Bounded Transaction M odel
Checking

Xiaofang Chen and Ganesh Gopalakrishnan

UUCP-06-003

School of Computing
University of Utah
Salt Lake City, UT 84112 USA

February 27, 2006
Abstract

Industrial cache coherence protocol models often have too many reachable states, prevent-
ing full reachability analysis even for small model instances (number of processors, ad-
dresses, etc.). Several partial search debugging methods are, therefore, employed, includ-
ing lossy state compression using hash compaction, and bounded model checking (BMC, or
equivalently, depth-bounded search). We show that instead of a BMC approach, a bounded
transaction approach is much more effective for debugging. This is because of the fact
that the basic unit of activity in a cache coherence protocol is that of a transaction - e.g.,
a complete causal cycle of actions beginning with a node making a request for a line and
obtaining the line. The reduced effectiveness of BMC mainly stems from the fact that
by limiting only the search depth, it cannot be guaranteed that complete transactions get
selected, or that the right kind maximal number of interacting transactions.

Thus, instead of bounded model-checking, which explores all possible interleavings in
BFS, we propose a bounded transaction model-checking approach for debugging cache
coherence protocols, where the criterion is to allow a certain number of transactions chosen
from a set of potentially interfering set of transactions, to be explored. We have built
a bounded transaction version for the Murphi model checker and shown that it can find
seeded bugs in protocols far more effectively, especially when full BFS runs out of memory
and misses these bugs. We compare our work with similar ideas - such as debugging
communicating push-down systems[1]] by bounding the number of interleavings (a similar
idea, but different in detail).

1 Introduction

Scalable industrial cache coherence protocols are very complex, often spanning 50 or more
pages of “rule-style” descriptions written in languages such as Murphi, TLA+ [2]], or Blue-
Spec [3]. Even when running on small instances (number of processors, addresses, etc.) us-
ing today’s enumerative model checkers under symmetry reduction[4] or other exact state
reduction methods, their number of reachable states far exceed that available in today’s
large machines.

Abstraction/refinement based verification methods [, 6], symbolic methods [[7, 8], or sym-
bolically assisted methods (e.g., [9]), while showing great promise, have not been demon-
strated on industrial coherence protocols. Consequently, a number of limited search de-
bugging methods are in use today, including bounded model checking (in the enumerative
sense of depth-bounded searching), lossy state compression using hash compaction, etc.

We argue that the currently used methods for doing bounded search debugging of cache
protocols do not use the available state resources wisely. This is because they employ
criteria such as bounded model checking (BMC) which do not track the basic unit of “work”
in these protocols - which is transaction. In most coherence protocols, transactions start
with a node requesting a sharable or an exclusive copy of a cache line. Such requests
typically go to directories which then forward the requests to the current sharers, collect
invalidation acknowledgments (in case of an exclusive request), and send the line to the
requesting node.

We observe that if such complete transactions are allowed to form during search, but we
limit the number — and also variety — of such transactions that can form, the memory re-
sources are far more efficiently utilized. For example, consider a model checker exploring
a cache protocol running on four processors and having 10 different things that the proces-
sors can do using BFS: the search graph would begin with a fan-out of 40. A few frontiers
of BFS later, the model-checker resources would be exhausted, with typically very few full
transactions examined — and more importantly, with very few full transaction interactions
examined. Naturally, bugs are missed, as we show in controlled experiments using seeded
bugs.

In contrast, with a bounded transaction (BT) search, we allow full transactions to form, but
limit their number and variety. This is very similar to what others have discovered in related
contexts. For instance, in [1], the model checking of communicating push-down systems
— where reachability is inherently undecidable [10] - is reduced to bounded interleaving
checking. Their results show that many bugs are caught in this manner. There are however
many differences. Limited process interleaving and bounding the number of transactions

allowed to be alive at a point are related, but not the same idea.

