrow band, precisely of the width needed to compute
the derivatives, is maintained, via a distance transform as the surface evolves.
Thus, it is essentially a narrow band method in which the domain is reinitialized
after every Euler update. This reinitialization is made computationally feasible
via an approximation to the signed distance transform. Keeping track of this
narrow band at each iteration requires maintaining lists of neighborhood points
in layers. The sparse-field method computes the velocity of the zero-level set
using a first-order approximation to its position from the updated grid points.
Thus, there is neither an extension of velocity required nor any boundary sta-
bility issues, unlike the narrow-band method. Another related work is that of
Peng et al. [15]. They also compute solutions of the PDE on a very narrow
band. They maintain an explicit list of points in the domain but update the
distance transform, at each iteration, with another PDE.

The proposed algorithm addresses a computational issue common to all the
above algorithms. That is, in the context of parallel implementations the irreg-
ular and dynamic nature of the computational domain presents some challenges
for effective load balancing. It also addresses some particular aspects of the
sparse-field method (and that of [15]), which deal with the maintaining of dis-
tributed versions of the dynamic data structures that describe the computational
domain.

Another area of related work is that of adaptive methods for computing
level-set solutions [2, 16]. These methods achieve some computational advan-
tage by solving for coarse resolutions in regions of the domain where there is a
low density of level sets or where the level sets are relatively flat. While these
approaches are promising, they have yet to achieve the level of speedup asso-
ciated with multiprocessor solutions combined with narrow-band methods. In
this paper we demonstrate the proposed algorithm for solutions at fixed resolu-

(a) (b) (c)

Figure 1: (a) A deforming 1D surface (b) The narrow band around the level
set of interest (c) A minimal-width band around the level set in the sparse-field
approach

3



tion, but it has implications for adaptive methods, which could result in further
gains. The use of parallelism with adaptive resolution schemes is beyond the
scope of this paper and is a subject of ongoing research.

Finally, the work of Lefohn et. al. [9, 10] is also relevant. They use a graph-
ics processing unit (GPU) to achieve 10–15× speedups over the single-processor,
sparse-field algorithm. They treat the graphics processor as a parallel vector
computer (with some special limitations). They decompose the computational
domain into tiles which are active or inactive, depending on whether or not
they contain the level set of interest. The texture-rendering engine of the GPU
processes only active tiles. Tiles are dynamically added and removed from the
active list through a hierarchical mechanism with support from the specialized
graphics hardware. The computational domain is updated, as in [15], with an
additional PDE that pushes solutions toward a distance transform. There are,
however, inherent limitations to the GPU approach. First, the size of the prob-
lem is restricted by size of the texture memory in state-of-the-art GPUs. This
capacity is increasing, but it is still a fraction of the RAM available in a modern
multiprocessor machine. Also, the computational speedup comes at the cost
of a very restricted set of capabilities that must be very carefully hand-crafted
for the GPU. Thus, the GPU solution does not extend easily to problems such
as surface reconstruction [22, 21], which require more complex, heterogeneous
operations for each grid point and each Euler update. Furthermore, the compu-
tational gain of the GPU solution is limited by the progress of GPU hardware,
which is improving rapidly, but will offer only about 20× improvements over
CPUs in the near future. Thus, the generality of a scalable multiprocessor
solution is still quite an important development.

3 The Sparse-Field Algorithm

For this work we represent a deformable surface, L, as a level set of a 3D scalar
function, φ(x, t):<3 × < 7→ <. The surface, corresponding to some level set
k, is implicitly defined as L = {x|φ(x) = k}, where we assume k = 0 without
a loss of generality. Define up to be a discrete sampling of the embedding φ,
where p is the grid point at location {x, y, z}, defined on a rectilinear grid. The
minimal connected set of grid points that are closest to the level set is referred
to as the active set, and the individual elements in this set are the active points.
The neighborhood of the active set in the embedding is defined in layers, Li

for i = ±1, . . . ,±N . Here i indicates the city block distance of a neighborhood
point from the nearest active point. The positive (negative) subscripts denote
layers inside (outside) the active set. The active set could be considered as the
layer L0. We now give the sparse-field algorithm, with relevant illustrations in
Figure 2.

1. Initialize.

(a) Construct the active set L0 by determining the level set of interest.

(b) Populate the layers Li and initialize the embedding values for points
in the layers.

