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Abstract

In explicit state (enumerative) model checking, state vectors are often represented in a
compressed form in order to reduce storage needs, typically employing fingerprints, bit-
hashes, or state signatures.

When using this kind of techniques, it could happen that the compressed image of a non-
visited state s matches that of a visited state s′ 6= s, thus s and potentially many of its
descendants are omitted from search. If any of these omitted states was an error state, we
could also have false positives. We present a new technique which reduces the number of
omitted states, by requiring a slightly higher computation time, but without employing any
additional memory.

Our technique works for depth-first search based state exploration, and exploits the fact that
when a non-terminal state t is represented in the hash table, then one of the successors of t
(the first to be expanded next, typically the left-most) is also represented in the visited states
hash table. Therefore, instead of backing off when the compressed state images match, our
algorithm persists to see if any of the left-most successors also matches (the number of
successors which are considered for each state is user-defined, thus we name our approach
Precision on Demand or POD).



This paper provides a scientific evaluation of the pros and cons of this approach. We have
implemented the algorithm in two versions of the Murphi explicit state model checker, one
based on hash compaction and the other based on Bloom filters, and present experimental
results. Our results indicate that POD-hashing has the potential to reduce storage require-
ments - or increase the number of bugs likely to be caught when operating within a given
amount of storage, with the execution time likely to increase by a factor of 1.8 or less.
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Abstract. In explicit state (enumerative) model checking, state vectors
are often represented in a compressed form in order to reduce storage
needs, typically employing fingerprints, bit-hashes, or state signatures.
When using this kind of techniques, it could happen that the compressed
image of a non-visited state s matches that of a visited state s′ 6= s, thus s
and potentially many of its descendants are omitted from search. If any of
these omitted states was an error state, we could also have false positives.
We present a new technique which reduces the number of omitted states,
by requiring a slightly higher computation time, but without employing
any additional memory.
Our technique works for depth-first search based state exploration, and
exploits the fact that when a non-terminal state t is represented in the
hash table, then one of the successors of t (the first to be expanded
next, typically the left-most) is also represented in the visited states hash
table. Therefore, instead of backing off when the compressed state images
match, our algorithm persists to see if any of the left-most successors also
matches (the number of successors which are considered for each state is
user-defined, thus we name our approach Precision on Demand or POD).
This paper provides a scientific evaluation of the pros and cons of this
approach. We have implemented the algorithm in two versions of the
Murphi explicit state model checker, one based on hash compaction and
the other based on Bloom filters, and present experimental results. Our
results indicate that POD-hashing has the potential to reduce storage
requirements - or increase the number of bugs likely to be caught when
operating within a given amount of storage, with the execution time
likely to increase by a factor of 1.8 or less.

1 Introduction

Explicit state model checking continues to have many strengths over symbolic
model checking as well as abstraction/refinement methods in many real situa-
tions, including the verification of high level cache coherence protocol models [1],
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verification of software systems through model checking [2], and direct model
checking of application codes [3, 4]. Time/space trade-offs are a fundamental is-
sue in computing - and clearly to explicit state model checking. In explicit state
(enumerative) model checking [5], state vectors are often represented in a com-
pressed form in order to reduce storage needs. Popular techniques in this area
include the use of fingerprints [6], bit-state hashing [7], state signatures [8], or
Bloom filters [9].

These techniques all have one main drawback: they may omit (i.e. not visit)
some states. In fact, it could happen that the compressed image of a non-visited
state s matches that of a visited state s′ 6= s, thus s and potentially many of
its descendants are omitted from search (those s descendants reachable other
than through s may still be visited). Note that, if any of the omitted states
is an error states, and none of the other reachable states is a bug, we have a
false positive verification results. However, these techniques are usually able to
provide an estimation of the omission probability (i.e. the probability to have
at least one omitted state) they lead to. Intuitively, the more bits there are in
the image of the compression scheme, the lower the probability of collision and
therefore the lower the probability of omission. The currently reported values
for the number go anywhere from 3 bits (Murphi with Bloom filters [10]) and
64 bits (for TLC [11] and SPIN [12]), passing by 40 bits (for Murphi [13]).
Even in software model checkers such as CMC [14] that compress much larger
state vectors than in Murphi models and TLA+ models, these are the reported
numbers.

In order to counteract the omitted states problem, we present a new tech-
nique which reduces the number of omitted states (thus lowering the omission
probability too), by requiring a slightly higher computation time, but without
employing any additional memory. Our approach lies on depth-first search based
state exploration; however, breadth-first variants may also be possible. In fact,
our technique exploits the fact that when a non-terminal state t is represented
in the hash table, then one of the successors of t (the first to be expanded next,
say the left-most) is also represented in the visited states hash table. Therefore,
instead of backing off when the compressed state images match, our algorithm
persists to see if any of the left-most successors also matches (the number of
successors which are considered for each state is user-defined, thus we name
our approach Precision on Demand or POD). Intuitively, it can be seen that
the probability of successively suffering from such collisions will multiplicatively
diminish. While such an obvious idea (of course, on hindsight!), our extensive
search among experts we know, as well as the surveying the available literature
revealed no evidence of this idea having been proposed or thoroughly studied.
This paper provides a scientific evaluation of the pros and cons of this approach,
offering the following contributions: (i) A depth-first model-checking algorithm
for POD Hashing that is orthogonal to the compressed state representation.
(ii) Experimental validation of the benefits of POD Hashing. We also note that
this paper addresses only safety (invariance) model checking; liveness is a topic
of future work.



