University of Utah Technical Report UUCS-07-010

A Fast Iterative Method for a Class of
Hamilton-Jacobi Equations on Parallel Systems

Won-Ki Jeong and Ross T. Whitaker

School of Computing, University of Utah
April 18, 2007

Abstract

In this paper we propose a novel computational technique, which
we call the Fast Iterative Method (FIM), to solve a class of Hamilton-
Jacobi (H-J) equations on massively parallel systems. The proposed
method manages the list of active nodes and iteratively updates the
solutions on those nodes until they converge. Nodes are added to
or removed from the list based on a convergence measure, but the
management of this list does not entail the the extra burden of ex-
pensive ordered data structures or special updating sequences. The
proposed method has suboptimal worst-case performance, but in prac-
tice, on real and synthetic datasets, performs fewer computations per
node than guaranteed-optimal alternatives. Furthermore, the proposed
method uses only local, synchronous updates and therefore has better
cache coherency, is simple to implement, and scales efficiently on par-
allel architectures, such as cluster systems or graphics processing units
(GPUs). This paper describes the method, the implementation on the
GPU, and a performance analysis that compares the proposed method
against the state-of-the-art H-J solvers.

1 Introduction

The applications of solutions to the H-J equation are numerous. The equa-
tion arises in the fields of computer vision, image processing, geoscience,
and medical imaging and analysis. For example in computer vision, the
shape-from-shading problem, which infers 3D surface shape from the in-
tensity values in 2D image, can be modeled and solved with the Eikonal
equation [3, 14], which is a special form of the H-J equation. Extracting the

University of Utah Technical Report UUCS-07-010

medial axis or skeleton of the shape can be done by analyzing solutions of
the H-J equation with the boundaries specified at the shape contour [20].
Solutions to the H-J equation have been proposed for noise removal, feature
detection and segmentation [8, 17]. In physics, the H-J equation arises in
models of wavefront propagation. For instance, the calculation of the travel
times of the optimal trajectories of seismic waves is a critical process for seis-
mic tomography [13, 19]. Several methods based on the H-J equation have
recently been introduced as a means for describing connectivity in white
matter in medical image analysis [10, 9, 4, 11].
The Hamilton-Jacobi partial differential equations (PDEs), is given by

H(Vu,x) =/ (Vu)M(Vu)' =1, vxeQ, (1)

where Q is a domain in R"™, u(x) is the travel time or distance from the
source, and M is the speed tensor matrix defined on 2. We use the Hamil-
tonian defined below for our model equation:

H(p,q,r) = /ap® + dg? + fr2 + 2(bpq + cpr + eqr) (2)

a b c
M=1{b d e
c e f

where p, ¢, and 7 are partial derivatives of u; at x along x,y, and z axis, and
a,b,c,d, e, and f are upper triangular elements of the matrix M. Equation 1
becomes the Eikonal equation when M is an identity matrix.

A number of different numerical strategies have been proposed to effi-
ciently solve the H-J equation. These methods can be classified into two
groups. One is a class of iterative methods based on a fixed-point update
using Jacobi or Gauss-Seidel schemes. An early work by Rouy et al. [14]
solves the Eikonal equation, a special case of H-J equation, by updating the
solutions of the grid using a pre-defined updating order and Godunov up-
wind Hamiltonian until they converge. The method is simple to implement
and produces viscosity solutions, but takes many iterations to converge and
worst case complexity can reach up to O(N?). Zhao [22] proposed the Fast
Sweeping method, which uses a Gauss-Seidel updating order for fast conver-
gence. The Fast Sweeping method has a computational complexity of O(kN)
where k£ depends on the complexity of the speed function. Tsai et al. [21]
employed the Fast Sweeping method and a Godunov upwind discretization
of the class of convex Hamiltonians to solve anisotropic H-J equations. The
proposed Godunov Hamiltonian uses only 1-neighborhood pixels, so it maps

_O0H 0H 0H

>p—%>Q—a—y>7“—a

University of Utah Technical Report UUCS-07-010

well on iterative schemes. However, there are many cases to check for the
correct solution of the Hamiltonian, e.g., eight cases for 2D and 26 cases for
3D. solution, in up to 26 times for 3D. Kao et al. [6] introduced a new inter-
pretation of Hamiltonians based on the Legendre transformation and showed
that it is in fact a Godunov Hamiltonian. In the following paper [5] Kao et
al. employed the Lax-Friedrichs Hamiltonian for arbitrary static H-J equa-
tions. The proposed method is simple to implement and can be used widely
on both convex and non-convex H-J equations, but it requires many more
iterations than the Godunov Hamiltonian and the solution shows excessive
diffusion due to the nature of the scheme. In general, the iterative methods
are slow to converge and are not suitable for interactive applications.