2. Solve the PDE on the level set.

4



(a) (b) (c) (d)

Figure 2: (a) An example using the sparse-field approach with 3 layers. The
active set (layer L0) is shown in blue color. (b) Updating the active set location
and its embedding values (c) Updating the sparse band location (layers Li)
based on the new active set location (d) Updating the embedding values for
points in the sparse band based on the embedding values of the active points

(a) For each point p in L0, compute the net force on p by summing up
the internal and external forces. The internal forces arise from the
local geometry of the level set e.g. regularization constraints. The
external forces arise from the application.

(b) Compute the time step for the PDE evolution.

3. Update the level set (and active set) location.

(a) For each active point, p, do the following:

i. Compute the net change in up and update up.
We maintain lists of grid points, called the status lists, for points
that are changing distances from the level set. These are named
Si for i = ±1, . . . ,±(N + 2).
If (up > 0.5) then insert p in S+1. Similarly, if (up < −0.5) insert
p in S−1.

4. Update the sparse band location in the embedding.

(a) For each status list Si, in the order i = ±1, . . . ,±(N + 1), do the
following:

i. For each point p on the status list Si, remove p from the layer
Li∓1 and add p to the layer Li∓2.

ii. If i 6= (N + 1) then add all neighbors of p belonging to layer Li

on the Si±1 list. If i = (N + 1) then add neighbors of p not in
any of the layers (outside the band of layers) to Si±1.

(b) For each point p on the status list S±(N+2) add p to layer L±N .

(c) Empty all status lists.

5. Update the embedding values for points in the new band.

(a) For each layer Li, in the order i = ±1, . . . ,±N , do the following:

i. For each point p in layer Li two events can happen. Either p has
some neighbors in the next inner layer Li∓1 or it has none. If

5



neighbors exist then update up based on the neighbor closest to
the active set (by approximating the distance transform). If no
neighbors exist for p then remove p from Li and if i 6= N add p

to Li±1, the next level away from the active set.

6. To continue the surface deformations go to step 2, otherwise terminate.

4 A Parallel Sparse-Field Algorithm

In this section we first discuss the various issues in parallelizing the sparse-field
algorithm on multiprocessors, concerning information transfer and synchroniza-
tion between threads, and then give the details of the parallel version of the
algorithm.

4.1 Load Balancing Issues

Maintaining a proper load balance is critical for parallel algorithms to achieve
efficient speedups. Load balancing requires distributing the level-set surface
processing among threads. We do this by partitioning the volume among the
threads by forming slabs. A slab is a piece of a rectilinear 3D grid which in-
cludes a contiguous subset of one of the indices (e.g. we use z slabs), as shown
in Figure 3. The dynamic load balancing scheme makes sure that positions and
heights of the slabs maintain a relatively equal partitioning of the work through-
out the execution of the program. Because the work done per Euler iteration
is approximately proportional to the number of points in the active set, we use
that as a metric for determining the slabs.

(a) (b) (c)

Figure 3: (a) Dynamic load balancing scheme using the active points’ distribu-
tion. The red dashed lines denote the slab boundaries. The graph represents
the cumulative distribution function of the active points lying in planes along a
chosen axis (the horizontal axis in this example). (b) Inter thread interactions
near slab boundaries during the sparse band update. Here the active set has
been updated and we see that sparse-band updates (based on the updated ac-
tive set) could originate from across the boundary. (c) Inter thread interactions
near slab boundaries during the embedding update Here we see that comput-
ing embedding values for some points, needs values at other points across the
boundary.

6



The number of active points in each x–y slice gives rise to a histogram over
z, denoted by H. The z axis is defined so that each slab resides in contiguous
memory locations (i.e. z is the slowest moving index). We discuss more about
this later in Section 5. The integral of the histogram H gives a cumulative
distribution function. We then create as many partitions in the cumulative
distribution function as the number of threads, each partition with roughly the
same number of points, as illustrated in Figure 3. The level set continuously
deforms as the algorithm proceeds, possibly creating a load imbalance. We can
detect this by maintaining a dynamic histogram data structure Hdynamic, which
reflects the latest distribution of active points in the embedding.

Based on this Hdynamic we are in a position to perform load balancing after
every Euler iteration. However, doing this would incur a significant overhead.
We observe that to maintain numerical stability the level set is not allowed to
evolve at a high speed by limiting the PDE time step [17, 14]. In fact the level
set moves at most 1 grid unit per iteration, typically moving at the rate of about
0.2 grid unit per iteration. This suggests that the load balance does not shift
significantly in one iteration, allowing us to perform load redistribution after a
few tens of iterations.