3

Summary of key results and observations Since the basic ideas behind
this paper have already been expressed, we now provide a taste of the results.
To a first approximation, methods such as 40-bit hash compaction [8] do work
rather well. Therefore, for many small protocols, running the protocol under
one of these algorithms and under exact state representations will result in no
omissions: the model checker will print exactly the same number of visited states.
However, for very large protocols, these algorithms do report fewer visited states
than reported by an exact search, thereby confirming that state omissions can,
indeed, be observed in real life. Our experiments are largely geared towards
measuring this discrepancy: is POD hashing able to report numbers closer to that
reported by exact search? The answer turns out to be “yes.” However, running
many experiments using these very large protocols and comparing these runs
against POD hashing runs will take a very long time (several months on large
clusters). Therefore our results are reported with respect to runs obtained for
smaller length signatures of anywhere from 2 to 10. In the range of 2 to 10
signature bits, we do observe that

– the precision of existing algorithms does improve with more bits, and
– the improvement due to POD-hashing does remain; although, for given pro-

tocols, clearly, the improvement does decrease, because existing algorithms
are able to offer better precision.

However, one may argue that if more bits are offered to a protocol, they must
be then evaluated using bigger protocols. As we said already, our experimental
limitations are unable to, at present, go beyond 10 bits. We do not foresee any
discontinuities from 10 to 40 bits; we do not report these results because existing
algorithms are able to lead to a very small number of omitted states, and turns
out that 30 bits are always enough to have no omissions. Thus, there are too few
(or no) states to be regained. Thus we assert, without proof:

For a certain number of bits, and for protocols where traditional algo-
rithms do cause the precision to drop, POD hashing is able to recover a
significant amount of precision.

In our experiments so far, we found that a “look ahead” of 1 (i.e., only
considering one successor of each state that is found to be on the visited states
hash table) recovers a significant amount of the lost precision. Higher look-ahead
has diminishing returns, and could increase run-times to unacceptable levels.
With a lookahead of 1, search time increases by a factor of 1.8 on average.

The second observation to make is “so what?” In other words, are more bugs
going to be caught by POD-hashing due to the additional precision it offers?
Colin West has observed [15] that the same bug typically manifests in several
states, because typical assertions do not depend on all the state vector bits.
Intuitively, it is clear that this number can vary highly; we are not aware of
many studies in this regard. In [16], we report our own study on one reasonably
large example on one property that failed. We found that the bug manifested in
about 7,900 states. Thus the real question seems to be: “what is the probability
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that all these 7,900 or so states are missed due to the reduced precision of
existing algorithms?” In a model with one billion states, an omission probability
of .00001 could miss all 7,900 of those error states (plus a few others). However,
we do not further address questions along these lines because the next question
may be “how do you know you have created the formal model correctly?” The
bottom-line is that we would ideally like to omit fewer states, as we don’t know
where the bug is or how frequently the bug is manifested in the state space of
a model. Given that there could be modeling errors anyhow, it seems natural to
seek the highest precision possible during model checking and our experiments
confirm that POD Hashing always gives higher precision.

Roadmap After a discussion of related work in Section 2, we present the
Precision-On-Demand-Hashing model-checking algorithm in Section 3. Section 4
presents results of some experiments that demonstrate the efficacy of our ap-
proach with the data and further explanation contained in Appendix A. Section 5
concludes.

2 Related Work

Due to the well-known state explosion problem, the two main structures of the
depth first visit algorithm (a typical pseudocode is shown in Fig. 1), i.e. the
search stack S and the hash table for visited states T, are likely to fill up all
the available system memory resources. Many techniques have been developed
to counteract the state explosion problem. Application of efficient disk swapping
techniques make resource consumption by the search stack a less difficult problem
than that of resource consumption by the hash table. Indeed, the hash table is
likely to contain all the system reachable states, thus it is the amount of available
memory that is the primary limitation to the number of states that can be stored
and hence visited. The most effective and widely used solution to this problem
till now consists in storing in T fixed-sized state signatures, instead of the states
themselves. State signatures are much smaller than full state descriptors, thus
allowing for a huge reduction of memory requirements for T.

Bit state hashing was proposed initially in 1987 by Gerard Holzmann [17] as
a technique to increase the coverage of automated analysis of a system via model
checking when the reachable state space is too large to fit in main memory. The
main idea is to compress (via some hashing function) a state having a fixed
number of bits into an index into some large table. The element at the index
being a single bit of information representing the state.

Wolper and Leroy [18] extend this idea by proposing the use of multiple
hashing functions, and corresponding bit tables, to represent a visited state by
some small number of bits. In this way the probability of an omission due to
collision is significantly reduced.

Stern and Dill [8, 19] improve on the scheme by storing a 40 bit signature.
They also analyze the effect of using linear probing in combination with a uni-
versal class of hashing functions. Hash compaction is widely used because it has
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been shown that the omission probability is typically low; being much better
than one can give for testing or simulation.

Bloom filters [20, 9] are often even better than hash compaction (especially
for the preliminary analysis of the omission probability). However they have been
applied only recently to model checking [9], so their use is still not widespread.
Here a Bloom filter is used in place of a standard hash table. The signature is
then applied to the filter to set appropriate bits in the filter. The state is present
only when all of the corresponding bits, in this case the authors use three (3)
bits per state, are set in the filter.