In cache coherence protocols, behaviors are expressed in a “rule style” - as an apparently
unordered collection of rules. This writing style promotes a declarative expression of the
intent. In approaches such as [3]], this declarative and “maximally concurrent” writing
style does lead to opportunities for synthesizing efficient hardware for cache coherence
controllers. Thus, a communicating sequential process style of writing is not preferred,
as it may make the extraction of efficient hardware difficult. In addition, the rule-style
writing style allows certain cross-cutting aspects of behavior to be naturally expressed. For
instance, there are often rules that describe how “spent” messages (invalidations whose
purpose has been lost) are to be flushed out. These rules can be stated orthogonal to rules
that take a per-processor perspective.

Thus, the important question of how to identify transactions has to be addressed. In our
BT approach and tool, we employ concrete executions in very small instances to determine
potential transactions, as will be explained in Section Bl The last question is, of course,
how one might make BT complete. While we don’t have a solution, several ideas in this
regard are expressed in Section

2 Reated Work

The transactional nature of cache coherence protocols was first described by Park and
Dill[11]. They aggregated the implementation step of each transaction into a single atomic
transaction in the specification. Completing(commit) step was defined as the implementa-
tion step which first causes a change in the specification variables. However, this approach
does not consider any interleaving in the real implementation.

Several other searching heuristics have also been proposed to optimize model checking of
cache coherence protocols. For example, Yang and Dill[[12] proposed using the minimum
hamming distance as a heuristic with the hope that states with very few bits differing from
the error state will require fewer cycles to reach the target. Abts et al.[13] proposed that
by choosing the next state via maximum hamming distance, the search will move toward
the error state. They also proposed to use the “cache-score”, which is a subset of the state
information, to determine the best rule to fire. We think these criteria are too coarse to be
applied on all protocols.

Recently, Bhattacharya et al.[9] also proposed to exploit the transactional nature of cache
coherence protocols to aid partial order reduction. By selecting appropriate seed transi-

tions in a transaction in the ample set computation, they can effectively take the current
transaction forward and delay the scheduling of new transactions.

3 Bounded Transaction-Based Testing

To take advantage of the transactional nature of cache coherence protocols, BT only ex-
plores a subset of all possible next states for a given state s. This subset is chosen based on
the type of the current transaction s is in, e.g. “shared request”, and the interleavings the
current transaction is allowed to interact with other new transactions. Once the upbound
of the number of new transactions spawned by the current transaction is reached, BT will
force all the transactions work toward finishing themselves. The states ending these trans-
actions will constitute a terminal frontier, which will serve as the initial states for the next
round of testing.

As aresult, the subset of state space which BT chooses will not only contain full transaction
activities, but also include interleavings among different transactions. In Section M, we
can see that BT is far more effective than the BFS model checking on seeded bugs in the
German[14] and FLASH[15] protocols. In the following section, we will describe the
implementations of BT.

3.1 Specifying Transactions

The natural “unit” of work in cache coherence protocols usually starts a node requesting a
sharable or an exclusive copy of a cache line, or evicting a cache line from its local cache.
Such requests typically go to directories which will then forward the request to the current
sharers if necessary. The end of a transaction is indicated by a data copy or NACK message
being sent back to the requester. Such a full transaction can be taken as a causal sequence
of actions.

We can assume that protocol designers are very clear about the details of a protocol, so in
a rule-based specification system it would be easy for them to write a simple file specify-
ing which rules are the starting, or the completing transitions in a transaction. In the BT
tool, we provide an interface set_srulesets() and a variable s_rulesets|| to let users spec-
ify transactions. A simple example is shown as following. Users simply need to replace
“ruleset_num” with the total number of rulesets, and specify weights for transaction starters
and enders. In this example, weight 1 is used for starting shared transactions, 2 for starting

exclusive transactions, and 3 for completing transactions.

voi d set _srul esets() {
for (int i =0; i < ruleset_num i ++)

s rulesets[i] = 0;