4.2 Thread Synchronization Issues

For the parallel algorithm, data dependencies are generated between threads
at various stages in the algorithm. These call for synchronization among the
threads as the algorithm proceeds. Every thread maintains and operates on lists
containing points in its own slab. At times the threads need to transfer data
among themselves and remain synchronized. Handling these issues properly is
important for the efficiency of the implementation.

The notation in the following sections involves the use of a subscript r for
entities. This denotes the fact that the entity is local to thread r that processes
points in slab r. An entity without the subscript r may lie in any slab. Thus
pr denotes a point p belonging to slab r. Li,r denotes the layer i for thread r.
Similarly, Si,r denotes the status list i for thread r.

4.2.1 While Computing the PDE Time Step

Every thread r computes (every iteration) the local changes in upr
and a local

time step over its slab. However the numerical algorithm needs a common global
time step over the entire level set. We choose the least local time step as the
global time step. This task is done by a single thread, after all threads have
computed the local time steps. During this calculation the other threads are
idle.

4.2.2 While Processing the Status Lists

Two threads are said to be neighbors if their slabs share a boundary. Thus every
thread has exactly two neighbors, excepting the threads that process the first
and the last slabs which have one neighbor only.

When thread r processes point pr in the status list Si,r, it needs to find
neighbors of pr in the layer Li (the next layer farther from the active set). Also
at this stage the thread (and neighbor threads) removes points from layer Li∓1,r

7



and inserts them in layer Li∓2,r. Further, for points pr near the boundary of
the slab r the neighbors of pr may lie in the neighbor thread’s slab, and hence
may be processed by the neighbor thread. All these properties together induce a
data dependency between neighbor threads. Hence, before each thread processes
Si,r it must ensure that its neighbors r′ have completely processed Si∓1,r′ . We
illustrate this boundary phenomenon in Figure 3.

Another issue arises in this context. If thread r, while processing points in
its status list Si,r, finds neighbor points not in its own slab, what should it do
with them ? A thread must not add such points in its status list Si±1,r, for three
reasons. First, a neighbor thread may also add the same points to its status lists
leading to redundant processing. Second, the addition of such points could lead
to further addition of points belonging to another thread’s region in a recursive
manner, potentially creating a load imbalance. Third, aspects relating to data
placement on shared memory systems makes this practice inefficient. The details
of data placement are discussed in Section 5.

We address this issue of processing neighbor points across a slab boundary in
the following manner. At points pr near the boundary of slab r the neighbors of
pr may lie outside the slab, in another slab, say r′. In this case the neighbors are
temporarily inserted in a separate list, called the transfer list Tr′,i±1,r, instead
of the status list Si±1,r. Tr′,i,r denotes the transfer list i used to transfer points
from thread r to thread r′ and is a local entity for thread r. When the neighbor
thread r′ starts to process its status lists Si±1,r′ it will include the points from
the list Tr′,i±1,r that its neighbor possesses and add them to its own status
list. Points duplicated in the list are removed as the list is serviced in the next
iteration.

4.2.3 While Processing the Layers

When thread r processes grid points pr in layer Li,r, it needs information about
the neighbors of pr in layer Li∓1 (belonging to a layer closer to the active set)
to compute upr

. This creates a data dependency between a thread and its
neighbors because when pr lies near the common boundary its neighbors may
lie outside the slab r. Hence, before a thread processes layer Li,r it must ensure
that its neighbors have completely processed layer Li∓1,r. We illustrate this
boundary phenomenon in Figure 3.

4.2.4 While Load Balancing

Once every few iterations we need to check if the load is still balanced by
checking if all threads have roughly the same number of active points to process.
A tolerance measure for load imbalance can be quantified in terms of the total
number of active points in the level set at that point in time. A single thread
performs this check while the others wait. If the load imbalance is severe then
the load is redistributed among the threads.

The load redistribution involves recreation of the slabs and correspondingly
updating the local layers Li,r as reflected by the new slabs. In other words every
thread must ensure that its layers contain all the points in its newly assigned
slab and only those. Thus threads need to exchange points between themselves.
This is performed efficiently, in parallel, in a synchronized two-stage process. In
the first stage, the threads remove those points from their layers that no longer

8



belong to their new slab and copy them to specific transfer lists (described
earlier) Tr′,i,r. Here r′ corresponds to the new slab that the point now belongs
to. Once all the threads have completed the first stage, each thread moves on to
the second stage. Here every thread r examines the transfer lists Tr,i,r′ (local to
other threads) and transfers the points they contain (if any) to its local layers
Li,r.

