
The Method of Generated Solutions
for Numerical Verification of ICE

Code

Amjidanutpan Ramanujam, Christopher
Sikorski, Todd Harman*

UUCS-07-006

School of Computing
University of Utah

Salt Lake City, UT 84112 USA

*Department of Mechanical Engineering
University of Utah

Salt Lake City, UT 84112 USA

Abstract

Method of Manufactured Solutions (MMS) is a widely used technique to verify conver-
gence and possible coding errors in numerical algorithms. This method involves designing
analytical solutions satisfying the governing equations that are solved by the numerical al-
gorithm. The solutions investigated by MMS may not resemble the physical solutions. In
order to overcome this limitation, we propose a new verification technique called Method
of Generated Solutions (MGS). The MGS method designs its analytical solutions by ap-
proximating or interpolating discrete data from the solver or data measurements from phys-
ical experiments. This can be achieved using appropriate mathematical techniques such as
spline interpolation or least-squares approximation. The analytical solutions obtained in
that way will closely resemble the physical solutions. Hence, the verification results based
on these analytical solutions will provide us with an accurate benchmark of the solver’s
capabilities. The proposed MGS method is implemented and utilized to verify ICE (Im-
plicit, Continuous fluid, Eulerian), a semi-implicit finite volume solver, that simulates fluid
phenomena.

Floating point analysis of the time-stepping summations in the ICE algorithm was also
performed. The condition numbers of such summations are evaluated and possible use of
a corrective summation algorithm was explored.

1 Introduction

Numerical verification is a procedure to demonstrate that the governing equations, as im-
plemented in the code, are solved consistently [1]. Roache [2] defines code verification
process as:

“The [code] author defines precisely what continuum partial differential equa-
tions and continuum boundary conditions are being solved, and convincingly
demonstrates that they are solved correctly, i.e., usually with some order of ac-
curacy, and always consistently, so that as some measure of discretization (e.g.
the mesh increments) ∆ → 0, the code produces a solution to the continuum
equations; this is Verification.”

Verification of a numerical solver is performed to ensure that the solver satisfies the theo-
retical order of accuracy while solving the corresponding set of equations.

Validation is also a testing method for ensuring correctness of a solver. But verification dif-
fers from validation in the following respect, validation is a process to find how close the
equations that we solve represent a real world model. Validations are typically performed
by comparing the results obtained from the solver and a physical experiment. Whereas, ver-
ification ensures that the solver solves the designed model within the allowed error limits.
Additionally, code verification is not concerned with asking if the best numerical method
is being used to solve the problem [1]. Such optimality questions are the subject of com-
putational complexity theory.

Verification is performed by comparing the numerical solutions from the solver against the
exact solutions. Verification becomes harder for solvers dealing with the class of problems
whose exact solutions are not readily available. A classic example of such a problem is
given by the Navier-Stokes equations that need to be solved numerically in order to simulate
fluid phenomena.

1.1 Previous Work and Limitations

Some of the widely used techniques to verify numerical solvers are explained below.

1.1.1 Method of Exact Solutions

Method of Exact Solutions(MES) [1] is a well known method for verifying numerical code.
The exact solution to the set of equations is derived using mathematical methods such
as integral transform techniques, separation of variables etc. The derived solution is a
mathematical expression that provides us with the solution at all locations in space and
time. Suppose one is solving a differential equation of the form,

Du = g (1)

where D is the differential operator, u is the solution and g is a source term. In the MES
method, one chooses a function g and then using methods from classical applied mathe-
matics, inverts operator D to solve for u.

The major drawback of this MES procedure is that if the differential operator D is non-
linear in nature, the exact inversion operator is unknown or extremely difficult to obtain.
Additionally, if the exact solutions are obtained using laplace transforms, it is extremely
difficult to implement them in a computer program. Finally, the exact solutions may contain
singularities which are impossible to verify due to practical limitations on the number of
grid points.

