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ABSTRACT
We present inspect, a tool for model checking safety prop-
erties of multithreaded C/C++ programs where threads in-
teract through shared variables and synchronization primi-
tives. The given program is mechanically transformed into
an instrumented version that yields control to a centralized
scheduler around each such interaction. The scheduler first
enables an arbitrary execution. It then explores alternative
interleavings of the program. It avoids redundancy explo-
ration through dynamic partial order reduction(DPOR) [1].
Our initial experience shows that inspect is effective in test-
ing and debugging multithreaded C/C++ programs. We are
not aware of DPOR having been implemented in such a set-
ting. With inspect, we have been able to find many bugs
in real applications.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and De-
bugging

General Terms
Verification, Threading

Keywords
dynamic partial order reduction, multithreaded, C/C++

1. INTRODUCTION
Writing correct multithreaded programs is difficult. Many

“unexpected” thread interactions can only be manifested
with intricate low-probability event sequences. As a result,
they often escape conventional testing, and manifest years
after code deployment. Many tools have been designed to
address this problem. They can be generally classified into
three categories: dynamic detection, static analysis, and
model checking.
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Eraser[2] and Helgrind[3] are two examples of data race
detectors that dynamically track the set of locks held by
shared objects during program execution. They use locksets
to compute the intersection of all locks held when accessing
shared objects. Shared object accesses that have an empty
lockset intersection will be reported as being inconsistently
protected, and as a result, potentially cause data races. Choi
et al.[4] improve the Eraser algorithm by avoiding redun-
dant analysis. Eraser (and similar tools) have been very
successful in finding potential data races in multithreaded
programs. However, as these tools try to detect potential
data races by inferring them based on one feasible execution
path, there is no guarantee that the program is free from
data races if no error is reported (i.e., full coverage is not
guaranteed). Besides, these tools can generate many false
warnings. As these tools are designed for identifying data
races only, they are not capable of detecting other safety
violations such as deadlocks.

Tools such as RacerX[5], ESC/Java[6], and LockSmith[7]
detect potential errors in the programs by statically ana-
lyzing the source code. Since they do not get the benefit
of analyzing concrete executions, the false warning rates of
these tools can be high. They also provide no guarantee of
full coverage.

Traditional model checking can guarantee complete cover-
age, but on extracted finite state models (e.g., [8, 9, 10, 11])
or in the context of languages whose interpreters can be eas-
ily modified for backtracking (e.g., [12]). However, as far as
we know, none of these model checkers can easily check (or
be easily adapted to check) general application-level multi-
threaded C/C++ programs. For instance, if we want to fol-
low Java PathFinder’s [12] approach to check multithreaded
C/C++ programs, we will have to build a virtual machine
that can handle C/C++ programs. This is very involved.
Model checkers like Bogor[9], Spin[13], Zing [11], etc. im-
plicitly or explicitly extract a model out of the source code
before model checking. However, modeling library functions
and the runtime environment of C/C++ programs is very
involved as well as error-prone: the gap between modeling
languages and programming languages is unbridgeably large
in many cases.

Blast[8] and Magic[10] use predicate abstraction and re-
finement technique to verify concurrent programs. Blast can
be used to detect data races in nesC[14] programs. Magic
focuses on detecting errors in concurrent programs that com-
municate via message passing. Again, writing correct library
function stubs is a problem for these model checkers. Adapt-
ing these ideas to real-world C/C++ programs is also very
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Figure 1: Inspect’s workflow

difficult.
To the best of the authors’ knowledge, Verisoft [15] is the

only model checker that is able to check concurrent C/C++
programs without incurring modeling overheads. Unfortu-
nately, Verisoft focuses on concurrent programs that interact
only through inter-process communication mechanisms. In
a real-world multithreaded program, the threads can affect
each other not only through explicit synchronization/mutual
exclusion primitives, but also through read/write operations
on shared data objects.

To address these problems, we designed inspect, a run-
time model checker for systematically exploring all possible
interleavings of a multithreaded C/C++ program under a
specific testing scenario. In other words, the reactive pro-
gram under test is closed by providing a test driver, and
inspect examines all thread interleavings under this driver.

An overview of inspect is shown in Figure 1. It consists
of three parts: a source code transformer to instrument the
program at the source code level, a thread library wrapper
that helps intercept the thread library calls, and a central-
ized scheduler that schedules the interleaved executions of
the threads. Given a multithreaded program, inspect first
instruments the program with code that is used to commu-
nicate with the scheduler. Then inspect compiles the pro-
gram into an executable and runs the executable repeatedly
under the control of the scheduler until all relevant interleav-
ings among the threads are explored. Before performing any
operation that might have side effects on other threads, the
instrumented program sends a request to the scheduler. The
scheduler can block the requester by postponing a reply. We
use blocking sockets as communication channels between the
threads and the scheduler. As the number of possible inter-
leavings grows exponentially with the size of the program,
we implemented an adaption of the dynamic partial order
reduction (DPOR [1]) algorithm proposed by Flanagan and
Godefroid to reduce the search space. Such an implementa-
tion of DPOR in the context of threaded C/C++ programs
is our first key contribution. Demonstrating the ability of
inspect to find bugs in medium-sized public-domain appli-
cations is our second key contribution.
Inspect can check application-level C/C++ programs that

use POSIX threads[16]. Inspect supports not only mu-
tual exclusive lock/unlock, but operations on condition vari-
ables, including wait, signal and broadcast. The errors that
inspect can detect include data races, deadlocks, and in-
correct usages of thread library routines. When an error is
located, inspect reports the error along with the trace that
leads to the error, which facilities debugging. The key fea-
tures of our work, and some of the challenges we overcame
are as follows:

• We design inspect, an in situ runtime model checker,

that can efficiently check multithreaded C/C++ pro-
grams. Inspect not only supports mutual exclusive
locks, but also wait/signal, and read/write locks. The
ability to model check programs containing these con-
structs makes inspect a unique tool.