In each of the above works, a state is considered present when the identical
signature is found to be represented in the visited state set, regardless of the
representation.

These kind of techniques, having a state omission probability greater than
zero, are often referred to as probabilistic model checking [9]. However, this term
has been recently and more properly used to indicate Markov Chain verifica-
tion [21]. Nevertheless, in this paper we will use the phrase “probabilistic model
checking” to signify techniques possibly leading to state omissions, such as hash
compaction and Bloom filters.

3 Precision-On-Demand Hashing for Model-Checking

In this section we present a depth-first search based model-checking algorithm
that includes POD Hashing. First, the necessary definitions. A Nondetermin-
istic Finite State System (shortened NFSS in the following) S is a 4-tuple
(S, I,A, next), where S is a finite set of states, I ⊆ S is the set of the ini-
tial states, A is a finite set of labels and next : S → 2S×A is a function taking
a state s as argument and returning a set next(s) of pairs (t, a) ∈ S × A. We
assume that next(s) is ordered for all s ∈ S.

Given an NFSS S = (S, I,A, next) and a safety property φ defined on states
(i.e., φ : S → {true, false}), we want to verify if φ holds on all the states of S
(i.e., for all s ∈ S, φ(s) holds).

This can be done both by depth first (DF) and by breadth first (BF) visit.
However, our methodology only applies to DF visit as previously discussed, so
we will deal with DF visit only. The algorithm in Fig. 1 shows a typical explicit
DF visit verifying if a given S satisfies a given φ. We assume that the visit in
Fig. 1 always take into consideration the order of next(s), i.e. the successor state
of a state s are expanded following the order given by next(s).

Our goal here is to improve state coverage of probabilistic model checking
techniques by lowering the number of omitted states. To this aim, we take ad-
vantage of an invariant property of DF visits, stated in Prop. 1.

Proposition 1. The DFS algorithm guarantees that when a state s is revisited,
the first successor3 (if any) of s would be a visited state. A state is said to be
‘visited’ if it is present in the visited state set (T in Fig. 1).

3 Remember that we assume the set of successors of s to be ordered for any s.
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LIFO_Stack S = ∅; /* DF stack */

HashTable T = ∅; /* for visited states */

/* Returns true iff φ holds in all the reachable states */

bool DFS(NFSS S, SafetyProperty φ)
{

let S = (S, I,A, next);
foreach s in I { /* visit each initial state s */

i f (! IfNotVisitedCheckPush (s, φ))
/* IfNotVisitedCheckPush returned false , thus s is

an error state and s does not satisfy φ */

return false;
while (S 6= ∅) { /* main loop */

(s, i) = Top(S); /* this does not modify the stack */

increment transition index on the top of the stack;

i f (|next(s)| <= i) {

/* unexplored successors exist */

(s_next , a) = i-th pair in next(s); /* next(s) is

ordered */

i f (! IfNotVisitedCheckPush (s_next , φ))
return false;

}

else /* all transitions from s have been expanded */

Pop(S); /* thus s is removed from the stack */

} /* while */ } /* foreach */

/* error not found , S satisfies φ */

return true;
} /* BFS() */

/* returns false if s is an error state (i.e. does not

satisfy φ), true otherwise */

bool IfNotVisitedCheckPush (state s, SafetyProperty φ)
{

i f (s is not in T) { /* s is a new state */

i f (!φ(s))
return false;

HashInsert(T, s);

Push(S, (s, 1)); /* the transition index is initialized

to 1 */

} /* otherwise s is already visited */

return true;
} /* IfNotVisitedCheckPush () */

Fig. 1. Standard DF Visit
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Note that Prop. 1 does not hold for BF visits. In fact, suppose that a state
s is revisited in a BFS; it could happen that s is still in the consumption queue.
In this case, none of its successors is in T (because s has not been expanded yet),
thus Prop. 1 does not hold for s. Also note that Prop. 1 does not hold for other
successors (if any) than the first successor. In fact, suppose that a state s is
revisited in a DFS; it could happen that s is still in the consumption stack S. In
this case, if we pick the n-th successor t of s, it could happen that s has been
reached again, starting from its first visit, via one of the n−1 successors preceding
t in next(s). This can be avoided only picking always the first successor.

POD-hashing exploits Prop. 1 in order to lower the omission probability and
regain some states that would be omitted with the standard techniques. The idea
is simple: before declaring a state s as already visited, which could lead to an
omission, we also check the chain of its first successors, up to a given maximum
length. If there exist one state in the chain which is not visited, then by Prop. 1
we can infer that s is a new (i.e. non-visited) state. States such as s would be
omitted by present-day methods. Omissions are less likely under POD-hashing
since s and its chain first successors need to be previously visited states in order
for POD-hashing to result in an omission.

POD-hashing is implemented simply by modifying function
IfNotVisitedCheckEnqueue of Fig. 1 as shown in Fig. 2. Note that the
user-supplied parameter podh i limits the length of the successors chain (the
precision demanded).

4 Experimental Results

To measure the effectiveness of our approach, we implemented a version of POD-
hashing both within the Murphi verifier [22] (on the top of hash compaction) and
in the 3Murphi verifier [10] (on the top of Bloom filters). We call the resulting
verifiers PODMurphi and POD3Murphi, respectively [23]. Our experiments are
geared to measure the improvements exactly, as we now discuss.