1.1.2 Method of Manufactured Solutions

Method of Manufactured Solutions (MMS) [3][4] is a widely used approach to verify nu-
merical solvers. A manufactured solution is an exact solution to the set of PDE’s that has
been constructed by solving the problem backwards. For equation (1), the MMS method
manufactures the u using arbitrary mathematical functions (say, trigonometric) and then
the operator D is applied to find g. This is a much simpler procedure than MES since it
does not involve inversion of any operators (non-linear or otherwise).

One of the major limitations of this procedure is that the solutions picked by the MMS
method are arbitrary in nature. These solutions may not represent the true nature of the
physical solutions that are being simulated. The effect of this drawback will be more pro-
nounced if the solver utilizes a gradient limiter 1 to suppress the unnatural oscillations and

1Higher order methods are prone to introduce oscillations at places where the gradient of a quantity
changes rapidly. In order to eliminate such unnatural oscillation, gradient limiters will try to reduce the order
of the solver to keep the values bounded. This can be implemented by investigating the cell centered and the
face-centered values in the surrounding cells. The gradient limiter scheme implemented in ICE is prescribed
by Van Leer[5] method.

overshoots in the solution.

1.2 Research Contributions

To overcome the above limitation, we propose a new verification method called Method
of Generated Solutions (MGS) [6]. The MGS method is designed to verify computational
performance of differential and/or integral equation solvers on exact (analytic) solutions
that resemble physical solutions. In order to evaluate our technique, the ICE algorithm is
verified using our method and the order of accuracy of ICE is computed for various prob-
lems. The verification results show that the ICE solver’s discretization errors are problem
specific.

2 Method of Generated Solutions

Physical phenomena such as fluid flow are simulated numerically by solving a system of
partial differential equations using some discrete approximation method.

Method of Generated Solutions (MGS) is a technique proposed in [6] to verify such nu-
merical solvers.

Let us consider equation (1)
Du = g

The steps in verifying a solver using MGS method are as follows:

1. An approximate solution u1 to the problem described in (1) is obtained either by a
computational algorithm or by measurements of physical data.

2. The data from u1 is approximated or interpolated using an appropriate technique such
as least-squares approximation or spline interpolation. This results in an analytical
expression that provides us with values at all spatial and temporal locations.

3. The differential operator D is applied to the function resulting from step 2. The exact
analytical differentiation can be performed on u1 to get the corresponding forcing
functions g1.

4. This process yields a new problem

Du1 = g1 (2)

whose exact solution u1 and source terms g1 are available.

5. The new problem (2) is now solved by the numerical solver using the forcing func-
tions generated in step 3.

6. The resulting solution u2 is then compared with the exact solution u1 to quantify the
errors introduced by the solver.

This verification process is explained as a flow diagram shown in Fig. 1.

3 Problem Description

MGS method has the ability to verify numerical solvers that have problem dependent con-
vergence rate. The ICE (Implicit, Continuous fluid, Eulerian) algorithm [7] [8] developed
at University of Utah by the C-SAFE (Center for Simulation of Accidental Fires and Ex-
plosion) [9] research group is one such solver and hence, chosen to verify using MGS. ICE
algorithm developed by C-SAFE is a cell-centered, finite volume, multi-material version of
a numerical algorithm developed by Kashiwa et. al. [10].

The ICE algorithm is utilized by C-SAFE to simulate explosions, fires and other fluid
phenomena. One of the features of ICE is the use of gradient limiter to suppress unnatural
oscillations introduced by the higher-order numerical methods. The effects of gradient
limiter depend upon the profile of the problem that is being solved, which in turn affects
the order of accuracy of the solving process. This property makes ICE an appropriate
candidate for verification using MGS.

The ICE algorithm has several modules to solve a multitude of problems. Since an ex-
haustive verification of all possible problems is impractical, we decided to perform a hi-
erarchical way of verifying individual modules. As a first step towards this approach, the
Advect and Advance in Time(AAT) module in ICE was chosen. This module computes
the material derivative of a physical quantity such as energy, pressure, mass, momentum
and passive scalar. This operator is chosen for our verification purpose for the following
reasons:

Figure 1: Verification Process Using MGS Method

1. The advection operator is an integral part of ICE as it is invoked five times per
timestep during full-scale fluid simulations. Hence, the accuracy of this operator
is critical.