• The in situ model checking capability runs the actual
code, and not a formal model thereof. This eliminates
the tedium of model extraction, and lends itself to an
adaptation of the DPOR algorithm. Such a DPOR
algorithm has, previously, not been implemented in
the context of debugging large C/C++ programs that
communicate using shared memory in a general way.

• We have evaluated inspect on a set of benchmarks
and confirmed its efficacy in detecting bugs.

• We have designed and implemented an algorithm to
automate the source code instrumentation for runtime
model checking.

• Since inspect employs stateless search, it relies on
re-execution to pursue alternate interleavings. How-
ever, during re-execution, the runtime environment of
the threaded code can change. This can result in the
threads not being allotted the same id by the operating
system. Also, dynamically-created shared objects may
not reside in the same physical memory address in dif-
ferent runs. We have suitably address these challenges
in our work.

• We employ lock-sets, and additionally sleep-sets (the
latter is recommended in [1]), to eliminate redundant
backtrack points during DPOR.

2. BACKGROUND

2.1 Multithreaded Programs in C/C++
Threading is not part of the C/C++ language specifica-

tion. Instead, it is supported by add-on libraries. Among
many implementations of threading, POSIX threads [16] are
perhaps the most widely used.

Mutex and condition variable are two common data struc-
tures for communication between threads. Mutexes are used
to give threads exclusive access to critical sections. Condi-
tion variables are used for synchronization between threads.
Each condition variable is always used together with an as-
sociated mutex. When a thread requires a particular condi-
tion to be true before it can proceed, it waits on the asso-
ciated condition variable. By waiting, it gives up the lock
and blocks itself. The operations of releasing the lock and
blocking the thread should be atomic. Any thread that sub-
sequently causes the condition to be true may then use the



condition variable to notify a thread waiting for the condi-
tion. A thread that has been notified regains the lock and
can then proceed. 1

The POSIX thread library also provides read-write locks
and barriers. A read-write lock allows concurrent read ac-
cess to an object but requires exclusive access for write oper-
ations. Barrier provides explicit synchronization for a set of
threads. As barriers seem not to be frequently used in mul-
tithreaded programs (we did not encounter any uses, except
in some tutorials), we do not consider them here.

2.2 Formal Model of Multithreaded Programs
A multithreaded program can be modeled as a concurrent

system, which consists of a finite set of threads, and a set
of shared objects. Shared objects include mutexes, condi-
tion variables, read/write locks, and data objects. The state
of a mutex, Mutexes, can be captured as a function from
the mutex id(MutexId) to the thread(T id) which holds the
mutex, and the set of threads(2Tid) that are waiting for
acquiring the mutex. A condition variable(Conds) can be
modeled in terms of the associated mutexes, along with the
set of threads that are waiting on the condition variable. A
read-write lock can be modeled in terms of a writer thread
or a set of read threads, along with a set of threads waiting
for read, and the other set of threads waiting for write. We
denote this as Rwlocks.

ObjId, T id ⊂ N

MutexId ⊂ ObjId

Mutexes = MutexId→ T id× 2Tid

Conds = ObjId→MutexId× 2Tid

Rwlocks = ObjId→ T id× 2Tid × 2Tid × 2Tid

Threads communicate with each other only through shared
objects. Operations on shared objects are called visible oper-
ations, while the rest are invisible operations. The execution
of an operation is said to block if it results in putting the
calling threads into the waiting queue of a mutex, a condi-
tion variable, or a read/write lock. We assume that only the
following can block a thread: visible operations on acquir-
ing a mutex; acquiring a read/write lock; or waiting for a
condition variable signal.

A state of a multithreaded program consists of the global
state Global of all shared objects, and the local state Local of
each thread. Global includes Mutexes, Conds, and Rwlocks.

Locals = T id→ Local
State = Global × Locals

Program = (State, s0,∆)
∆ = State→ State

A transition moves the program from one state to the
next state, by performing one visible operation of a certain
thread, followed by a finite sequence of invisible operations,
ending just before the next visible operation of that thread.
A multithreaded program as a whole is denoted as Program,
which is a triplet: the state space State, the initial state s0,
and the transition relation ∆.

1 POSIX threads have condition wait and signal rou-
tines named pthread cond wait, pthread cond signal,
pthread cond broadcast. On Microsoft Windows plat-
forms, the correspondent APIs of the same semantics
are SleepConditionVariableCS, WakeConditionVariable
and WakeAllConditionVariable.

2.3 Runtime Model Checking
Model checking is a technique for verifying a transition

system by exploring its state space. Cycles in the state
space are detected by checking whether a state has been
visited before or not. Usually the visited states information
is stored in a hash table. Runtime model checkers explore
the state space by executing the program concretely and
observing its visible operations. Runtime model checkers do
not keep the search history because it is not easy to capture
and restore the state of a program which runs concretely. As
a result, runtime model checkers are not capable of checking
programs that have cyclic state spaces.
Inspect follows the common design principles of a run-

time model checker, and uses a depth-first strategy to ex-
plore the state space. As a result, inspect can only handle
programs that can terminate in a finite number of steps.
Fortunately the execution of many multithreaded programs
terminates eventually. 2

2.4 Dynamic Partial Order Reduction
Partial order reduction (POR) techniques[17] are those

that avoid interleaving independent transtions during search.
Given a state s and a transition t, let t.tid denote the iden-

tity of the thread that executes t, and next(s, t) refer to the
state which is reached from s by executing t. Let s.enabled

denote the set of transitions that are enabled from s, and
s.sleep (sleep sets [18]) the set of transitions that are en-
abled in s but will not be executed from s (because doing so
would only interleave independent transitions). A thread p

is enabled in a state s if there exists transition t such that
t ∈ s.enabled and t.tid = p. Let s.backtrack be the back-
track set at state s (Figure 2). {t | t.tid ∈ s.backtrack} is
the set of transitions which are enabled but have not been
executed from s. Let s.done be the set of threads exam-
ined at s, and let {t | t.tid ∈ s.done} be the set of tran-
sitions that have been executed from s. Given the set of
enabled transitions from a state s, partial order reduction
algorithms try to explore only a (proper) subset of s.enabled,
and at the same time guarantee that the properties of inter-
est will be preserved. Such a subset is called persistent set,
i.e. s.persistent.