4.3 Algorithm Summary

We call the axis along which the volume is divided into slabs (for load balancing)
as the z axis. Thread r processes slab r of the volume. The histogram Hdynamic,r

denotes the local dynamic histogram of active points over z planes in slab r.
The histogram Hdynamic denotes the global dynamic histogram which reflects
the histogram of active points over the entire embedding volume. pr denotes a
point p belonging to slab r. Li,r denotes the local layer i for thread r containing
points only in slab r. Similarly, Si,r denotes the status list i for thread r. Tr′,i,r

denotes the local transfer list i used to transfer points from thread r to thread
r′ and is local to thread r.

1. Initialize: For now we assume that the data structures have been initialized
suitably and the load is well balanced. We discuss more about this later
in Section 5. Also assume that all the status lists and the transfer lists
are empty.

2. Solve the PDE on the level set.

(a) For each active point pr in L0,r the thread r computes the net force
on pr by summing up the internal and external forces.

(b) Thread r computes the local time step for PDE evolution (over the
thread’s slab).

(c) Wait until all the threads have computed the time step.

3. A single thread computes the global time step as the minimum among the
local time steps computed by each thread (while all other threads wait).

4. Update the level set (and active set) location.

(a) For each active point pr in L0,r the thread r does the following:

i. Compute the net change in upr
and update upr

. If (upr
> 0.5)

then insert pr in S+1,r. Similarly if (upr
< −0.5) insert pr in

S−1,r.

ii. Update the histogram Hdynamic,r when pr moves out of the active
set.

iii. Signal neighbors and wait for similar signals in return.

5. Update the sparse band location in the embedding.

(a) For each status list Si,r, in the order i = ±1, . . . ,±(N + 1), thread r

does the following:

i. For all neighbors r′ of thread r, copy points from list Tr,i,r′ to
the status list Si,r.

9



ii. For each point pr on the status list Si,r, remove pr from the layer
Li∓1,r and add pr to the layer Li∓2,r. Update the histogram
Hdynamic,r when pr moves into the active set.

iii. If i 6= (N + 1) then add all neighbors nr of pr belonging to layer
Li,r on the Si±1,r list. If i = (N + 1) then add neighbors nr of
pr not in any of the layers (outside the band of layers) to Si±1,r.
If neighbors nr′ of pr belong to slab r′ then add them to the
transfer list Tr′,i±1,r.

iv. Signal neighbors and wait for similar signals in return.

(b) For all neighbors r′ of thread r, copy points from list Tr,±(N+2),r′

to the status list S±(N+2),r. For each point pr on the status list
S±(N+2),r add pr to layer L±N,r. Empty all status lists and transfer
lists.

6. Update the embedding values for points in the new band.

(a) For each layer Li,r, in the order i = ±1, . . . ,±N , thread r does the
following:

i. For each point pr in layer Li,r two events can happen. Either pr

has some neighbors in the next inner layer Li∓1,r or it has no such
neighbors. If such neighbors exist then update upr

based on the
neighbor closest to the active set (by approximating the distance
transform). If no such neighbors exist for pr then remove pr from
Lir

and if i 6= N add pr to Li±1,r, the next level away from the
active set.

ii. Signal neighbors and wait for similar signals in return.

7. To continue the surface deformations go to the next step, otherwise ter-
minate.

8. Dynamic load balancing.

(a) Once every few tens of iterations, do the following:

i. Suspend all threads except one which reconstructs the global
histogram Hdynamic from all local histograms Hdynamic,r, com-
putes the cumulative distribution function and checks for load
imbalance.

ii. If the load is not balanced perform dynamic load redistribution,
in parallel, as follows:

A. For each point p in the layers Li,r for i = ±1, . . . ,±N : if p

belongs to slab r′ then remove p from Li,r and insert it in
the transfer list Tr′,i,r.

B. Wait until all threads have completed the previous step.

C. For all threads r′, copy all points in the transfer lists Tr,i,r′

into layer Li,r.

9. Go to step 2.

10



5 Implementation

This Section gives some details about the SGI Origin 3000 multiprocessor and
describes several important aspects of the implementation, which are specific to
the particular architecture.