We first chose three medium-sized protocols p1, p2, p3 (having between 106

and 107 states; recall our discussions on size limitations in Section 1) from the
Murphi distribution, and we ran a complete (i.e. non-probabilistic) verification
on them. This allows us to know the exact number of states N(pi) for each
pi. Next, we ran verifications with the standard compression based techniques
(namely hash compaction or Bloom filters) as follows:

for hash compaction: the number of bits for the signature was varied from 2
up to 40, in increasing steps. As for the hash table, it is set to have xN ′(pi)
entries, where x varies from 1 to 3 with step .5, and N ′(pi) denotes the
next prime number after N(pi) (open addressing requires a prime number
of entries in the hash table). In this way, we vary the settings from the least
memory requirements to the wider ones;

for Bloom filters: we take advantage of a Bloom filters property, which allows
to determine, given an estimation of the number of states and the amount of
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bool IfNotVisitedCheckEnqueue(state s, SafetyProperty φ,
int podh_i)

{

res = s is in T;

res_next = true;
i f (res) {

/* don’t trust the signature , check first successors

chain */

s_tmp = s;

count = 1;

while (res_next && count <= podh_i) {

i f (|(s_next , a)| > 0) {

(s_next , a) = first pair in next(s_tmp);

res_next = s_next is in T;

count = count + 1;

s_tmp = s_next;

}

else
/* s has no successors */

res_next = false;
} /* no more than podh_i while iterations */

}

i f (!res || !res_next) {

/* s is surely new */

i f (!φ(s))
return false;

HashInsert(T, s);

Push(S, (s, 1));

}

/* otherwise it is assumed to be already visited (may

still be an omission ) */

return true;
} /* IfNotVisitedCheckEnqueue() */

Fig. 2. PODH algorithm
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available memory, which is the best number of bits for the Bloom filter [9]. We
reverse this computation – obtaining the amount of memory given a number
of bits and the estimation of the number of states. Note that we already
now the latter to be exactly N(pi). However, for the sake of completeness,
in our experiments we put the estimation of states to be xN(pi), for x =
1, 1.5, 2, 2.5, 3 as for the hash compaction case. In this way, we can again vary
the number of bits as for the hash compaction case, and vary the Bloom filter
size as well. This way, we are able to simulate the least memory requirements
first, followed by increasing amounts of memory.

Finally, for each verification using hash compaction (resp., Bloom Filters),
we also run 4 verifications with PODMurphi (resp., POD3Murphi). In these
4 verifications, the precision (i.e. the maximum length of the first successors
chain, that is podh i in Fig. 2) varies from 1 to 4; all the other options (number
of bits for the signature/Bloom filter, memory a/o number of entries in the hash
table) are the same. To keep the comparison fair we also fix the random values
computed to generate signatures and use the same values for all model-checking
runs.

Figs. 3, 4, 5 and 6 report the most meaningful results from our experiments.
The values used to generate these graphics are an average on the 3 protocols we
are considering; the full data may be found in App. A.

More in detail, Fig 3 (resp. 5) graphs the additional obtained state space
coverage w.r.t. standard hash compaction (resp. Bloom filter). To this aim,
the graphic has the number of entries in the hash table (resp. Bloom fil-
ter) on the x-axis (if the number is xN(pi), we simply report x), and
1

3

∑3

i=1
(Npod(x, pi)/Nh(x, pi) − 1) (resp. 1

3

∑3

i=1
(Npod(x, pi)/Nb(x, pi) − 1)) on

the y-axis, where:

– Npod(x, pi) is the number of states of the precision-on-demand verification
of pi with xN(pi) entries in the hash table (resp. Bloom filter);

– Nh(x, pi) (resp. Nb(x, pi)) is the number of states obtained with standard
hash compaction (resp. Bloom filters) with with xN(pi) entries.

As for Fig. 4 (resp. 6), it graphs the total state space coverage obtained
by the precision-on-demand algorithm on the top of hash compaction (resp.
Bloom filter). To this aim, the x-axis is the same as in Fig. 3 (resp. 5), and
1

3

∑
3

i=1
Npod(x, pi)/N(pi) on the y-axis, where:

– Npod(x, pi) is again the number of states of the precision-on-demand verifi-
cation of pi with xN(pi) entries in the hash table (resp. Bloom filter);

– N(pi) is the exact amount of reachable states for protocol pi.

W.r.t. all the experiments we carried out, Figs. 3, 4, 5 and 6 only show a
small (meaningful) part (see App. A for the complete data).

In fact, for our 3 protocols, existing algorithms (hash compaction and Bloom
filters) are already able to avoid omissions (or to very few ones) when using 20
bits or more. Since here we are interested in measuring our approach in a setting
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Fig. 3. Additional states for POD hash compaction (precision 1) w.r.t. standard hash
compaction
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Fig. 5. Additional states for POD Bloom filters (precision 1) w.r.t. Bloom filters
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Fig. 6. POD Bloom filters (precision 1) total coverage

where they may be really useful, i.e. where omissions do happen, we limit our
graphics to 10 bits.

Moreover, all the data in Figs. 3, 4, 5 and 6 are relative to precision (i.e.
podh i in Fig. 2) 1, since in this case we observe an acceptable time overhead of
80%. If we consider precision 2, coverage has small improvements, mainly due
to protocols not being large enough, and time overhead is more than 200%; for
precision 3 or higher, time overhead is completely unacceptable (see App. A).