In a finite transition sequence T = t1t2...tn, we say ti

happens before tj if i < j in every member of the equivalence
class (Mazurkeiwitz trace set) of T obtained by permuting
independent transitions [18].

Static POR algorithms compute the persistent set of a
state s immediately after reaching it. In our context, per-
sistent sets computed statically will be excessively large be-
cause of the limitations of static analysis. For instance, if
two transitions leading out of s access an array a[] by in-
dexing it at locations captured by expressions e1 and e2

(i.e., a[e1] and a[e2]), a static analyzer may not be able to
decide whether e1=e2. Flanagan and Godefroid introduced
dynamic partial-order reduction (DPOR) [1] to dynamically
compute smaller persistent sets (smaller persistent sets are
almost always better).

In DPOR, given a state s, s.persistent is not computed
immediately after reaching s. Instead, DPOR explores the
states that can be reached from s with depth-first search,
and dynamically computes s.persistent. Assume t ∈ s.enabled

2If termination is not guaranteed, inspect can still work by
depth-bounding the search.



1: StateStack S;
2: TransitionSequence T ;
3: Transition t;

4: DPOR( ) {
5: State s = S.top;
6: update backtrack info(s);
7: if (∃ thread p, ∃t ∈ s.enabled, t.tid = p) {
8: s.backtrack = {p};
9: s.done = ∅;

10: while (∃q ∈ s.backtrack) {
11: s.done = s.done ∪ {q};
12: s.backtrack = s.backtrack \ {q};
13: let tn ∈ s.enabled, tn.tid = q;
14: T.append(tn);
15: S.push(next(s, tn));
16: DPOR();
17: T.pop back();
18: S.pop();
19: }
20: }
21: }

22: update backtrack info(State s) {
23: for each thread p {
24: let tn ∈ s.enabled, tn.tid = p;
25: td = the latest transition in T that dependent

and may be co-enabled with tn;
26: if (td 6= null) {
27: sd = the state in S from which td is executed;
28: E = {q ∈ sd.enabled | q = p or ∃tj ∈ T, tj

happened after td, and is dependent with
some transition of process p in T that is
happened after tj }

29: if (E 6= ∅)
30: add any q ∈ E to sd.backtrack

31: else

32: add all enabled threads to sd.backtrack;
33: }
34: }
35: }

Figure 2: Dynamic partial-order reduction

is the transition which the model checker chose to execute,
and t′ is a transition that can be enabled with DFS from s

by executing t. For each to-be-executed transition t′, DPOR
will check whether t′ and t are dependent and can be enabled
concurrently (i.e. co-enabled). If t′ and t are dependent and
can be co-enabled, t′.tid will be added to the s.backtrack.
Later, when backtracking during DFS, if a state s is found
with non-empty s.backtrack, DPOR will pick one transition
t such that t ∈ s.enabled and t.tid ∈ s.backtrack, and ex-
plore a new branch of the state space by executing t. Figure
2 recapitulates the DPOR algorithm (this is the same as the
one given, as well as proved correct in [1]; we merely sim-
plified some notations). In Section 4 we show how to adapt
the DPOR algorithm for checking multithreaded C/C++
programs.

3. AN EXAMPLE

In this section we consider the following example, which
captures a common concurrent scenario in database systems:
Suppose that a shared database supports two distinct classes
of operations, A and B. The semantics of the two operations
allow multiple operations of the same class to run concur-
rently, but operations belongs to different classes cannot be
run concurrently. Figure 3 is an implementation that at-
tempts to solve this problem. a count and b count are the
number of threads that are performing operations A and B
respectively. Here, lock is used for the mutual exclusion
between threads, and mutex is used for the mutual exclu-
sion between threads of the same class. Could this code
deadlock?

shared variables among threads:

pthread_mutex_t mutex, lock;

int a_count = 0, b_count = 0;

class A operation:

1: pthread_mutex_lock(&mutex);

2: a_count++;

3: if (a_count == 1) {

4: pthred_mutex_lock(&lock);

5: }

6: pthread_mutex_unlock(&mutex);

7: performing class A operation;

8: pthread_mutex_lock(&mutex);

9: a_count--;

10: if (a_count == 0){

11: pthread_mutex_unlock(&lock);

12: }

13: pthread_mutex_unlock(&mutex);

class B operation:

1: pthread_mutex_lock(&mutex);

2: b_count++;

3: if (b_count == 1){

4 pthred_mutex_lock(&lock);

5: }

6: pthread_mutex_unlock(&mutex);

7: performing class B operation;

8: pthread_mutex_lock(&mutex);

9: b_count--;

10: if (b_count == 0){

11: pthread_mutex_unlock(&lock);

12: }

13: pthread_mutex_unlock(&mutex);

