
Linguistic Support for Unit Testing
UUCS-07-013

Kathryn E. Gray Matthias Felleisen
University of Utah Northeastern University
kathyg@cs.utah.edu matthias@ccs.neu.edu

Abstract
Existing systems for writing unit tests exploit built-in lan-
guage constructs, such as reflection, to simulate the addi-
tion of testing constructs. While these simulations provide
the minimally necessary functionality, they fail to support
testing properly in many instances. In response, we have
designed, implemented, and evaluated extensions for Java
that enable programmers to express test cases with language
constructs. Not surprisingly, these true language extensions
improve testing in many different ways, starting with basic
statical checks but also allowing the collection of additional
information about the unit tests.

1. Testing Failure
Stories of catastrophic software failure due to a lack of suffi-
cient testing abound. Proponents of test-driven development
regale audiences with these stories to encourage developers
to write adequate test suites. These stories, and the availabil-
ity of testing frameworks such as JUnit, have motivated pro-
grammers across the board to develop basic unit test suites.

In writing unit tests, individual test cases should check
that applicative methods (also known as observers) com-
pute the expected results and that imperative methods (aka
commands) affect the proper parts of the object’s state (and
nothing else). In addition, programmers need to be con-
cerned with failures due to exceptions, especially ensuring
that methods fail gracefully and as expected. While setting
up tests for applicative methods tends to be straightforward,
testing imperative methods and exceptional situations tends
to require complex work. Specifically, it often demands call-
ing a specific sequence of methods, and may benefit from
performing a number of specific tests in sequence.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00.

As a result, even with the wide-spread support for test-
ing, programmers still don’t develop sufficiently rigorous
test suites, because creating and maintaining them remains
a large burden. A thorough study of publicly accessible test
suites (such as those in sourceforge) suggests that program-
mers construct few tests that check for modified state and
even fewer (practically none) that exercise failure condi-
tions.

We conjecture that a part of the problem in creating test
suites lies with the lack of direct linguistic support for test-
ing. This lack of testing constructs in the programming lan-
guage itself has several symptoms, including silent failures
and overly complex test case formulations. More precisely,
our analysis shows that programmers fail to adhere to the
protocol of the test suite, forgetting to prefix a method name
with “test” or specifying formal parameters for testing meth-
ods when they take none. In such cases, the unit testing
framework often simply ignores the tests without informing
the programmer. Similarly, few (if any) programming lan-
guages allow the simulation of constructs that make it easy
to set up exception handlers for tests of “exceptional” meth-
ods. Hence, programmers often don’t test such scenarios or,
if they do, it becomes difficult to maintain such tests due to
the syntactic clutter.

A consequence of the lack of specific testing constructs is
that compilers don’t understand tests. Reflection constructs—
the basis of JUnit—are simply too impoverished to com-
municate with compilers (properly). As a result, compilers
don’t gather enough information about the testing process.
For failed test cases, information gathering makes testing
truly rewarding; in contrast, lack of information makes it
difficult to locate the source of bugs and to fix them. Put dif-
ferently, on failure, testing tools should provide meaningful
information on the actual vs desired behavior, the source of
the failure, and information regarding the state of the pro-
gram for the test. This kind of compiler-informed feedback
from the testing tool would assist programmers in correcting
errors quickly and economically.

To test our conjecture, we have designed and imple-
mented an extension for Java, called TestJava, that includes
constructs for testing. The compiler/IDE for TestJava gath-
ers simple pieces of additional information to support error-