/'l req: Shrd

s_rul esets[9] = 1; /1 SendReqgS
/'l req: Excl

s_rul esets[5] = 2; /1 SendReqE
/1 conpletion

s_rulesets[7] = 3; /'l RecvGnt E
s_rulesets[2] = 3; /1 RecvGnt S

}

\

bl

SendinvRegs, i:1

Figure 1: Rule firing sequence before pruning

Our BT tool also provides functionalities to obtain potential transactions in a protocol auto-
matically. It employs concrete execution by running BFS of standard model checking, on a
small instance of the model. The causal graph, which is the firing sequence of each rule in
the concrete execution, is recorded and later simplified. The final result is a set of “pure”
transactions in the graph. Take an example, Figure [shows a causal graph on a simple
protocol with just one node. It records all the “rule; — rule;” sequences, such that in the
concrete execution rule; is fired right after rule; is fired.

To perform simplification on a causal graph, BT prunes duplicate edges and “backward”
edges. Duplicate edges are a set of edges which fire a pair of two same rules, and backward
edges are indicated by a rule firing another rule which is in a lower depth of the BFS
execution. For example in Figure [l “SendGntS,i:1 — SendReqS,i:1” is a backward edge
as the BFS depth of “SendGntS,i : 17 is 3, higher than the depth of “SendReqS,i : 1”7
which is 1. The logic behind such pruning is that most backward edges will mix at least
two transactions under BFS executions. So removing these edges will leave a set of “pure”
transactions: from starting to ending transitions without interfering with other transactions.
Figure 2 is the simplified causal graph on Figure [Il It shows two pure transactions, both
starting with a request for a cache line, and ending with the request is granted. Interested
readers please refer to[[16] for more examples.

After the causal graph is simplified, we can take rules on depth 1 as transitions starting
transactions, and rules on the leaf nodes as transitions ending transactions. Different values
can be assigned as the weights of rules in these two categories. We believe this approach
of determining transactions can be completeﬁ, by having multiple initial states other than
the standard one where all caches are Invalid. For example, in the Flash protocol[15], we
can have the following 5 initial states in a 3-node model, including {I,1,1}, {S,1,1},
{S,5,I}, {S,S5,S} and {E,I,1}. Here I, S and E represent Invalid, Shared, and
Exclusive individually.

Figure 2: Rule firing sequence after pruning

Thanks for the discussion with Dr. Ching-Tsun Choul.

3.2 Implementation

Assume we already have a rule weight file which specifies the starting and ending transi-
tions of transactions in a protocol. We implemented the bounded transaction-based testing
algorithm “bounded_test()” in Murphi. At each state, the model checker first finds out all
the enabled rules as BFS usually does, and then selects a subset of rules to fire. This subset
is chosen according to the attribute of the current state, i.e. the transaction type, and the
quota of leftover transactions to be spawned.

The attribute of a state is an extra part of information BT stores. For all initial states in
model checking, they have no attribute. When a state is generated after a shared request,
the state will have attribute “[sh]”, and this attribute will be kept until a reply is sent back.
If another exclusive request is made before the reply of the shared request, then the state
attribute will be “[sh;ex]”.

The quota of leftover transactions will decrease by 1 each time a new transaction is initi-
ated during the lifetime of the current transaction. When its value reaches 0, the current
transaction can only work toward finishing itself: no new transactions(i.e. interleavings)
are allowed to be initiated. This approach allows BT to control how many interleavings
one transaction can interact with others. For example, when the maximum quota equal to
0, BT is working on “complete sequential executions”; while the maximum quota equal to
a enough big value, BT is simply doing BFS, enumerating all possible interleavings.