Figure 3: An example on concurrent operations in

a shared database

Conventional testing might miss the error as it runs with
random scheduling. In general it is difficult to get a spe-
cific scheduling that will lead to the error. To systemati-
cally explore all possible interleavings, inspect needs to take
the control of scheduling away from the operating system.
We do this by instrumenting the program with code that is
used to communicate with a central scheduler. As only vis-
ible operations in one thread can have side effects on other
threads, we only need to instrument before each visible oper-
ation is performed. The instrumented code sends a request
to the scheduler. The scheduler can then decide whether



the request should be granted permission immediately, or
be delayed. The scheduler works as an external observer.
In addition, it needs to be notified about the occurrences
of the thread start, join, and exit events. Figure 4 shows
the code after instrumentation for threads that performs
class A operations. As shown in the figure, each call to the
pthread library routines is replaced with a wrapper routine.
As a count is a shared variable that multiple threads can
access, we insert a read/write request to the scheduler be-
fore each access of a count. A call to inspect thread start

is inserted at the entry of the thread to notify that a new
thread is started. Similarly, a call to inspect thread end is
inserted at the end of the thread routine.

inspect_thread_start();

...

inspect_mutex_lock(&mutex);

inspect_obj_write( (void*)&a_count );

a_count++;

inspect_obj_read( (void*)&a_count );

if (a_count == 1)

inspect_mutex_lock(&lock);

inspect_mutex_unlock(&mutex);

...

inspect_mutex_lock(&mutex);

inspect_obj_write( (void*)&a_count );

a_count--;

inspect_obj_read( (void*)&a_count );

if (a_count == 0)

inspect_mutex_unlock(&lock);

inspect_mutex_unlock(&mutex);

...

inspect_thread_end();

Figure 4: Instrumented code for class A threads

shown in Figure 3

After compiling the instrumented program, inspect ob-
tains an executable that can be run under the central sched-
uler’s control and monitoring. Firstly inspect lets the pro-
gram run randomly and collects a sequence of visible oper-
ations, which reflects a random interleaving of threads. If it
happens that an interleaving that can lead to errors, these
errors will be reported immediately. (When inspect en-
counters an error, it does not stop immediately. Section 4.6
presents the details.) Otherwise, inspect will try to find a
backtrack point out of the trace (as described in Figure 2),
and begins monitoring the executable runs, now obtained
through another interleaving.

Assume the program shown in Figure 3 has only one class
A thread, and one class B thread. In the first run of the in-
strumented program, inspect may observe the visible oper-
ation sequence shown in Figure 5, beginning at “(thread a)”
(which does not contain any errors).

While observing the random visible operation sequence,
inspect will, for each visible operation, update the back-
track set for each state in the search stack. In the above
trace, as event b1 may happen before a6, and b1 and a6 are
both lock acquire operation on shared object mutex, inspect
will put the backtracking information after event a5 (i.e.,
just before a6). Before inspect backtracks from a state,
if its backtrack set is not empty, inspect will try to enable

(thread a)⇒ a1 : acquire mutex

a2 : count a + +
a3 : count a == 1
a4 : acquire lock

a5 : release mutex

← ({b}, {a})
a6 : acquire mutex

a7 : count a−−
a8 : count a == 0
a9 : release lock

a10 : release mutex

(thread b)⇒ b1 : acquire mutex

b2 : count b + +
b3 : count b == 1
b4 : acquire lock

b5 : release mutex

b6 : acquire mutex

b7 : count b−−
b8 : count b == 0
b9 : release lock

b10 : release mutex

Figure 5: A possible interleaving of one class A

thread and one class B thread

the transition in the backtrack set to start exploring another
branch of the state space. It, however, accomplishes this by
marking that such a branch must be tried (the actual explo-
ration is done following a re-execution from the initial state).
In this example, (i) inspect will first re-execute the instru-
mented program and allow thread a run through a1 − a5.
(ii) now, since the backtrack set contains b, the scheduler
will block thread a until thread b has performed the visible
operation b1. Then it will allow thread a and thread b run
randomly until all threads ends. In our example, we will ob-
serve the following alternate sequence of visible operations
generated as a result of re-execution:

← ({b}, {a})
(thread a)⇒ a1 : acquire mutex

a2 : count a + +
a3 : count a == 1
a4 : acquire lock

a5 : release mutex

(thread b)⇒ b1 : acquire mutex

b2 : count b + +
b3 : count b == 1

After thread b performs the visible operation b3, thread
a is trying to acquire mutex which is held by thread b; at
the same time, thread b is waiting to acquire lock, which
is held by thread a. Inspect will report this deadlock sce-
nario at this point, and start backtracking. As for the new
interleaving, b1 may happen before a1, inspect will start
another backtracking by having b1 execute first. In general,
inspect will continue the process of finding the backtrack
point and re-running the program under test until there are
no backtrack points in the search stack.

4. ALGORITHMS

4.1 Identifying threads and shared objects out
of multiple runs

When inspect runs the program under test repeatedly, as
the runtime environment may change across re-executions,



each thread may not be allocated to the same id by the oper-
ating system. Also, dynamically-created shared objects may
not reside in the same physical memory address in different
runs.

One observation about thread execution is this: given the
same external inputs, if the two runs of a thread program
generate the same sequence of visible operations, then the
constituent threads in this program should be created in the
same order. Banking on this fact, we can identify threads
(which may be allocated different thread IDs in various re-
executions) across two different runs by examining the se-
quence of thread creations. In our implementation, we make
each thread register itself in a mapping table, from system-
allocated thread ids to integers. If the threads are created
in the same sequential order in different runs, each thread
will be assigned to the same id by this table. In the same
manner, if two runs of the program have the same visible
operation sequence, the shared objects will also be created
with malloc, etc., in the same sequence. As a result, the
same shared objects between multiple runs can be recog-
nized in a similar way as threads.