Another class of H-J solvers is based on adaptive updating schemes and
sorting data structures. An earlier work by Qin et al. [12] and later Sethian
et al. [15, 16, 18] used a Dijkstra-type shortest path algorithm to solve
convex H-J equations, which is generally referred to as the Fast Marching
method. The main idea behind this method is that solutions for a convex
Hamiltonian depend only on the upwind neighbors along the characteristics,
so the causality relationship can be determined uniquely and the correct
solutions can be computed by only a single pass update. The complexity
of the Fast Marching method is O(Nlog/N), which is worst-case optimal,
and the running time is not much affected by the complexity of the speed.
However, for a class of general H-J equations [18], tracing the characteristics
can cause expensive searching among a wider range of neighborhoods than
solving equations using an iterative numerical method. In addition, the
method uses a global sorting data structure, e.g., a heap, and therefore the
parallelization is not straightforward.

In this paper we focus on the development of a parallel algorithm for
the H-J equation and the implementation on the GPU in order to make
comparisons against other state-of-the-art methods. While the worse-case
performance of the proposed algorithm is not optimal, it performs much
better than worst case on a variety of complex data sets even on a single
processor, and scales well on many parallel architectures for a further per-
formance benefit. The main contribution of this paper is introducing a novel
numerical algorithm to solve the H-J equation that can be well-adapted to
various parallel architectures, an improved Godunov Hamiltonian computa-
tion, and a GPU implementation of the proposed H-J solver.

The remainder of this paper proceeds as follows. In the next section we
introduce the proposed fast iterative method (FIM) algorithm for parallel
systems. In Section 3 we introduce the 3D Godunov Hamiltonian for the H-
J equation and its implementation in detail. In Section 4, we introduce GPU

University of Utah Technical Report UUCS-07-010

implementation of the proposed method. In Section 5 we show numerical
results on several synthetic and real tensor volumes and compare with the
existing state-of-the-art CPU methods. In section 6 we summarize the paper
and discuss the future research directions related to this work.

2 Fast Iterative Method (FIM)

To solve Equation 1 efficiently, we introduce a novel numerical algorithm
that scales well on parallel architectures. As discussed in Section 1, existing
H-J solvers do not scale well on parallel architectures due to the use of
global data structures and fixed updating orders. Therefore, the main design
goals in order to produce good overall performance, cache coherence, and
scalability across multiple processors are:

e the algorithm should not impose a particular update order

e the algorithm should not use a separate, heterogeneous data structure
for sorting, and

e the algorithm should be able to simultaneously update multiple points

2.1 Algorithm description

FIM is a numerical algorithm to solve PDEs, such as Equation 1, on parallel
architectures. The main idea of FIM is to solve the H-J equation selectively
on the grid nodes without maintaining expensive data structures. FIM main-
tains a narrow band, called the active list, for storing the index of grid nodes
to be updated. Instead of using a special data structure to keep track of
exact causal relationships, we maintain a looser relationship and update all
nodes in the active list simultaneously (i.e., Jacobi update). During each
iteration, we expand the list of active nodes, and the band thickens or ex-
pands to include all nodes that could be influenced by the current updates.
A node can be removed from the active list when the solution is converged,
and re-inserted when any changes of its adjacent neighbors affect the solu-
tion of the current node. Note that newly inserted nodes must be updated
in the following update iteration to ensure a correct Jacobi update. To
compute the solutions of the nodes in the active list, we use the Godunov
upwind discretization of the Hamiltonian (section 3). The key ideas of the
proposed algorithm are two fold: allowing multiple updates per node by
reinserting nodes to the active list, and using a Jacobi update for parallel
computation. It turns out that the proposed algorithm is classified as a

University of Utah Technical Report UUCS-07-010

class of label-correcting algorithms. The pseudo code of the FIM is as fol-
lows (Ux is a discrete approximation of u(x), and g(Ux) is a new solution at
x that satisfies Equation 1 computed using a Godunov Hamiltonian H¢ in
Equation 3).