2. The advection operator is relatively simple to verify, since it solves only one govern-
ing equation.

In order to isolate the AAT module, the advection of a passive scalar is employed as our
verification experiment. The profile of the passive scalar can be defined using an analytical
function such as a cubic polynomial, trigonometric function and a bell-shaped exponential
function. The governing equation for our experiment solved by the AAT module is as
follows:

d

dt
(PS(x, t)) + Ux

d

dx
(PS(x, t)) = g(x, t) (3)

where,
PS(x, t) − Passive Scalar

Ux − Constant Velocity in the x-direction
g(x, t) − Source terms

By comparing the governing equation (3) with equation (1), we arrive at the differential
operator as follows:

D =
d

dt
+ Ux

d

dx
(4)

Since D is of degree one, the analytical solution resulting from the approximation/interpolation
needs to be at least C1 continuous. To satisfy this constraint, a cubic spline interpolation
is chosen to generate the analytical functions. The results from the interpolation are piece-
wise cubic polynomials, that are C2 continuous.

4 Implementation

To verify the AAT module, the MGS method is implemented in three modules:

1. A module to extract suitable information for the MGS method from the input data –
Input Module

2. A module to interpolate the data fed from the input module and compute the MGS
source terms – Interpolation Module

3. A module to replace ICE source terms with the MGS source terms in order to com-
pute numerical solution – ICE Module.

4.1 Input Module

Either an approximate solution from a numerical solver or measurements from a phys-
ical experiment can be used by the MGS method. Highly resolved data from physical
experiments are a practical rarity, hence this remains a theoratical possibility. For our ex-
periments, we chose the approximate solution from ICE to build our analytical solution.
This initial data from ICE is available in the form of a binary file. This binary file contains
values of various parameters (pressure, velocity, etc) that are computed by ICE. The values
for required parameters can be read from these files using a utility called lineextract. The
extracted values are used as input to the interpolation module for further computation.

4.2 Interpolation Module

The data from the input module is interpolated using natural cubic splines to design the
exact solutions. This module computes the cubic splines and its gradients at the specified
spatial/temporal locations. These gradients are then used to compute the source terms (rhs)
g(x,t) in equation (3).

4.3 ICE Module

This module replaces the source terms computed by ICE with the source terms from the
MGS module. Using these new source terms, the solver proceeds to solve the problem
numerically. The results from these computations are then compared with the original
solution.

The experiments conducted using this framework are explained in the subsequent section.

5 Numerical Experiments

The experiments conducted for this verification procedure are designed to quantify the
discretization error of the AAT module and subsequently verify the observed order-of-
accuracy of the spatial derivative.

The governing equations can be discretized by dividing the domain of the problem into fi-
nite cells. The approximate solution, that satisfies the discretized equations, is not the same
as the exact solution that satisfies the mathematical continuum equations. The difference
between the two is called the discretization error [1]. The discretization error is evaluated
by computing the normalized L-2 norm or the L-∞ norm of the difference between the ap-
proximate solution computed by ICE and the exact solution designed by the MGS method.
The normalized global error using L2 norm for a uniform grid of size N cells is given by,

L2 =

√

√

√

√

1

N

N
∑

n=1

(un − Un)2 (5)

The L-∞ norm is defined by the following equation

L
∞

= max(un − Un) (6)

where,
un − Exact Solution evaluated at xn, yn, zn

Un − Approximate solution of the discretized equation

The discretization methods are consistent if the error goes to zero as the representative cell
size h decreases to zero. The rate at which the error decreases to zero is called the order-
of-accuracy[1]. By running the experiments for different mesh sizes h and computing the
global error for each mesh we can estimate the observed order-of-accuracy.