5.1 The SGI Origin 3000 Multiprocessor System

The SGI Origin series [5] comprises a family of multiprocessor distributed-
shared-memory computer systems. It uses a global address space multiprocessor
using a cache-coherent non uniform memory access (ccNUMA) architecture. All
memory and IO is globally accessible. Because the Origin uses physically dis-
tributed memory, the cost of accessing memory depends on the distance between
the processor and the memory location.

The memory is distributed in nodes which are arranged as the vertices of
a hypercube. Every memory node contains four processors and for those pro-
cessors it is the fastest memory. A router hub forms the interface between the
processors and the remote memory nodes via the interconnect network. The
hypercube connectivity avoids the bandwidth limitations experienced by bus-
based architectures and plays a crucial role in enhancing scalability.

We use the Chapman machine in the Origin 3000 series. It consists of R14000
MIPS 64-bit CPUs running at 600 MHz with four processors per memory node
and 2GB of local memory per node. The processors are equipped with four-way
super-scalar architecture, out-of-order execution and branch prediction. The
configuration contains 64 processors in 16 memory nodes arranged in a 4D
hypercube. The processors consist of separate instruction and data L1 caches
(on-chip) of size 32 KB each and an external L2 cache (instruction and data
combined) of size 8 MB. The default page size is 16 KB.

The operating system on the machine is IRIX 6.5. Threads are created
using sproc system calls. Thread synchronization support is via semaphores
and barriers. The fetchop library, which allows atomic fetch and increment
operations on variables in memory via use of hardware, can be used to build
efficient barriers.

5.2 Implementation Issues on the SGI Origin 3000

The largest data structures used are two volumes; one to maintain the embed-
ding values and the other to keep track of the location of the sparse band layers.
These volumes also provide information about neighborhoods of points, which
is required during the processing of the layers/lists as described earlier. Each
thread keeps local linked lists for the layers, status lists, and transfer lists to
transfer data between neighbors. We choose the highest axis/dimension for con-
structing the slabs in the volume because the data is stored in memory in a row
major format and doing this makes points in a slab reside in contiguous memory
locations. This aids in effective data placement, which is discussed shortly.

We use sproc calls to create threads. We use semaphores for the signaling
and waiting mechanism between neighbor threads. We use barriers for synchro-
nization between all threads implemented using the native fetchop library. We
use the IRIX command, namely dplace, to increase the page size of the code,

11



data and stack to 64 KB from the default 16 KB. This can reduce transla-
tion look-aside buffer (TLB) misses while accessing large amounts of data. We
also use dplace to constrain specific threads to run on specific processors and
use memory on specific memory nodes. The set of the nodes used is a subset
of the smallest hypercube needed to contain all the threads. This keeps the
data in memory as near as possible to the processors running the threads, thus
minimizing memory latency.

The implementation is highly memory intensive due to the operations on
large linked lists and grid points in the two volumes. As a consequence, achiev-
ing effective speedup and scalability requires careful data placement. Subopti-
mal data placements can substantially increase memory access times and create
memory bandwidth bottlenecks when many memory access requests get directed
towards the same memory node. This problem is compounded as the number
of processors increase.

We perform data placement as follows. The default page allocation policy on
the SGI Origin 3000 is the first touch policy [5]. Under this policy the process
which first touches a page of memory causes that page to be allocated on the
same node on which the process is running. The allocation and initialization
of the two volume data structures (mentioned at the beginning of this section),
hence, should not be done by one thread alone. Instead we allocate new copies
of the two volumes and let each thread r initialize (write to) the points in
slab r, and then discard the old copies. This task is performed in parallel to
decrease overhead and maintain scalability. Thus different contiguous parts of
the volumes physically reside on different nodes. This helps bring memory lines
that the threads would use in the future into the cache and also reduces TLB
misses. The extra copy overhead is negligible as compared to the total cost of
the initialization.

6 Experiments and Results

The literature shows a variety of applications of level sets to image segmentation,
where the level sets are attracted to image based features such as intensity,
gradients and edges in the surface deformation process. Typically, the user
initializes a contour which evolves until it fits the form of the surface of interest
in the image. In our example with an MRI volume dataset, using an intensity
based approach, the goal is to define a range of intensity values that classify the
tissue type of interest and then construct the level-set deformation PDE on that
intensity range. Using the level-set approach, the smoothness of the evolving
surface can be enforced to prevent the kind of leaking common in connected-
component schemes, as described in [9].