However, from Figs. 3, 4, 5 and 6 it is clear that precision-on-demand hashing
may lead to meaningful state space coverage improvements with acceptable time
overheads, especially when the available RAM memory is barely enough to fit
the given state space, even if represented with a small number of bits (up to 5).
This can be obtained with small values of the precision - higher values lead to
unacceptable time overheads.

Finally, note that the gaits of the graphics are as naturally expected. In
Figs. 3, and 5, we have that the percentage of states “regained” by the precision-
on-demand approach decreases when the hash table/Bloom filter increases, thus
gaining more reliability; for the same reason, the percentage is higher for small
values of the number of bits. On the other hand, Figs. 4, and 6 the total cov-
erage naturally increases when enlarging the hash table/Bloom filter, since the
underlying hash compaction/Bloom filter algorithm improves its reliability; for
the same reason, the higher the value of the number of bits, the higher the
percentage of states regained.
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5 Concluding Remarks

We have presented a technique that increases the precision of probabilistic model
checking that is orthogonal to the compressed state representation. We have im-
plemented this algorithm in Murphi and 3Murphi for use with both the hash
compaction state signatures and bloom filter visited state set representation.
We have shown experimentally that Precision-On-Demand-Hashing may lead to
meaningful state space coverage with acceptable time overhead. This is partic-
ularly evident when the available RAM is barely enough to fit the given state
space. As errors are discrete and may be exhibited in a small fraction of the
overall state space this increase in coverage is of significant value.

Our experiments validate our intuitions that more precision is in fact possible
using existing probabilistic representations, however much work remains. Future
work includes a rigorous mathematical analysis of the algorithm proposed in
this paper. We also plan to explore heuristics to reduce the overhead of POD
Hashing. We also plan to apply POD Hashing to models that are intractable
under currently available memory to further validate the approach.

We have placed the code for our implementation of POD Hashing in a Mur-
phi distribution that is available from our web page at:
http://www.cs.utah.edu/formal verification/software/murphi/murphi.POD/.
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A Complete experimental results

In the following we show our complete experimental results. Tabs. 1, 2 and 3 show the
results for the comparison with hash compaction, while Tabs. 4 5, and 6 are for the
comparison with Bloom filters.

The meaning of the columns in Tabs. 1, 2, 3, 4, 5, and 6 is explained in the following:



15

entries: 1.0 entries: 1.5

Bits Pod |Sp|/|S| |Sp|/|Sh| − 1 tp/th − 1 |Sp|/|S| |Sp|/|Sh| − 1 tp/th − 1

2 0 0.703292 0 0 0.806334 0 0

2 1 0.783104 0.112023 1.015 0.864817 0.0720884 0.926916

2 2 0.795138 0.128485 2.19311 0.869918 0.0781937 2.26011

2 3 0.797432 0.131589 3.54318 0.870596 0.0790005 3.34186

2 4 0.797992 0.132345 4.64147 0.870705 0.0791309 4.31679

3 0 0.804049 0 0 0.887094 0 0

3 1 0.86048 0.0695989 0.909043 0.922467 0.0396999 0.826081

3 2 0.866496 0.0768605 1.82222 0.924359 0.0417842 1.65245

3 3 0.867462 0.0780169 3.20052 0.924551 0.0419955 3.07973

3 4 0.867565 0.0781413 3.53191 0.924574 0.0420214 3.34833

4 0 0.878763 0 0 0.937941 0 0

4 1 0.915374 0.0414452 1.00496 0.957874 0.0211959 1.14104

4 2 0.918074 0.0444541 1.68947 0.958505 0.0218606 1.85249

4 3 0.918363 0.0447749 2.70919 0.958541 0.0218976 2.48586

4 4 0.918394 0.0448093 3.44634 0.958543 0.0219003 3.30862

5 0 0.930181 0 0 0.967121 0 0

5 1 0.952361 0.0237765 0.811676 0.978088 0.0113272 0.782245

5 2 0.953395 0.024873 2.05643 0.978253 0.0114971 1.98282

5 3 0.953464 0.0249467 2.7676 0.978261 0.0115049 2.3752

5 4 0.953467 0.0249496 3.87569 0.978261 0.0115052 4.15267

10 0 0.997188 0 0 0.998934 0 0

10 1 0.998153 0.000967622 0.739666 0.99929 0.000355843 0.761308

10 2 0.998156 0.000970738 1.49267 0.99929 0.000355843 1.55173

10 3 0.998156 0.000970738 2.63475 0.99929 0.000355843 3.27359

10 4 0.998156 0.000970738 3.20584 0.99929 0.000355843 3.27383

20 0 0.999998 0 0 1 0 0

20 1 0.999998 5.9076e-07 0.873612 1 1.96393e-07 0.977131

20 2 0.999998 5.9076e-07 1.98169 1 1.96393e-07 2.02334

20 3 0.999998 5.9076e-07 2.53129 1 1.96393e-07 2.49458

20 4 0.999998 5.9076e-07 3.0901 1 1.96393e-07 3.17944

30 0 1 0 0 1 0 0

30 1 1 0 0.731591 1 0 0.762373

30 2 1 0 1.70497 1 0 1.60129

30 3 1 0 2.27051 1 0 2.68197

30 4 1 0 3.79598 1 0 3.5519

40 0 1 0 0 1 0 0

40 1 1 0 0.75266 1 0 0.67726

40 2 1 0 1.7396 1 0 1.66186

40 3 1 0 2.86081 1 0 2.77338

40 4 1 0 3.47984 1 0 3.24856

Table 1. Comparison of Precision-on-Demand Hashing with Hash Compaction (1)
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entries: 2.0 entries: 2.5