3.2.1 Notations and Definitions

Several notations are defined to help understand the algorithm of BT in Algorithms.

traz . Abbr. of “transaction”

Q : state list for current round of testing
Q' : state list for next round of testing
tr_quota_left : the quota left to spawn new transactions
Mazxr_Quota : maximum value of quota.left

Max_Round : maximum rounds of testing

enabled(s) : all the enabled rules at state s’
attrib(s) . attribute of state’s’

= {]], [sh], [ex], [sh; ex], [ex; sh], [ex, ex] }

3.2.2 Algorithms

Following is the algorithm BT uses in bounded _test(). As we can see, when the tr_quota_left
equal to 0, only those rules that will finish the current transaction are allowed to be fired.
And when a new transaction is initiated inside another transaction, the value of tr_quota_left
is assigned to 0. This means that all possible interleavings within these two transactions are
allowed, and only after both these transactions have finished, can the third transaction be
initiated. This is a simple heuristic BT currently uses. However, allowing a third transaction
to be initiated in the lifetime of two other transactions is also fine.

random subset (rul es, type, var quota) =
{ if (quota=0) then
return rul es except trax starters
el se
mat ch type with
| sh_or_ex -> random choose 1 Excl trax starter +
random choose 1 Shrd trax starter +
rules except all trax starters

| ex -> random choose 1 Excl trax starter +
rules except all trax starters
| sh -> random choose 1 Shrd trax starter +
rules except all trax starters
quota := quota - 1

}

choose S or _E(attrib, rules, var tr_quota left) =

{ match attrib with
| 1] -> random subset (rules, sh _or_ex, tr_quota |left)
| [sh] -> random subset(rules, ex, tr_quota_left)
| [ex] -> randomsubset(rules, sh_or_ex, tr_quota_left)

| -> random subset (rules, sh_or_ex, 0)

}

term nal (state) =
{ if (state is a trax ender and it can only start new trax) then
return true
el se
return fal se

}

BT (Q tr_quota left, round left, Q) =
{ if &[] and round_| eft=0 then

return
else if Q=[] then
BT(Q, Max_Quota, round_ left-1, [])

el se
s :=front(Q;
Q:=rest(Q;

if termnal (s) then
BT(Q tr_quota left, round |left, append(Q,s))
el se
| et sub_rules = choose_S or_ E(attrib(s), enabled(s), tr_quota left) in
for each rule in sub _rules do
let nexts = rule(s) in
let attrib(nexts) = nodify_attribute(nexts) in
append(Q nexts)
end
BT(Q tr_quota_ left, round_left, Q)

}

BT([init_state], Max_Quota, Max_Round, []);

4 Experiment Results

We have applied BT on the Stanford FLASH protocol[[15]. It was effective to find out the
bug injected by removing the condition “Sta.RpM sg[src].Cmd ! = RP _Replace” in the
guard of Ruleset “N1_Local_Get_Get”, where the shortest path to this bug is 18. Table [I
shows the result.

Table 1: Performance of BT on a buggy FLASH protocol

Node | Data BT Murphi BMC
of states | Time(s) | Found bug || # of states | Time(s) | Found bug
3 2 106812 21.04 yes 213275 27.16 yes
5 2 404924 | 215.35 yes 3112000 | 821.74 no
8 3 389749 | 415.72 yes 1836000 | 1726.99 no
10 3 361344 | 465.81 yes 1507000 | 2417.51 no

We also applied BT on the German protocolﬁ [14]] devised by Steven German in 2004. The
protocol contains 3 processor nodes and 2 addresses. A bug was injected by commenting

2No symmetry is used in this protocol.

the condition of “if forall n : node_id do directory[n] = cache_invalid endforall in
the ruleset “home processes invalidate acknowledgment”. Table 2 shows the result.

Table 2: Performance of BT on a buggy German protocol

Node | Addr BT Murphi BMC
of states | Time(s) | Found bug || # of states | Time(s) | Found bug
3 2 79854 14.97 yes 2187000 | 265.28 no
5 2 1404 451 yes 426000 46.62 no
8 2 1936 4.72 yes 169000 33.71 no
10 2 476 441 yes 116000 21.03 no

All the above experiments were run on Intel Xeon 3.06GHz with 1000MB memory. “no”
in the “Found bug” column means the model checking runs out of resources. Maximum
round of 6 and maximum quota of 1 are used in the experiments. Interested readers can
refer to [16]] on how transactions are specified on these protocols.