4.2 Communicating with the scheduler
As explained before, inspect works by having the instru-

mented threads calling the scheduler before executing visible
operations, and moving forward only based on the permis-
sions being granted by the scheduler. The requests that
a thread can send to the scheduler can be classified into
four classes: 1) thread-management related events, includ-
ing thread creation, thread destruction, thread join, etc.; 2)
mutex-events, include mutex init, destroy, acquire, release;
3) read-write lock init, destroy, reader lock, writer lock,and
unlock operations; 4) cond-related events, include condition
variable creation, destroy, wait, signal, broadcast; and 5)
data object related events, include the creation of the data
object, read and write operations.

4.3 Handling wait and signal
Condition variable and the related wait/signal/broadcast

routines are a necessity in many threading libraries. The
wait/signal routines usually obey the following rules: (i) the
call to a condition wait routine shall block on a condition
variable; (ii) They shall be called with a mutex locked by
the calling thread; (iii) The condition wait function atom-
ically release mutex and causes the calling thread to block
on the condition variable; and (iv) Upon successful return,
the mutex shall have been locked and shall be owned by he
calling thread.

A common problem (user bug) related to wait and signal
operations is the “lost wake-up” caused by a thread execut-
ing a signal operation before the waiter goes into the waiting
status. This can cause the waiter to block forever, since con-
dition signals do not pend. We now explain how inspect

takes care of this so as to not mask such bugs.
Inspect handles the condition variable related events by

splitting the wait routine into three sub-operations: pre wait,
wait, and post wait. Here, pre wait releases the mutex
that is held by the caller thread; wait changes the thread
into blocking status and put the thread into the waiting
queue of the correspondent condition variable; and post wait

tries to re-acquire the mutex again. The wrapper function
for the pthread cond wait routine is shown in Figure 6.

In an instrumented program, when the wait routine is

inspect cond wait(cond, mutex) {
send pre wait request;
receive pre wait permit;
receive unblocking permit;
send post wait request;
receive post wait permit;

}

Figure 6: Wapper function for pthread cond wait

invoked, the calling thread t first sends a pre wait request
to the scheduler; the scheduler records that t releases the
mutex, and set t’s status as blocking. The scheduler will not
send an “unblocking” permit to t until some other threads
send out a related signal and t is picked out by the scheduler
from the waiting queue. In t, after receiving the unblocking
permit from the scheduler, t will send a post wait request
to acquire the mutex.

4.4 Avoiding Redundant Backtracking
Following [1], we assume that two transitions t1 and t2 are

dependent if and only if they access the same communication
object. We treat wait and signal operations on the same
condition variable as dependent transitions. Also, a thread
join operation is dependent with the correspondent thread
exit.

In runtime model checking, backtracking is an expensive
operation as we need to restart the program, and replay the
program from the initial state until the backtrack point. To
improve efficiency, we want to avoid backtracking as much
as possible. Line 21 in Figure 2 is the place in DPOR where
a backtrack point is identified. It treats td, which is depen-
dent and may-be co-enabled with tn as a backtrack point.
However, if two transitions that may be co-enabled are never
co-enabled, we may end up exploring redundant backtrack-
ings, and reduce the efficiency of DPOR. Our two solutions
– the use of locksets, and the use of sleep sets – are now
discussed.

We use lockset to eliminate exploring transitions pairs
that may not be co-enabled. Take the following trace as
an example. It shows a program of two threads, both of
which are trying to acquire locks p and q, and then release
them. In thread b, before it acquires the lock p, it updates
some shared variable a.

(thread a) ⇒ a1 : acquire p

a2 : acquire q

a3 : release p

a4 : release q

(thread b) ⇒ b0 : a++;

b1 : acquire p

b2 : acquire q

b3 : release p

b4 : release q

The algorithm in [1] relies on clock vectors, and the sta-
tus of the process after taking a transition to infer whether
two transitions may be co-enabled or not. Although that
is a safe approximation, and will not affect correctness, this
may lead to the result that the state before taking a2 is a
backtrack point because of the dependency between a2 and
b2. However, this will lead to a redundant backtracking as



a2 and b2 cannot be co-enabled. (More specifically, as in [1],
an attempt to run thread b starting with a++ just before a2
is superfluous.)

To solve this problem, we associate with each transition t

the set of locks that are held by the thread which executes
t. Testing whether the intersection of the locksets that are
held by the threads right after a1 and b1 can help us safely
judge that the two transitions are mutually exclusive, and
avoid redundant backtracking after a1.

4.5 Using Sleep Sets for Further Reduction
While using locksets can avoid some redundant backtrack-

ing, conditional dependency and cond/signal make filtering
out false “may-be co-enabled” transition pairs more diffi-
cult. Instead, we use sleep sets to further reduce the search
space to detect the false “may-be co-enabled” transitions at
runtime.

Figure 7 shows an example that has redundant backtrack
points that is hard to detect by checking the transition se-
quence. It is a simplified dining philosopher problem: two
philosophers competing for forks f1 and f2, both follow the
order of get f1 first, and then f2. Two condition variables,
a free and b free are used for synchronization between the
philosophers. The lower part of Figure 7 shows a trace that
inspect may explore with DPOR. In this trace, thread a

first acquires the forks, and then releases f1, thread b takes
f1 right after thread a releases it, and waits on thread a

to release f2. After that, thread a releases f2 and notifies
thread b that the fork is available. We only show the first
two context switches between threads in Figure 7. In this
trace, two lower backtrack points have been explored. The
next backtrack points to be explored is right before a5, as
a5 and b5 are dependent transitions that appear to be co-
enabled (actually they are not). However, enabling b1, b2

after a4 will have thread b attaining blocking status waiting
for signal f1 free, a5 will be enabled again. In this situa-
tion, stopping further depth-first search will not affect the
correctness of model checking as the assumption that a5 and
b5 may be co-enabled is wrong. We use sleep sets to achieve
this.