Algorithm 2.1: FIM(X)

comment: 1. Initialization (X : set of all grid nodes, L : active list)

for each x € X
if x is source
do then Uy «— 0
else Uy «+— o0
for each x € X
d {if any neighbor of x is source
then add x to L

comment: 2. Update nodes in L

while L is not empty

(for each x € L
p— Ux
g+ g(Ux)
ifp>q
then {Ux —q
if p—gq <e
do for each 1-neighbor x,;, of x
do if x,, is not in L
p—Ux,
— an
then do then iqu z(q 2
an —4q
L then {addbxnb to L
remove X from L

2.2 Properties of the algorithm

In this section we describe how the algorithm works in detail. Figure 1 shows
the schematic 2D example of FIM frontwave expanding in the first quadrant.
The lower-left corner point is the source point, the black points are fixed

University of Utah Technical Report UUCS-07-010

points, the diagonal rectangle containing blue points is the active list, and
the black arrow represents the narrow band’s advancing direction. Figure 1
(a) is the initial stage, (b) is after the first update step, and (c) is after the
second update step. Because blue points depend only on the neighboring
black points, all of the blue points in the active list can be updated at the
same time. If the characteristic path does not change its direction to the
other quadrant, then all the updated blue points will be fixed (become black
points) and their 1-neighbor white points will form a new narrow band.

(a) Initial stage (b) After first update (c) After second update

Figure 1: Schematic 2D example of FIM frontwave propagation.

FIM is an iterative method, meaning that a point is updated until its
solution converges. However, for many data sets most points require only a
single update to converge. This can be interpreted as follows. If the angle
between the direction of the characteristic path and the the narrow band’s
advancing direction is smaller than 45 degree, then the exact solution at the
point can be found only in a single update, as in the fast sweeping method.
If the angle is larger than 45 degrees, the point at the location where the
characteristic path changes the direction will have an initial value that is
computed using the wrong up-wind neighborhood, and it will be revised in
successive iterations as neighbors refine their values. Thus, that point will
not be removed from the active list and will be updated until the correct
value is computed. Figure 2 shows this situation. Unlike FMM, where the
wavefront propagates with closed, 1-point-thick curves, the FIM can result
in thicker bands that split in places where the characteristic path changes
the direction (Fig 2 (a) red point). Also, the wavefront can move over so-
lutions that have already converged, and reactivate them to correct values
as new information is propagated across the image. Thus, the worst-case
performance of FIM is suboptimal. The following section gives the results of

University of Utah Technical Report UUCS-07-010

empirical studies, including situations where this worst-case behavior under-
mines computational efficiency of FIM and compares the results with those
of the other state-of-the-art solvers.

Figure 2: Schematic 2D example of the change of the characteristic direction.

To prove correctness of the algorithm, we follow reasoning similar to that
described in [14].

Lemma 2.1. FIM algorithm converges.

Proof. For this we rely on monotonicity (decreasing) of the solution and
boundedness (positive). From the pseudo code 2.1 we see that a point is
added to the active list and its tentative solution is updated only when the
new solution is smaller than the previous one. All updates are positive by
construction. U

Lemma 2.2. The solution U at the completion of FIM algorithm with e = 0
(error threshold) is consistent with the corresponding Hamiltonian given in
Fquation 1.

Proof. Each point in the domain is appended to the active list at least once.
Each point x is finally removed from £ only when g(U, x) = 0 and the upwind
neighbors (which impact this calculation) are also inactive. Any change in
those neighbors causes x to be re-appended to the active list. Thus, when
the active list is empty (the condition for completion), g(U,x) = 0 for the
entire domain. O

Theorem 2.3. FIM algorithm, for e = 0 gives an approximate solution to
FEquation 1 on the discrete grid.

Proof. The proof of the theorem is given by the convergence and consistency
of the solution, as given lemmas above. U

University of Utah Technical Report UUCS-07-010

3 Godunov Hamiltonian for the Hamilton-Jacobi
equation

In this section we introduce the details of Godunov discretization of H-J
Hamiltonian on a 3D grid, which is an extension of the 2D case introduced
by Tsai et al. [21]. The simplest way to solve Equation 1 is computing p, g,
and r using a central difference method and solve a quadratic equation as
in [5], but this approach requires global updates to converge. However, since
convex Hamiltonians have strict causality relations with adjacent neighbors,
there is a more efficient way to solve it. One approach is using only one-
sided derivatives to compute Hamiltonians, e.g., Godunov upwind scheme.
We employ a similar Godunov upwind Hamiltonian as in [21], but we have
derived an efficient method to evaluate the Hamiltonian.