5 Conclusion

BT is a bounded transaction-based testing tool developed on Murphi. It does model check-
ing by controlling the number of transactions and the types of interleavings among different
transactions. The preliminary results on the FLASH and German protocol show that BT is
an effective testing tool. We have also proposed several approaches to make it complete.
These ideas include employing abstraction on certain nodes and keeping concrete infor-
mation on other nodes, applying mover-based partial order reduction on protocols, and
aggregating states which are not explored by BT, etc. These will be our future work.

References

[1] S. Qadeer and D. Wu. Kiss: Keep it simple and sequential. In ACM SIGPLAN
Conference on Programming Language Design and Implementation(PLDI), 2004.

[2] L. Lamport. Specifying concurrent systems with tla+. 1999.

[3] Arvind. Bluespec: A language for hardware design, simulation, synthesis and verifi-
cation. In MEMOCODE, 2003.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

C. Norris Ip and David L. Dill. Verifying systems with replicated components in
murhi. In Rajeev Alur and Thomas A. Henzinger, editors, CAV, volume 1102 of
Lecture Notes in Computer Science, pages 147-158. Springer, 1996.

Satyaki Das, David L. Dill, and Seungjoon Park. Experience with predicate abstrac-
tion. In Nicolas Halbwachs and Doron Peled, editors, CAV, volume 1633 of Lecture
Notes in Computer Science, pages 160-171. Springer, 1999.

Ching-Tsun Chou, Phanindra K. Mannava, and Seungjoon Park. A simple method
for parameterized verification of cache coherence protocols. In Formal Methods in
Computer-Aided Design, 2004.

Asgeir Th. Eiriksson and Kenneth L. McMillan. Using formal verification/analysis
methods on the critical path in system design: A case study. In Pierre Wolper, editor,
CAV, volume 939 of Lecture Notes in Computer Science, pages 367-380. Springer,
1995.

Ilan Beer, Shoham Ben-David, Cindy Eisner, Daniel Geist, L. Gluhovsky, Tamir Hey-
man, Avner Landver, P. Paanah, Yoav Rodeh, G. Ronin, and Yaron Wolfsthal. Rule-
base: Model checking at ibm. In CAV ’97: Proceedings of the 9th International
Conference on Computer Aided Verification, pages 480-483, London, UK, 1997.
Springer-Verlag.

Ritwik Bhattacharya, Steven M. German, and Ganesh Copalakrishnan. Exploiting
symmetry and transactions for partial order reduction of rule based specifications. In
13th International SPIN Workshop on Model Checking of Software, March 2006.

G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecidable.
In ACM Transactions on Programming Languages and Systems, 2000.

Seungjoon Park and David L. Dill. Verification of flash cache coherence protocol by
aggregation of distributed transactions. In Proceedings of 8th ACM Symposium on
Parallel Algorithms and Architectures, pages 288-296, June 1996.

C. Han Yang and David L. Dill. Validiation with guided search of the state space. In
Proceedings of the 35th Annual Design Automation Conference (DAC98), June 1998.

Dennis Abts, Ying Chen, and David J. Lijia. Heuristics for complexity-effective ver-
ification of a cache coherence protocol implementation. In Laboratory for Advanced
Research in Computing Technology and Compilers Technical Report N. ARCTIC 03-
04, 2003.

Steven German and Geert Janssen. Tutorial on verification of distributed cache mem-
ory protocols. In FMCAD, 2004.

[15] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni, Kourosh
Gharachorloo John Chapin, David Nakahira, Joel Baxter, Mark Horowitz, Anoop
Gupta, Mendel Rosenblum, and John Hennessy. The stanford flash multiprocessor.

In Proceedings of the 21st International Symposium on Computer Architecture, pages
302-313, 1994.

[16] http://www.cs.utah.edu/formal_verification/software/murphi/BT/.

	Introduction
	Related Work
	Bounded Transaction-Based Testing
	Specifying Transactions
	Implementation
	Notations and Definitions
	Algorithms

	Experiment Results
	Conclusion