Bits Pod |Sp|/|S| |Sp|/|Sh| − 1 tp/th − 1 |Sp|/|S| |Sp|/|Sh| − 1 tp/th − 1

2 0 0.858276 0 0 0.889598 0 0

2 1 0.903199 0.05218 0.876686 0.925225 0.039956 0.849561

2 2 0.905869 0.0551982 2.15998 0.926941 0.0418431 2.04032

2 3 0.906184 0.0555536 3.18225 0.927075 0.0419897 3.14655

2 4 0.906217 0.0555905 4.22778 0.927094 0.0420109 3.38347

3 0 0.921071 0 0 0.940594 0 0

3 1 0.946671 0.0277363 0.839033 0.959892 0.0204752 0.818773

3 2 0.947682 0.0288182 1.68564 0.960491 0.0211075 1.6663

3 3 0.947736 0.0288767 3.02155 0.960518 0.0211348 2.68144

3 4 0.947739 0.0288797 3.35265 0.960526 0.0211432 3.29945

4 0 0.958399 0 0 0.967942 0 0

4 1 0.971977 0.0141431 0.940244 0.979245 0.0116827 0.881217

4 2 0.972252 0.0144272 2.07166 0.979387 0.0118279 2.04393

4 3 0.972256 0.0144324 2.69367 0.979391 0.0118315 2.55873

4 4 0.972257 0.0144327 3.25018 0.979389 0.0118298 3.2385

5 0 0.978649 0 0 0.984268 0 0

5 1 0.985602 0.00709713 0.781074 0.989442 0.00525285 0.745969

5 2 0.985691 0.00718819 1.56853 0.989482 0.00529335 1.53342

5 3 0.985692 0.00718875 2.36557 0.989482 0.0052938 2.43516

5 4 0.985692 0.00718875 3.54728 0.989482 0.00529396 3.29191

10 0 0.999291 0 0 0.999536 0 0

10 1 0.999532 0.000240896 0.736728 0.999685 0.000149222 0.692695

10 2 0.999532 0.000240896 1.51674 0.999685 0.000149248 1.44668

10 3 0.999532 0.000240896 2.95448 0.999685 0.000149248 2.76894

10 4 0.999532 0.000240896 3.14308 0.999685 0.000149248 3.01792

20 0 0.999999 0 0 1 0 0

20 1 1 2.34677e-07 0.999357 1 2.60752e-08 0.759468

20 2 1 2.34677e-07 2.01603 1 2.60752e-08 1.85639

20 3 1 2.34677e-07 2.79974 1 2.60752e-08 2.84422

20 4 1 2.34677e-07 3.1633 1 2.60752e-08 3.00291

30 0 1 0 0 1 0 0

30 1 1 0 0.808604 1 0 0.773071

30 2 1 0 1.8136 1 0 1.90854

30 3 1 0 2.93716 1 0 2.94077

30 4 1 0 3.53742 1 0 3.5305

40 0 1 0 0 1 0 0

40 1 1 0 0.673548 1 0 0.796757

40 2 1 0 1.62326 1 0 1.46002

40 3 1 0 2.73104 1 0 2.85476

40 4 1 0 3.44992 1 0 3.14522

Table 2. Comparison of Precision-on-Demand Hashing with Hash Compaction (2)
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entries: 3.0

Bits Pod |Sp|/|S| |Sp|/|Sh| − 1 tp/th − 1

2 0 0.910214 0 0

2 1 0.939126 0.0316714 0.834185

2 2 0.94032 0.0329601 1.68886

2 3 0.940369 0.0330124 2.83719

2 4 0.940382 0.0330262 3.33393

3 0 0.952533 0 0

3 1 0.968001 0.0162082 0.813883

3 2 0.968358 0.0165794 1.63708

3 3 0.968382 0.0166045 2.73781

3 4 0.968382 0.0166048 3.27964

4 0 0.975472 0 0

4 1 0.983644 0.00836972 0.986545

4 2 0.983737 0.00846424 2.02297

4 3 0.983739 0.00846605 2.48981

4 4 0.98374 0.00846678 3.27215

5 0 0.987439 0 0

5 1 0.991592 0.0042031 0.667249

5 2 0.991616 0.00422678 1.40931

5 3 0.991611 0.00422235 2.927

5 4 0.991611 0.00422235 3.27835

10 0 0.999608 0 0

10 1 0.99972 0.00011156 0.953296

10 2 0.99972 0.00011156 1.85133

10 3 0.99972 0.00011156 2.7558

10 4 0.99972 0.00011156 2.95363

20 0 1 0 0

20 1 1 6.19209e-08 0.895715

20 2 1 6.19209e-08 1.8668

20 3 1 6.19209e-08 2.63149

20 4 1 6.19209e-08 3.03621

30 0 1 0 0

30 1 1 0 0.734951

30 2 1 0 1.85589

30 3 1 0 2.86061

30 4 1 0 3.37047

40 0 1 0 0

40 1 1 0 0.859386

40 2 1 0 1.55097

40 3 1 0 3.0275

40 4 1 0 3.52515

Table 3. Comparison of Precision-on-Demand Hashing with Hash Compaction (3)
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entries: 1.0 entries: 1.5