3.1 Definition

The Godunov Hamiltonian Hg for the H-J equation can be defined as fol-
lows [21]:

HG(Z% q, T) = etiEI[p_,p+}ethEI[q_,q+}eXtr€I[r_,r+]H(pa q, T) (3)
where
extzerfap) = min if a <b
’ z€[a,b]
exXtrerfap) = max if a > b
’ z€[b,al
p+ = D%u, g+ = DY{u, ry = D3%u, and I[a,b] is the closed interval bounded

by a and b. This definition of the Godunov Hamiltonian looks complicated,
but the main idea is evaluating the Hamiltonian H (p, ¢,) with all possible
combination of p = {p_,p+,ps},q¢ = {¢-,9+,49}, and r = {r_,ry,r5}
where p,, g, and 7, are critical points (because the extremum of a convex
Hamiltonian occurs only on either the end of the interval or the critical
point), and taking the valid minimum solution that satisfies Equation 1.
We have eight cases for 2D and 26 cases for 3D to evaluate the Hamiltonian
(we do not evaluate for H(py,qs,75)). To check the validity of the solution
for H(p,q,r), Tsai et al. proposed the following conditions [21].

H(sgnmax{(p— —ps)", (p+ — Do) } + Porq,7) =1
H(p,sgnmax{(¢- — ¢o)", (¢+ — o) } + ¢o,7) =1
H(p7Q7sgn max{(r, - TU)+7 (TJr - TU)_} + TU) =1

University of Utah Technical Report UUCS-07-010

Even though the above test to check the validity of the solution looks
mathematically clean and works well, practically it is not efficient due to two
reasons. First, this test requires three evaluations of the Hamiltonian, which
is an expensive operation. Second, we need to use a threshold to numerically
check the float equality (|[H — 1| < €), which may induce numerical errors.
The new validity test we propose is based on the observation that if the
solution is valid then p, ¢, and r used to compute the solution must be correct
values. For example, if we use p = p_, then sgnmax{(p— — p,)", (p+ —
Ps)” } + po = p— must hold. Checking equality for this equation can be
done efficiently because we can encode the left and the right side of the
equation using integers, +1, 0, and -1, and compare equality of the integers.
The right side index is determined by p, and the left side index is determined
by p—,p+, and p, based on the new solution.

0 if p=ps
Right side index = +1 ifp=p4
-1 ifp=p_
0 ifp. <ps<pt
Left side index = +1 elseif (p— +p4+)/2 < ps
—1 else

The proposed test does not entail an extra burden of Hamiltonian com-
putations, and can be done using only simple integer equality and float
inequality comparisons. Our experiments show that using the new valid-
ity test can increase the performance about 50% compared to the original
method [21].

3.2 Implementation Detail

2D implementation of Godunov Hamiltonian was introduced in [21], but it
is not straightforward to extend the method to 3D cases. Therefore, in this
section we introduce the implementation of the 3D Godunov Hamiltonian
defined in Section 3.1 in detail. Note that we assume the grid sizes along
X, ¥, and z are all 1 for simplicity. First, solving a H-J equation with given
neighborhood values can be implemented as follows.

Function : solve_HJ(p, q, r, u, v, w)

// Solve Hamilton-Jacobi equation H(u(x-p),v(x-q),w(x-r)=1
// a,b,c,d,e,f : Upper triangular elements of tensor matrix

University of Utah Technical Report UUCS-07-010

float A = axuxu + d*vkv + fxwkw + 2.0%(bkuwkv + cxukw + e*xvkw);
float B = -2.0*%(axp*uxu + dxq*vxv + fxriu*w +
bxuxvk (p+q) + cxukwx(p+r) + exvwx(q+r));
float C = akuxu*p*p + d*xvxvkqkq + L*xwkwkr*r +
2.0x (b*u*xv*pxq + ckukxwxpxr + exvkwkqxr) - _fx*x_f;
float D = B*B-4.0%AxC;
if (D < 0) return INF;

else

return= (-B+sqrt(D))/(2.0%A);

Once we solve the H-J equation using the function solve_HJ(), then we
need to perform the solution validity check using the method introduced in
Section 3.1, which can be implemented as follows.

Function : check_valid(mode, i, j, k, newT, ext, rt_idx)

float Df, Db; // forward/backward difference
if (mode == 0)

{
Df = U(i+1,j,k) - newT;
Db = newT - U(i-1,j,k);
}
else if (mode == 1)
{
Df = U(i,j+1,k) - newT;
Db = newT - U(i,j-1,k);
}
else
{
Df = U(i,j,k+1) - newT;
Db = newT - U(i,j,k-1);
}
int 1f_idx;
if (Db < ext && ext < Df) 1f_idx = O;
else if ((Db+Df)/2 < ext) 1f_idx = 1;
else 1f_idx = -1;

10

University of Utah Technical Report UUCS-07-010

return (rt_idx == 1f_idx);