We use a 3D MRI dataset of the head having dimensions of 256×256×175
for segmentation. A slice from the volume is shown in Figure 5. The slabs,
for load distribution, are constructed on the axis with the length of 175 (the z

axis). The goal is to segment the brain cortex. Figure 4 shows the scalability of
the algorithm on the above mentioned dataset and an example of the segmented
brain cortex surface.

We perform experiments to test the scalability of the algorithm using upto
64 processors. We choose a suitable program topology which decreases memory
latencies for the threads. For timing the experiments, we use the SGI perfex

12



0 10 20 30 40 50 60
0

10

20

30

40

50

60

Number of processors used

S
p

e
e

d
u

p
speedup with z−dimension 800 
speedup with z−dimension 175
polynomial fit to data points
polynomial fit to data points
linear speedup

(a) (b)

Figure 4: (a) Scalability graphs (b) Segmented brain cortex from the
256×256×175 MRI head dataset

tool which is a command line interface to process hardware event counters [5] on
the SGI Origin. We count the number of cycles taken by each thread during the
execution. This includes the time to initialize all the thread data structures. We
also enable counting at the exception level using the -x flag for the perfex com-
mand, which accounts for cycles spent on behalf of the user during, for example,
TLB refill exceptions [5]. We plot graphs using the numbers for slowest thread
because the slowest thread represents the time taken for the entire execution.

Using the z dimension length of 175 does not yield linear speedup when using
more than 32 threads. This is expected because every thread incurs a cost for
communication with its neighbors which is proportional to the number of points
on the slab boundaries. As the number of threads increase (and the slabs become
smaller), the ratio of the points on the slab boundary to all the points in the slab
increases, thus increasing the overhead. This kind of a phenomenon, where the
relative communication cost increases as number of threads increase, is typical
with virtually any parallel algorithm. Another experiment, with a volume 800
units long, sheds some light on the scalability. With a grid of 256×256×800 and
slabs constructed along the z axis, the performance continues to improve with
as many as 50 processors. The results are shown in Figure 4.

Number of processors 1 2 3 4 6 8 12
Iterations per second 0.72 1.46 2.08 2.67 4.26 5.84 8.65
Number of processors 16 24 32 40 48 56 64
Iterations per second 11.03 14.90 17.82 17.50 16.65 14.87 12.61

Table 1: Level-set solver speeds for the 256×256×175 MRI head dataset

Table 1 shows the number of level-set updates performed per second for the
brain cortex segmentation seen in Figure 4 when the surface is near the final
segmentation and deforming considerably. We see that this surface evolves at
a rate of about 18 iterations per second using 32 processors. We also have an

13



(a) (b)

Figure 5: (a) A slice from the MRI head dataset of size 256×256×175 (b) Some
snapshots of the user interface with real-time visualization

application (built in ITK) that dynamically extracts the iso-surface (from the
embedding), corresponding to the deforming surface, using a marching cubes
[12] algorithm and renders the resulting mesh using OpenGl [7]. We parallelize
the iso-surface extraction using the same threads used for the parallel level-set
solver. The iso-surface extraction and rendering need not be done every itera-
tion because the level set evolves very slowly, as mentioned earlier in Section 4.
In addition, we present a graphical user interface to the user to aid in this entire
process of segmentation using intensity ranges. It allows users to select intensity
ranges, initialize the surface, and control surface smoothness parameters while
the surface deforms to obtain a segmentation. Some snapshots from the appli-
cation are shown in Figure 5. Thus the user can dynamically see and control
the motion of the level-set surface. This process of deformation of the initial
surface into the brain cortex (about 700–800 iterations), along with real-time
visualization (with the deforming surface rendered every 5 iterations), takes less
than a minute using 32 processors and we obtain level-set update rates of about
14 iterations per second (on average).

7 Conclusion

We have presented a novel parallel algorithm for the sparse-field level-set solver
incorporating dynamic load balancing. We have implemented the parallel algo-
rithm on the distributed-shared-memory SGI Origin 3000 multiprocessor. The
implementation performs level-set surface deformation updates at interactive
rates and has good scalability. The interactive update rates combined with
real-time visualization allow users to dynamically control the motion of the
level-set surface.