Setup: The goal of our experiments is to verify the order of accuracy of the spatial deriva-
tive in the AAT module. The theoretical order of accuracy of the AAT module is second
order in space and first order in time. In order to verify the second order accuracy of the
spatial derivative, we halved the grid cell size to check if the errors reduce by a factor of 4.
For this purpose, the errors introduced by the temporal derivative must be separated from
the spatial errors. This can be achieved by reducing the time step-size ∆t to be smaller

than the square of the grid cell size ∆x2. The experiment used to verify the AAT mod-
ule is the advection of a passive scalar in a computational domain with constant velocity.
Since the performance of the AAT module is impacted by the gradient-limiters in ICE, the
order-of-accuracy for the spatial derivative may not be of second order. Hence, the mesh
refinement is performed on various passive scalar profiles to study the order-of-accuracy
for different problems. For our verification experiments, the profile of the passive scalar is
chosen to represent some of the common forms of analytical functions such as trigonomet-
ric, polynomial and exponential. The following parameters are common for all three types
of profiles:

• Computational Domain is one dimensional in X-direction from -0.5 to 0.5 meters.

• Advection rate of passive scalar is 10m/s in X-direction

• Time step size ∆t = 10−6

• Number of time-steps in experiment = 100

• The input data (from experiment or Solver) to the MGS module is from the highest
resolution run (800). The source terms for the lower resolutions are computed from
the same exact solution since it is defined by the analytical function designed using
the MGS method.

• The experiments are repeated for the following grid resolutions 100, 200, 400, and
800 corresponding to ∆x values 1 × 10−2, 0.5 × 10−2, 0.25 × 10−2, 0.125 ×
10−2, 0.625 × 10−3 respectively.

The source terms (g(x,t)) are computed using the MGS method from two different input
sources, namely, the exact solution and the ICE solution. The exact solution is the data
generated using the analytical function as described in equations (7) (8) and (9). The ICE
solution is the data from the discretized solution computed by ICE for a resolution of 800
grid cells in the computational domain.

The plot of the gradient limiter shown in conjunction with the profile are the points in the
computational domain where the gradient-limiter has detected high gradients. The second-
order solver will be made first-order at those cells to suppress the over shoot.

5.1 Sinusoidal

The trigonometric function chosen to initialize the sinusoidal profile between -0.1 and +0.1
is described by the following equation,

f(x) = sin

[

2πν ×

(

x + 0.1

0.2

)]

(7)

where,
ν = Frequency(1.0)

The profile of the sinusoidal function initialized at time t = 0 is shown in figure 2.

The experiments are repeated for different cell sizes as explained earlier. The results from
these experiments are shown in fig(3) and fig(4).

5.2 Cubic Polynomial

Two piece-wise cubic polynomials are juxtaposed to create a pseudo-bell curve shape. The
cubic polynomial is defined between -0.1 and +0.1 and it is defined by the following equa-
tion.

f(x) =















−

(

4

3

)

× d3 + d2 d <= 0.5

−

(

4

3

)

× (1.0 − d)3 + (1.0 − d)2 d > 0.5
(8)

where,

d =

(

x + 0.1

0.2

)

The profile of the cubic polynomial function initialized at time t = 0 is shown in figure 5.

The results from the mesh refinement experiment are shown in fig(6) and fig(7).

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−1

−0.5

0

0.5

1
(a)

sc
al

ar

x

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

gr
ad

ie
nt

Li
m

ite
r sc

al
ar

x

(c)

Figure 2: Sinusoidal Profile
(a) The profile of the sine function when initialized at t = 0
(c) The behavior of gradient limiter

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6
x 10

−3

Timesteps

E
rr

or

(a)

L2−norm
L−∞ norm

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7
x 10

−3

Timesteps

E
rr

or

(b)

L2−norm
L−∞ norm

0 10 20 30 40 50 60 70 80 90 100
0

0.002

0.004

0.006

0.008

0.01

0.012

Timesteps

E
rr

or

(c)

L2−norm
L−∞ norm

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

Timesteps

E
rr

or

(d)

L2−norm
L−∞ norm

Figure 3: Discretization error as a function of time for sinusoidal profile using source terms
from analytical function (a) Resolution = 100 ∆x = 0.01m
(b) Resolution = 200 ∆x = 0.005m
(c) Resolution = 400 ∆x = 0.0025m
(d) Resolution = 800 x = 0.00125m