The sleep set is a mechanism used to avoid the interleaving
of independent transitions. It works by maintaining a set of
transitions sleep such that whenever a new transition new
is considered, if new is in sleep, then moving new can be
considered to be un-necessary, and hence avoided [16]. Line
38-45 in Figure 8 shows how the sleep set are computed. In
this example, while backtracking right after a4, and executes
b1 and b2, we will reach a state in which thread b is blocked,
and the transition a5 in the sleep set, which is not going to be
executed. At this point, since there is no transition available
for further exploration, we can backtrack immediately.

4.6 Runtime Model Checking with DPOR
Figure 8 shows how DPOR is adapted in the context of

model checking multithreaded C/C++ programs. The algo-
rithm has two phases: In the first phase, inspect executes
the program for the first time under the monitoring of the
scheduler, and collects a random visible operation sequence
(lines 7-17). Any errors encountered will be reported. In
the second phase, inspect does backtrack checking until all
backtrack points are explored (lines 18-26).

In the replay mode in the second phase, we first rerun the
program until the latest backtrack point (lines 31-36). The

shared variables :

pthread_mutex_t f1, f2;

pthread_cond_t f1_free, f2_free;

int f1_owner, f2_owner;

thread routine :

pthread_mutex_lock(&f1);

while ( f1_owner != 0 )

pthread_cond_wait(&f1_free, &f1);

f1_owner = thread_id;

pthread_mutex_unlock(&f1);

pthread_mutex_lock(&f2);

while ( f2_owner != 0 )

pthread_cond_wait(&f2_free, &f2);

f2_owner = thread_id;

pthread_mutex_unlock(&f2);

pthread_mutex_lock(&f1);

left_owner =0;

pthread_mutex_unlock(&f1);

pthread_cond_signal(&f1_free);

pthread_mutex_lock(&f2);

right_owner = 0;

pthread_mutex_unlock(&f2);

pthread_cond_signal(&f2_free);

← ({b}, {a})
(thread a)⇒ a1 : acquire f1

a2 : (f1 owner ! = 0)?
a3 : f1 owner = thread id

a4 : release f1

← ({b}, {a})
a5 : acquire f2

a6 : (f2 owner! = 0)?
a7 : f2 owner = thread id

a8 : release f2

← ({}, {a, b})
a9 : acquire f1

a10 : f1 owner = 0
a11 : release f1

a12 : signal f2 free

(thread b)⇒ b1 : acquire f1

b2 : (f1 owner ! = 0)?
b3 : f1 owner = thread id

b4 : release f1

← ({}, {a, b})
b5 : acquire f2

b6 : (f2 owner ! = 0)?
b7 : pre wait f2 free

b8 : wait
(thread a)⇒ a13 : acquire f2

a14 : f2 owner = 0
...

Figure 7: Simplified dining philosophers

multithreaded program must be able to precisely follow the
transition sequence. After that, we choose a new transition
t from the backtrack set of the backtracking state s (line 37).
In lines 38-40, we update s.backtrack, s.done and initialize
s.sleep. After that, we will continue the depth-first search



while updating the sleep sets associated with each state.
Line 45 shows how sleep sets are updated.

In the second phase, if a data race is detected, it will be
reported on the fly. If a deadlock detected, FoundDeadlock-
Exceptionwill be thrown out. When inspect catches such
an exception, it will abort the current execution and start
explore another backtrack point.

The backtrack point information is updated each time a
new transition is appended to the transition sequence. We
do not show the pseudo-code here. In inspect, we use the
clock vector, lockset, along with the thread creation/join
information to decide whether a pair of transitions may be
co-enabled or not. As we divide cond wait into three sub-
transitions, for a lock acquire, the appropriate backtrack-
ing points include not only the preceding lock acquire, but
post wait which is also a lock acquiring operation. For a
cond signal, the appropriate backtrack point is the latest
wait on the signal.

4.7 Automated Instrumentation
Inspect needs to capture every visible operation to guar-

antee that it is not missing any bugs in the program. In-
correct instrumentation can make the scheduler fail to ob-
serve visible operations (viz., before execution of some visi-
ble operations, the program under test does not notify the
scheduler). To automate the instrumentation process, we
designed an algorithm as shown in Figure 9.

The automated instrumentation is primarily composed of
three steps: (i) replace the call to the thread library routines
with the call to the wrapper functions; (ii) before each visible
operation on a data object, insert code to send a request to
the scheduler; (iii) add thread start at the entry of every
thread, and thread end at each exit point.

To achieve this, we need to know whether an update to
a data object is a visible operation or not. The may-escape
analysis [19] is used to discover the shared variables among
threads. Because the result of may-escape analysis is an
over-approximation of all-possible shared variables among
threads, our instrumentation is safe for intercepting all vis-
ible operations in the concrete execution.

4.8 Detecting Bugs
Inspect detects data races and deadlocks while updat-

ing the backtracking information. If two transitions on a
shared data object are enabled in the same state, inspect
will report a data race. Deadlocks are detected by checking
whether there is a cycle in resource dependency. Inspect

keeps a resource dependent graph among threads, checks
and updates the graph before every blocking transition.

Besides races and deadlocks, inspect can report incorrect
usages of synchronization primitives. The incorrect usages
include: (1) using an uninitialized mutex/condition vari-
able; (2) not destroying mutex/condition variables after all
threads exit; (3) releasing a lock that is held by another
thread; (4) waiting on the same condition variable with dif-
ferent mutexes; (5) missing a pthread-exit call at the end of
function main.