Further experiments may be performed with the dynamic load balancing
model using a more advanced scheme based on a space partitioning technique
e.g. k-d trees. In general, domain decomposition schemes which try to minimize

14



the ratio of the number of active points near the boundary to the total number
of active points in the region, may reduce inter-thread-communication overhead.
However, because of the dynamic nature of the level set and the corresponding
computational domain, such schemes need to be dynamic too. This may result
in an algorithm of much higher complexity and in turn might result in a higher
load-balancing overhead.

References

[1] David Adalsteinsson and James A. Sethian. A fast level set method for
propagating interfaces. J. Comput. Phys., 118(2):269–277, 1995.

[2] D. L. Chopp and J. A. Sethian. Motion by intrinsic laplacian of curvature.
Interfaces and Free Boundaries, 1:107–123, 1999.

[3] Vidya Elangovan and Ross T. Whitaker. From sinograms to surfaces: A
direct approach to the segmentation of tomographic data. In Proceed-
ings of the 4th International Conference on Medical Image Computing and
Computer-Assisted Intervention, pages 213–223. Springer-Verlag, 2001.

[4] Nick Foster and Ronald Fedkiw. Practical animations of liquids. In Eugene
Fiume, editor, SIGGRAPH 2001, Computer Graphics Proceedings, pages
23–30. ACM Press / ACM SIGGRAPH, 2001.

[5] http://techpubs.sgi.com/library. SGI IRIX 6.5 Man Pages.

[6] http://www.itk.org. National library of medicine insight segmentation and
registration toolkit.

[7] http://www.opengl.org. OpenGl.

[8] B. Kimia, A. Tannebaum, and S. Zucker. Shapes, shocks, and deforma-
tions I: the components of two-dimensional shape and the reaction-diffusion
space. Int. J. Comput. Vision, 15:189–224, 1995.

[9] A. E. Lefohn, J. E. Cates, and R. T. Whitaker. Interactive, gpu-based level
sets for 3d segmentation. Medical Image Computing andComputer Assisted
Intervention (Miccai), pages 564–572, 2003.

[10] A. E. Lefohn, J. M. Kniss, C. D. Hansen, and R. Whitaker. Interactive
deformation and visualization of level set surfaces using graphics hardware.
IEEE Visualization 2003, pages 75–82, October 2003.

[11] M. Leventon, E. Grimson, and O. Faugeras. Statistical shape influence in
geodesic active contours. In CVP’00, 2000.

[12] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolu-
tion 3d surface construction algorithm. In Proceedings of the 14th annual
conference on Computer graphics and interactive techniques, pages 163–
169. ACM Press, 1987.

[13] R. Malladi and J. A. Sethian. A unified approach to noise removal, image
enhancement, and shape recovery. IEEE Trans. on Image Processing, 1996.

15



[14] S. Osher and R. Fedkiw. The Level Set Method and Dynamic Implicit
Surfaces. Springer-Verlag, New York, 2003.

[15] D. Peng, B. Merriman, H. Zhao, S. Osher, and M. Kang. A pde based fast
local level set method, 1999.

[16] M. Rumpf and R. Strzodka. Level set segmentation in graphics hardware.
In IEEE International Conference on Image Processing, pages 1103–1106,
2001.

[17] J. A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge
University Press, 1999.

[18] T. Tasdizen, R. Whitaker, P. Burchard, and S. Osher. Geometric surface
processing via normal maps. ACM Transactions on Graphics, 2003.

[19] R. Westermann, C. R. Johnson, and T. Ertl. Topology preserving smooth-
ing of vector fields. IEEE Transactions on Visualization and Computer
Graphics, 2001.

[20] R. Whitaker. Reconstructing terrain maps from dense range data. In
IEEE International Conference on Image Processing, pages 165–168, Oc-
tober 2001.

[21] R. Whitaker and V. Elangovan. A direct approach to estimating surfaces in
tomographic data. Journal of Medical Image Analysis, 6(3):235–249, 2002.

[22] Ross T. Whitaker. A level-set approach to 3d reconstruction from range
data. Int. J. Comput. Vision, 29(3):203–231, 1998.

[23] Ross T. Whitaker. Reducing aliasing artifacts in iso-surfaces of binary vol-
umes. In Proceedings of the 2000 IEEE symposium on Volume visualization,
pages 23–32. ACM Press, 2000.

[24] Ross T. Whitaker and David T. Chen. Embedded active surfaces for volume
visualization. In SPIE Medical Imaging 94, 1994.

16