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6
x 10

−3

Timesteps

E
rr

or

(a)

L2−norm
L−∞ norm

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9
x 10

−3

Timesteps

E
rr

or

(b)

L2−norm
L−∞ norm

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6
x 10

−3

Timesteps

E
rr

or

(c)

L2−norm
L−∞ norm

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−3

Timesteps

E
rr

or

(d)

L2−norm
L−∞ norm

Figure 4: Discretization error as a function of time for sinusoidal profile using source terms
from solver’s solution
(a) Resolution = 100 ∆x = 0.01m
(b) Resolution = 200 ∆x = 0.005m
(c) Resolution = 400 ∆x = 0.0025m
(d) Resolution = 800 ∆x = 0.00125m

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.02

0.04

0.06

0.08

0.1
(a)

sc
al

ar

x

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

gr
ad

ie
nt

Li
m

ite
r sc

al
ar

x

(c)

Figure 5: Cubic Profile
(a) The profile of the cubic polynomial when initialized at t = 0
(c) The behavior of gradient limiter

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−4

Timesteps

E
rr

or

(a)

L2−norm
L−∞ norm

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6
x 10

−5

Timesteps

E
rr

or

(b)

L2−norm
L−∞ norm

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3
x 10

−5

Timesteps

E
rr

or

(c)

L2−norm
L−∞ norm

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−5

Timesteps

E
rr

or

(d)

L2−norm
L−∞ norm

Figure 6: Discretization error as a function of time for cubic polynomial profile using
source terms from analytical function
(a) Resolution = 100 ∆x = 0.01m
(b) Resolution = 200 ∆x = 0.005m
(c) Resolution = 400 ∆x = 0.0025m
(d) Resolution = 800 ∆x = 0.00125m

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−4

Timesteps

E
rr

or

(a)

L2−norm
L−∞ norm

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6
x 10

−5

Timesteps

E
rr

or

(b)

L2−norm
L−∞ norm

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−5

Timesteps

E
rr

or

(c)

L2−norm
L−∞ norm

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−5

Timesteps

E
rr

or

(d)

L2−norm
L−∞ norm

Figure 7: Discretization error as a function of time for cubic polynomial profile using
source terms from solver’s solution
(a) Resolution = 100 ∆x = 0.01m
(b) Resolution = 200 ∆x = 0.005m
(c) Resolution = 400 ∆x = 0.0025m
(d) Resolution = 800 ∆x = 0.00125m

5.3 Exponential

The exponential function chosen for describing the third profile is explained below.

f(x) = 4.5469432 × exp

(

−1.0

d(1 − d)

)

(9)

where,

d =

(

x + 0.1

0.2

)

The profile of the exponential function initialized at time t = 0 is shown in figure 8.

The results from the mesh refinement experiment are shown in fig(9) and fig(10).

5.4 Analysis

The results from the experiments clearly indicate that the order-of-accuracy of the AAT
module depends upon the problem that is being solved. Using a finer mesh to solve the
problem results in a better quality of the solution. This can be verified by observing the
decrease in global error for decrease in ∆x.

The spatial order-of-accuracy that is evaluated using the following formula:

p ≈ log

(

Egrid1

Egrid2

)

/ log (r) (10)

where,

p − Observed order of accuracy (11)

Egrid1 − The global discretized error from resolution 1

Egrid2 − The global discretized error from resolution 2

r − refinement ration between grid size 1 and grid size 2

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.02

0.04

0.06

0.08

0.1

x

(a)

sc
al

ar

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

gr
ad

ie
nt

Li
m

ite
r sc

al
ar

x

(c)

Figure 8: Exponential Profile
(a) The profile of the exponential function when initialized at t = 0
(c) The behavior of gradient limiter

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5
x 10

−4

Timesteps

E
rr

or

(a)

L2−norm
L−∞ norm

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9
x 10

−5

Timesteps

E
rr

or

(b)

L2−norm
L−∞ norm

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−5

Timesteps

E
rr

or

(c)