Bits Pod |Sp|/|S| |Sp|/|Sh| − 1 tp/th − 1 |Sp|/|S| |Sp|/|Sh| − 1 tp/th − 1

2 0 0.438143 0 0 0.572188 0 0

2 1 0.53334 0.212646 1.20936 0.667714 0.163982 1.18678

2 2 0.562415 0.2757 2.36827 0.688856 0.199214 2.16163

2 3 0.572801 0.298144 3.49464 0.695005 0.209341 3.15827

2 4 0.577416 0.308009 5.19132 0.697137 0.212861 4.45959

3 0 0.754046 0 0 0.879117 0 0

3 1 0.818918 0.0851844 0.92227 0.915896 0.0416548 0.767852

3 2 0.827769 0.0965707 1.83692 0.91843 0.0444737 1.61534

3 3 0.829371 0.0985943 2.71971 0.918667 0.0447367 2.56281

3 4 0.829694 0.0989982 3.61386 0.918703 0.0447763 3.17761

4 0 0.858871 0 0 0.943548 0 0

4 1 0.900472 0.0482113 0.874019 0.962353 0.0199226 0.874174

4 2 0.904401 0.0527332 1.69701 0.963308 0.0209344 1.6143

4 3 0.904917 0.0533265 2.87222 0.963395 0.0210259 2.76474

4 4 0.904972 0.0533899 3.37262 0.9634 0.021031 3.22122

5 0 0.925045 0 0 0.981854 0 0

5 1 0.946483 0.0232112 0.803756 0.988303 0.00656701 0.902938

5 2 0.947405 0.024189 1.68442 0.988382 0.00664743 1.58054

5 3 0.947456 0.0242422 2.4105 0.988384 0.00664914 2.34536

5 4 0.947459 0.0242458 3.60145 0.988384 0.00664914 3.24667

10 0 0.993524 0 0 0.999611 0 0

10 1 0.995631 0.00212191 0.743393 0.999769 0.000157698 0.748728

10 2 0.995647 0.00213793 1.56647 0.999769 0.000157698 1.6114

10 3 0.995647 0.00213796 2.30424 0.999769 0.000157698 2.34014

10 4 0.995647 0.00213796 3.09751 0.999769 0.000157698 3.10352

20 0 0.999974 0 0 1 0 0

20 1 0.999982 9.18992e-06 0.789389 1 0 0.738838

20 2 0.999982 9.18992e-06 1.50385 1 0 1.6043

20 3 0.999982 9.18992e-06 2.51549 1 0 2.57089

20 4 0.999982 9.18992e-06 3.09331 1 0 3.05422

30 0 0.999999 0 0 1 0 0

30 1 0.999999 3.65053e-07 0.603338 1 0 0.71637

30 2 0.999999 3.65053e-07 1.32936 1 0 1.48357

30 3 0.999999 3.65053e-07 2.07767 1 0 2.28913

30 4 0.999999 3.65053e-07 2.81281 1 0 3.05678

40 0 1 0 0 1 0 0

40 1 1 2.60752e-08 0.727988 1 0 0.740912

40 2 1 2.60752e-08 1.51601 1 0 1.52486

40 3 1 2.60752e-08 2.26129 1 0 2.32947

40 4 1 2.60752e-08 3.28018 1 0 3.09854

Table 4. Comparison of Precision-on-Demand Hashing with Bloom Filters (1)
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entries: 2.0 entries: 2.5