5. IMPLEMENTATION
Inspect is designed in a client/server style. The server

side is the scheduler which controls the program’s execu-
tion. The client side is linked with the program under test
to communicate with the scheduler. The client side includes

1: TransitionSequence T , T ′;
2: StateStack S;
3: State s, s′;

4: runtime mc with DPOR( ) {
5: run P , which is the program under test;
6: s = the initial state of the program;
7: try {
8: while (s.enabled 6= ∅) {
9: S.push(s);

10: choose t ∈ s.enabled;
11: s = next(s, t);
12: T.append(t);
13: update backtrack info(); //defined in Figure 2

14: }
15: }
16: catch(FoundDeadlockException){ ... }
17: catch(AssertViolationException) { ... }

18: while (¬S.empty()) {
19: s = S.pop();
20: T.pop back(); // remove the last element of T

21: if (s.backtrack 6= ∅) {
22: restart the program P ;
23: backtrack checking(s);
24: T = T ′;
25: }
26: }
27: }

28: backtrack checking(State sbt) {
29: initialize T ′ to empty;
30: try {
31: s = the initial state of the program;
32: while (s 6= sbt) {
33: t = T.pop front(); // remove the head of T

34: T ′.append(t);
35: s = next(s, t);
36: }
37: choose t, t ∈ s.enabled ∧ t.tid ∈ s.backtrack;
38: s.backtrack = s.backtrack \ {t.tid};
39: s.sleep = {t ∈ s.enabled | t.tid ∈ s.done};
40: s.done = s.done ∪ {t.tid};
41: repeat

42: S.push(s);
43: T ′.append(t);
44: s′ = next(s, t);
45: s′.sleep = { t′ ∈ s.sleep | (t, t′) are indepen-

dent};
46: s′.enabled = s′.enabled \ s′.sleep;
47: s = s′;
48: update backtrack info();
49: choose t ∈ s.enabled;
50: until (s.enabled = ∅)
51: }
52: catch (FoundDeadlockException) { ... }
53: catch (AssertViolationException) { ... }
54: }

Figure 8: Runtime model checking with DPOR

a wrapper for the pthread library, and facilities for commu-



auto instrument(program P ) {
have an inter-procedural escape analysis on P to find

out all possible shared variables among threads;

for each call of the thread library routines
replace the call with the call to the correspondent
wrapper function;

for each access of a shared variable v {
if (read access)

insert a reading request for v before reading v;
else

insert a write request for v before updating v;
}
for each entry of threads

insert a thread start notification to the scheduler,
before the first statement in the thread;

for each exit point of threads
insert a thread end notification after the last state-
ment of the thread;

}

Figure 9: Automated instrumentation

nication with the scheduler.
We have the scheduler and the program under test com-

municate using Unix domain sockets. Comparing with Inter-
net domain sockets, Unix domain sockets are more efficient
as they do not have the protocol processing overhead, such
as the network headers to add or remove, the check sums
to calculate, the acknowledgments to send, etc. Besides,
the Unix domain datagram service is reliable. Messages will
neither be lost nor be delivered out of order.

In the automated instrumentation part, we first use CIL [20]
as a pre-processor to simplify the code. Then we use our own
program analysis and transformation framework based on
gcc’s C front end to do the instrumentation. We first have
an inter-procedural flow-sensitive alias analysis to compute
the alias information. With the alias information, we use an
inter-procedural escape analysis to discover the shared vari-
ables among threads. Finally we follow the algorithm in Fig-
ure 9 to do the source code transformation. Right now the
automatic instrumentation can only work for C programs
because of the lack of a front end for C++.

6. EXPERIMENTS AND EVALUATION
We evaluate inspect on two sets of benchmarks. The

first set includes two benchmarks in [1]. The second set con-
tains several small applications that use pthread on source-

forge.net and freshmeat.net[21, 22, 23, 24].
The performance of inspect for the benchmarks in [1] is

shown in Table 1. The first program, indexer, captures the
scenarios in which multiple threads insert messages into a
hash table concurrently. The second benchmark, fsbench, is
an abstraction of the synchronization idiom in Frangipani
file system. We re-wrote the code using C and the POSIX
thread library. The source code is available at [25]. In the
original indexer benchmark, a compare-and-swap is used.
As C does not have such an atomic routine, we replaced it
with a function and used a mutex to guarantee the mutual
exclusion. The execution time was measured on a PC with
two Intel Pentium CPUs of 3.0GHz, and 2GB of memory.
inspect was compiled with gcc-3.3.5 at optimization level

Table 1: Checking indexer and fsbench

threads runs transitions time(s) runs/sec
1-11 1 6 272 0.01 -
13 64 6,033 1.44 44.44

indexer 14 512 42,635 12.58 40.69
15 4,096 351,520 108.74 37.68
16 32,768 2,925,657 988.49 33.15

1-13 1 6 209 0.01 -
16 8 1,242 0.14 -

fsbench 18 32 4,893 0.64 50
20 128 20,599 2.76 46.38
22 512 84,829 11.94 42.88
24 2,048 367,786 54.82 37.36
26 8,192 1,579,803 261.40 31.33

-O2.
In Table 1, it shows that when the number of threads

increases, more conflicts among threads slow down the pro-
gram. However, inspect can still explore more than 30
different interleavings per second.

We also tried inspect on several small applications that
use pthread on sourceforge.net and freshmeat.net. Ta-
ble 2 shows the result. Application aget[21] is an ftp client in
which multiple threads are used to download different seg-
ments of a large file concurrently. Application pfscan[22] is
a multithreaded file scanner that combines the functional-
ity of find, xargs, and fgrep. It uses multiple threads to
search in parallel through directories. Application tplay[23]
is a multimedia player that uses one thread to prefetch the
audio data, and the other thread to play the audio. Finally,
libcprops[24] is a C prototyping tools library which provides
thread-safe data structures such as linked list, AVL tree,
hash list, as well as a thread pool and thread management
framework.

In Table 2, the second column LOC (lines of code) for
each application is counted with wc. The right most col-
umn shows the number of errors we found. As inspect

may report the same error multiple times while backtrack-
ing and re-executing the program repeatedly, we only count
the unique number of errors.