L2−norm
L−∞ norm

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−5

Timesteps

E
rr

or

(d)

L2−norm
L−∞ norm

Figure 9: Discretization error as a function of time for exponential profile using source
terms from analytical function
(a) Resolution = 100 ∆x = 0.01m
(b) Resolution = 200 ∆x = 0.005m
(c) Resolution = 400 ∆x = 0.0025m
(d) Resolution = 800 ∆x = 0.00125m

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5
x 10

−4

Timesteps

E
rr

or

(a)

L2−norm
L−∞ norm

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8
x 10

−5

Timesteps

E
rr

or

(b)

L2−norm
L−∞ norm

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6
x 10

−5

Timesteps

E
rr

or

(c)

L2−norm
L−∞ norm

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−5

Timesteps

E
rr

or

(d)

L2−norm
L−∞ norm

Figure 10: Discretization error as a function of time for exponential profile using source
terms from solver’s solution
(a) Resolution = 100 ∆x = 0.01m
(b) Resolution = 200 ∆x = 0.005m
(c) Resolution = 400 ∆x = 0.0025m
(d) Resolution = 800 ∆x = 0.00125m

The discretized errors (Egrid1 and Egrid2) are computed using the formula given in equation
5. The order-of-accuracy obtained from the consequtive resolution pairs are averaged to
obtain the following.

Table 1: Order-of-Accuracy of the spatial derivative in the AAT module

Profile Source Type Order-of-Accuracy

Analytical Sources 1.3038
Sinusoidal

ICE Sources 1.245

Analytical Sources 1.895
Cubic Polynomial

ICE Sources 1.808

Analytical Sources 1.919
Exponential

ICE Sources 1.807

The order of the AAT module is close to second-order accurate for smooth profiles with
continuous derivatives. The poor performance of the module while solving sinusoidal pro-
file is because the derivative of the profile is not C1 continuous. Also the sinusoidal profile
invokes the gradient limiter more frequently than the cubic polynomial and the exponential
profile.

6 Conclusion

The Method of Generated Solutions was developed to evaluate the discretization errors in
ICE. The MGS method designs analytical solutions by interpolating numerical solutions
from the solver or data measurements from physical experiments. Since the solutions pro-
duced by the MGS method originate from an actual problem the verification results are
more representative than those obtained by the MMS method. The MGS method was im-
plemented to verify the ICE algorithm and AAT module in the ICE solver was verified
using this method. The order of accuracy of the module was evaluated for different prob-
lems using our method.

This method can be used to verify individual modules in ICE. A future research requires
implementation for 2-d and 3-d domains. The current implementation uses natural cubic-
spline interpolation for generating exact solutions. This can be replaced by Hermite in-
terpolation, Least squares approximation or Sinc function approximations to represent the
nature of the problem.

Appendix

A Verification of round-off errors in ICE

The numerical sensitivity of the time-stepping summations in the ICE algorithm are verified
in this section. A corrective-summation algorithm was implemented inside ICE to study
the usefulness of such a technique.

The experiment chosen for the verification is a 2-d Helium Plume simulation. The problem
can be explained as the Helium gas escaping from a nozzle at the center of the bottom
wall of a container. The computational grid chosen for this experiment was a 6m × 6m
container which is sub-divided into a 100 × 100 grid. The computational domain is further
sub-divided into 16 patches to solve them in 8 parallel nodes (2 processors per node).
Hence, each patch contains 625 grid points.

The three primary variables mass, specific volume and internal-energy computed by ICE
using the time-stepping summation were chosen for the condition-number analysis. The
condition number of the summation shown in equation (12) were computed using the for-
mula (13).

Sum (S) =

N
∑

i=0

xi (12)

Condition Number =

N
∑

i=1

| xi |

∣

∣

∣

∣

∣

N
∑

i=0

xi

∣

∣

∣

∣

∣

(13)

The value N in computing the condition number denotes the total number of timesteps for
which the experiment is executed. For this verification experiment the tests were run for
≈ 45, 000 timesteps.