Bits Pod |Sp|/|S| |Sp|/|Sh| − 1 tp/th − 1 |Sp|/|S| |Sp|/|Sh| − 1 tp/th − 1

2 0 0.668632 0 0 0.739739 0 0

2 1 0.753685 0.125382 1.00679 0.811539 0.0959362 0.953835

2 2 0.768075 0.145993 1.99478 0.821253 0.108635 1.89413

2 3 0.771276 0.150538 2.90655 0.822969 0.110852 2.80648

2 4 0.772206 0.151852 4.32951 0.823368 0.111366 4.01024

3 0 0.931837 0 0 0.958353 0 0

3 1 0.953438 0.0231222 0.755483 0.971895 0.0141057 0.76853

3 2 0.954383 0.0241253 1.57541 0.972257 0.0144811 1.60172

3 3 0.954424 0.0241683 2.34387 0.972267 0.0144913 2.36475

3 4 0.954428 0.0241725 3.29088 0.972268 0.0144918 3.18483

4 0 0.972027 0 0 0.988558 0 0

4 1 0.980363 0.00858171 0.781614 0.992339 0.00382321 0.784588

4 2 0.98054 0.00876388 1.54939 0.992371 0.0038557 1.64133

4 3 0.980544 0.00876805 2.78596 0.992372 0.00385649 2.67791

4 4 0.980544 0.00876805 3.36565 0.992372 0.00385649 3.41322

5 0 0.991065 0 0 0.997403 0 0

5 1 0.993656 0.00261591 0.756606 0.998289 0.00088833 0.777048

5 2 0.993665 0.00262505 1.58453 0.998291 0.000891171 1.54864

5 3 0.993665 0.00262505 2.31823 0.998291 0.000891171 2.31146

5 4 0.993665 0.00262505 3.1294 0.998291 0.000891171 3.14673

10 0 0.999939 0 0 0.999995 0 0

10 1 0.999958 1.9428e-05 0.724544 0.999996 1.37628e-06 0.757414

10 2 0.999958 1.9428e-05 1.49093 0.999996 1.37628e-06 1.51457

10 3 0.999958 1.9428e-05 2.51567 0.999996 1.37628e-06 2.6795

10 4 0.999958 1.9428e-05 3.01134 0.999996 1.37628e-06 3.10818

20 0 1 0 0 1 0 0

20 1 1 0 0.717159 1 0 0.74054

20 2 1 0 1.4755 1 0 1.4802

20 3 1 0 2.55631 1 0 2.57719

20 4 1 0 3.03625 1 0 3.05374

30 0 1 0 0 1 0 0

30 1 1 0 0.698274 1 0 0.73348

30 2 1 0 1.49096 1 0 1.49391

30 3 1 0 2.19317 1 0 2.22515

30 4 1 0 3.76203 1 0 3.43162

40 0 1 0 0 1 0 0

40 1 1 0 0.744917 1 0 0.741504

40 2 1 0 1.50784 1 0 1.53266

40 3 1 0 2.34085 1 0 2.21374

40 4 1 0 3.07698 1 0 3.00522

Table 5. Comparison of Precision-on-Demand Hashing with Bloom Filters (2)
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entries: 3.0

Bits Pod |Sp|/|S| |Sp|/|Sh| − 1 tp/th − 1

2 0 0.790984 0 0

2 1 0.851715 0.0761798 0.903338

2 2 0.858164 0.0840734 1.81475

2 3 0.859052 0.0851526 2.64127

2 4 0.859216 0.0853513 4.09065

3 0 0.972073 0 0

3 1 0.981652 0.0098517 0.767619

3 2 0.981816 0.0100193 1.57453

3 3 0.981819 0.0100225 2.32147

3 4 0.981819 0.0100225 3.19358

4 0 0.992619 0 0

4 1 0.995274 0.00267536 0.775379

4 2 0.995293 0.00269353 1.54261

4 3 0.995293 0.00269363 2.68069

4 4 0.995293 0.00269363 3.30014

5 0 0.99808 0 0

5 1 0.998645 0.000566235 0.771267

5 2 0.998646 0.000566405 1.6054

5 3 0.998646 0.000566405 2.31176

5 4 0.998646 0.000566405 3.12056

10 0 0.999996 0 0

10 1 0.999997 2.87627e-07 0.762402

10 2 0.999997 2.87627e-07 1.515

10 3 0.999997 2.87627e-07 2.57783

10 4 0.999997 2.87627e-07 3.11525

20 0 1 0 0

20 1 1 0 0.73925

20 2 1 0 1.4727

20 3 1 0 2.31244

20 4 1 0 3.04259

30 0 1 0 0

30 1 1 0 0.754957

30 2 1 0 1.51936

30 3 1 0 2.67128

30 4 1 0 3.23514

40 0 1 0 0

40 1 1 0 0.760657

40 2 1 0 1.53989

40 3 1 0 2.26966

40 4 1 0 3.54911

Table 6. Comparison of Precision-on-Demand Hashing with Bloom Filters (3)
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Bits: number of bits for the signature/Bloom filter;
Pod: precision for the Precision-On-Demand algorithm, that is podh i in Fig. 2;
|Spod|/|S|: number of states computed with the corresponding precision and number

of bits, divided by the total number of states (without omissions). The values in
the table are an average between the 3 protocols we chose. More in detail, the value
in each entry is 1

3

P

3

i=1
Npod(pi)/N(pi), where Npod(pi) is the number of states of

the precision-on-demand verification of pi, made with the corresponding precision
and number of bits. This entry gives the total obtained state space coverage;

|Spod|/|Sh| − 1 (resp. |Spod|/|Sb| − 1): number of states computed with the corre-
sponding precision and number of bits, divided by the number of states obtained
with hash compaction (resp. Bloom filters) with the same number of bits. Then, 1
is subtracted to give only the ratio of states which are added by the precision on
demand algorithm. The values in the table are an average between the 3 protocols
we chose. More in detail, the value in each entry is 1

3

P

3

i=1
(Npod(pi)/Nh(pi) − 1)

(resp. 1

3

P

3

i=1
(Npod(pi)/Nb(pi) − 1)), where Npod(pi) is as described earlier, and

Nh(pi) (resp. Nb(pi)) is the number of states obtained with hash compaction (resp.
Bloom filters) with the corresponding number of bits. This entry gives the addi-
tional obtained state space coverage w.r.t. standard techniques;

tpod/th − 1 (resp. tpod/tb − 1): computation time observed with the corresponding
precision and number of bits, divided by the computation time obtained with
hash compaction (resp. Bloom filters) with the same number of bits. Then, 1
is subtracted to give only the time overhead required by the precision on de-
mand algorithm. The values in the table are an average between the 3 protocols
we chose. More in detail, the value in each entry is 1

3

P

3

i=1
(tpod(pi)/th(pi) − 1)

(resp. 1

3

P

3

i=1
(tpod(pi)/tb(pi) − 1)), where tpod(pi) is the computation time of the

precision-on-demand verification of pi, made with the corresponding precision and
number of bits, and th(pi) (resp. tb(pi)) is the computation time obtained with
hash compaction (resp. Bloom filters) with the corresponding number of bits. This
entry gives the computational time overhead w.r.t. standard techniques.