For aget, we found one data race on writing the statistic
data bwritten to a file. This data race is also reported in
[7]. When testing aget with inspect, we need to construct
a closed environment for it. As the network may introduce
non-determinism to the environment, we reduced the size of
the data package, which aget gets from the ftp server, to 512
bytes.

In pfscan, we found four errors. One error is that a condi-
tion variable is used without initialization. This is a danger-
ous behavior, and may completely mess up synchronization
among threads and end up with incorrect results. In addi-
tion, two mutexes that are initialized at the beginning of the
program never get released, which results in resource leak-
age. Also, we found that a pthread exit was missing at the
end of main. As a result, when the main thread exits, some
worker threads may be killed before they completely finish
their work. .

As for libcprops, it is a thread-safe library and test drivers
are required for testing it. We adapted the test cases in
libcprops release into multithreaded versions, and used them



Table 2: Checking real applications

benchmark LOC threads Errors
races deadlock other errors

aget-0.4 1,098 3 1 0 0
pfscan-1.0 1,073 4 1 0 4
tplay-0.6.1 3,074 2 0 0 0

avl 1,432 1-3 2 0 0
heap 716 1-3 0 0 0

libcprops-0.1.6 hashlist 1,953 1-3 1 0 1
linked list 1,476 1-3 1 0 0
splay tree 1,211 1-3 1 0 0

as test drivers. Inspect revealed several data races in the
code. After manually examining the source code, we found
that most of the races are benign races. Besides, we also
found that in hashlist, a condition variable is destroyed with-
out initialization. This may lead to undefined behaviors.

6.1 Discussion
Our experiments show that inspect can be very help-

ful in testing and debugging multithreaded C/C++ appli-
cations. However, it also has limitations. First, inspect

needs a set of test cases incorporated in its test driver to get
good coverage of the code being verified. Secondly, runtime
monitoring puts an overhead on the program, especially in
programs that have a lot of visible operations on shared
data objects. Also, the intrusive instrumentation limits in-
spect from checking programs that have strict timing re-
quirements. As inspect checks the program’s behavior by
monitoring the concrete executions of the program, is not
able to check system-level code like RacerX, LockSmith, etc.,
can do.

It is obvious that to check a program, we must be able
to concretely execute the program. When doing our exper-
iments, however, we also tried running several other open-
source applications. Unfortunately, some problems were en-
countered: (i) some programs kept crashing because of other
existing bugs; (ii) it is inconvenient to construct a closed
world for server programs such as http servers. Other than
these limitations, we think inspect is a powerful assistant
tool in the process of unit testing and debugging for multi-
threaded software.

7. OTHER RELATED WORK
Lei et al.[26] designed RichTest, which used reachability

testing to detect data races in concurrent programs. Reach-
ability testing views an execution of a concurrent program
as a partially-ordered synchronization sequence. Instead,
dynamic partial order reduction views it as an interleav-
ing of visible operations from multiple threads. Compared
with RichTest, inspect focuses on checking multithreaded
C/C++ programs, and it can detect not only data races, but
also deadlocks and other errors. However, inspect cannot
yet handle send/receive events between multiple processes.

CMC[27] verifies C/C++ programs by using a user-model
Linux as a virtual machine. CMC captures the virtual ma-
chine’s state as the state of a program. Unfortunately, CMC
is not fully-automated. As CMC takes the whole kernel plus
the user space as the state, it is not convenient for CMC to
adapt the dynamic partial order reduction method.

ConTest[28] debugs multithreaded programs by injecting
context switching code to randomly choose the threads to
be executed. As randomness does not guarantee all inter-
leavings will be explored for a certain input, it is possible
that ConTest can miss bugs.

jCute[29] uses a combination of symbolic and concrete ex-
ecution to check a multithreaded Java program by feeding it
with different inputs and replaying the program with differ-
ent schedules. jCute is more powerful in discovering inputs
that can have the program execution take different paths.
We think the difference between our work and jCute is in the
implementation part. jCute uses the Java virtual machine
to intercept visible operations of a multithreaded Java pro-
gram. Here we use socket communication and an external
scheduler for C/C++ programs.

Helmstetter et al.[30] show how to generate scheduling
based on dynamic partial order reduction. We think that
the differences between our work and theirs lie in: (i) We
are focusing on application-level multithreaded C programs,
while they focused on the schedulings of SystemC simula-
tions; and (ii) Instead of generating the scheduling only, our
work reruns the program and tries to verify safety proper-
ties.

CHESS[31] is the work which is probably most similar
to ours. The difference between CHESS and our work lies
in the instrumentation part and how to take control of the
scheduling away from the operation system. In CHESS, the
instrumentation allocates a semaphore for each thread that
is created. It also requires an invariant to be preserved:
that at any time every thread but one is blocked on its
semaphore. In contrast, we do the instrumentation at the
source code level, and use blocking sockets to communicate
between scheduler and the threads.

8. CONCLUSION
In this paper, we propose a new approach to model check

safety properties including deadlocks and stuttering invari-
ants in multithreaded C/C++ programs. Our method works
by automatically enumerating all possible interleavings of
the threads in a multithreaded program, and forcing these
interleavings to execute one by one. We use dynamic partial-
order reduction to eliminate unnecessary explorations. Our
preliminary results show that this method is promising for
revealing bugs in real multithreaded C programs. Finally,
inspect is available from [25].

In the future, inspect can be improved in many ways. We
can combine the static analysis techniques with the dynamic
partial order reduction to further reduce the number of in-



terleavings we need to explore to reveal errors. Inspect can
also adapt more efficient algorithms such as Goldilocks[32]
for computing happen-before relations to improve efficiency.
The automated instrumentation part can be improved by
employing more efficient and precise pointer-alias analysis.
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