The upper bound of the Relative Error(RE) in the summation of the series can be expressed
using the condition number as follows,

Relative Error (RE) 6 ε × N × C (14)

where,

ε − Machine epsilon (≈ 10−19) for double precision computation

C − Condition Number from equation (13)

N − Number of timesteps (≈ 45, 000)

A.1 Corrective Summation Algorithm

In order to get rid of the time-step dependence in the relative error computation we can use
a corrective summation algorithm.

Comparison of the pseudocode for the regular summation and the corrective summation
algorithm:

Summation Corrective Summation
for i = 1 to n U = E = 0

S = S + x(i) for i = 1 to n

end V = x(i)

S = U + V

E = U - S + V + E

U = S

end

S = S+E

This algorithm is implemented in the ICE code for the summation of mass, internal energy
and specific volume computations. The relative error for the corrective summation is given
by,

Corrected Relative Error(CRE) ≤ ε × C

This improvement in accuracy is achieved at the cost of additional computation. The dis-
tribution of the local min and max of condition numbers in the computational domain, is
shown in figures (12)(13) and (14). The min/max of the condition numbers are computed

Figure 11: Simulation Snapshot: Computational Grid of 100x100 cells on a 6m x 6m
computational domain

locally for each patch in the domain. It is observed that the condition numbers are maxi-
mum where there is more physical activity (near the nozzle).

The maximal condition number calculated using the equation (13) and the maximal global
correction introduced by the corrective summation algorithm for the three variables are
given below.

O(Global Correction) O(Condition Number)
Mass 10−18 103

Sp. Vol. 10−18 103

Int. Energy 10−16 103

Figure 12: Mass: Computational Grid of 100x100 cells on a 6m x 6m computational do-
main

Figure 13: Internal Energy: Computational Grid of 100x100 cells on a 6m x 6m computa-
tional domain

Figure 14: Specific Volume: Computational Grid of 100x100 cells on a 6m x 6m computa-
tional domain

A.2 Conclusion

The corrective summation algorithm was not adopted as our choice for calculations in the
algorithm for two reasons:

• The summations analyzed in these experiments are not ill-conditioned

• The global error corrections included by the corrective summation algorithm are in-
significant

References

[1] K. Salari and P. Knupp, “Code Verification by the Method of Manufactured Solu-
tions”, Technical Report SAND2000 - 1444, Sandia National Laboratory, 2000.

[2] P. J. Roache, Verification and Validation in Computational Science and Engineering,
Hermosa Publishers, 1998.

[3] T. M. Shih, “A Procedure to Debug Computer Programs”, International Journal for
Numerical Methods in Engineering, vol. 21, pp. 1027–1037, 1985.

[4] W. L. Oberkampf and F. G. Blottner, “Issues in Computational Fluid Dynamics: Code
Verification and Validation”, AIAA Journal, vol. 36, pp. 687–695, 1998.

[5] W. B. VanderHeyden and B. A. Kashiwa, “Compatible fluxes for van Leer advection”,
J. Comput. Phys., vol. 146, pp. 1–28, 1998.

[6] R. Amjidanutpan, K. Sikorski, and T. Harman, “Method of Generated Solutions as a
Verification Tool for Numerical Code”, Work in Progress.

[7] J. E. Guilkey, Harman T., Xia A., Kashiwa B., and McMurtry P., “An Eulerian-
Lagrangian approach for large deformation fluid structure interaction problems, Part
1: algorithm development”, ADVANCES IN FLUID MECHANICS, vol. 36, pp. 143–
156, 2003.

[8] S. G. Parker, J. Guilkey, and T. Harman, “A Component-based Parallel Infrastructure
for the Simulation of Fluid-tructure Interaction”, Engineering with Computers, vol.
22, pp. 277–292, 2006.

[9] “C-SAFE Research Group”, http://www.csafe.utah.edu.

[10] B. A. Kashiwa and Rauenzahn, “A Cell-centered ICE Method of Multiphase Flow
Simulations”, Technical Report LA-UR-93-3922, Los Alamos National Laboratory,
1994.