Godunov Hamiltonian is defined as the extremum of the Hamiltonian in
the domain [p_, p4+] % [q—, q+] % [r—,7+] (Equation 3). Because the extremum
for a convex function only occurs either on the boundary of the domain (e.g.,
p— or p4) or the critical point (e.g., ps), we can classify the evaluation of the
Hamiltonian into three cases, which are corners, edges, and faces. Corner
case is when the extremum occurs only on the boundary of the domain, so
there are eight cases to evaluate the Hamiltonian, where p = pi,q = ¢4,
and r = ry for H(p,q,r). Edge case is when the extremum occurs on the
boundary of two axis and critical point on the other axis. For example, if
we fix p = ps, then there are four cases, ¢ = q+ and r = r4 to evaluate
the Hamiltonian. We can fix either p, ¢, or r, so there are 12 different edge
cases. Face case is when the extremum occurs on the boundary of one axis
and critical points on the other two axis, for example p = p+, ¢ = ¢, and
r = r,. Therefore, for a given 3D node x = (4,7, k), new solution g(Uyx)
(Algorithm 2.1) can be computed using the function g(i,7, k) defined as
follows.

Function : g(i,j,k)

// U(i,j,k) : value at grid node (i,j,k)
// a,b,c,d,e,f : Upper triangular elements of tensor matrix

float U_new = INF;

int nul] = {+1,+1,+1,+1,-1,-1,-1,-13};
{+1,+1,-1,-1,+1,+1,-1,-1};
{+1:_1:+1:_1:+1:_1:+1:_1};

e
B B
ot ot
B B
= <
| I |
—_
I n

for(int n=0; n<8; n++)

{
float p = U(i+nuln],j,k);
float q = U(i,j+nv[n],k);
float r = U(i,j,k+nw[n]);

if(p < INF && q < INF && r < INF)

11

University of Utah Technical Report UUCS-07-010

{
float u = nuln];
float v = nv[n];
float w = nw[n];

float U_tmp = solve_HJ(p,q,r,u,v,w);

if (check_valid(0,i,j,k,U_tmp,-(bxv*(q-U_tmp)+c*wk(r-U_tmp))/a,nulil) &&
check_valid(1,i,j,k,U_tmp,-(b*u*(p-U_tmp)+e*w* (r-U_tmp))/d,nv[i]) &&
check_valid(2,1i,j,k,U_tmp,-(cxu*(p-U_tmp)+e*v*(q-U_tmp))/f,nw[il) &&
U_tmp >= min(p,min(q,r)) &&
U_tmp < U_new)

{
U_new = U_tmp;
}
}
}
2. Edges
int nul] = {-1,-1,+1,+1,-1,-1,+1,+1, 0, 0, 0, O};

for(int n=0; n<4; n++)

{
float p = U(i+ulnl,j,k);
float q = U(i,j+v[nl,k);
if(p < INF && q < INF)
{
float u = nuln];
float v = nv[n];
float w = -(c*utexv)/f;
float r = (c*uxptexv*q)/(cxutexv); // check divide by zero in actual code

float U_tmp = solve_HJ(p,q,r,u,v,w);

if (check_valid(0,i,j,k,U_tmp,-(bxv*(q-U_tmp)+c*w*(r-U_tmp))/a,nulil) &&
check_valid(1,i,j,k,U_tmp,-(b*u*(p-U_tmp)+e*xw* (r-U_tmp))/d,nv[i]) &&
U_tmp >= min(p,q) &&
U_tmp < U_new)

12

University of Utah Technical Report UUCS-07-010

U_new = U_tmp;

}
}
}
for(int n=4; n<8; n++)
{
float p = U(i+uln],j,k);

float r = U(i,j,kt+w[n]);
if(p < INF && r < INF)

{
float u = nuln];
float w = nwln];
float v = -(bxut+exw)/d;
float q = (bxuxp+exw*r)/(b¥utexw);
float U_tmp = solve_HJ(p,q,r,u,v,w);

if (check_valid(0,i,j,k,U_tmp,-(bxv*(q-U_tmp)+c*w*(r-U_tmp))/a,nulil) &&
check_valid(2,i,j,k,U_tmp,- (c*ux(p-U_tmp)+exv*(q-U_tmp)) /f,nw[il) &&
U_tmp >= min(p,r) &&
U_tmp < U_new)

U_new = U_tmp;
b
}
b

for(int n=8; n<12; n++)

{
float q = U(i,j+nv[n],k);
float r = U(i,j,k+nw[n]);
if(q < INF && r < INF)

{
float v = nv([n];
float w = nw([n];
float u = -(b*v+c*w)/a;
float p = (b*xvkqg+cxwkr)/(bxv+c*w) ;
float U_tmp = solve_HJ(p,q,r,u,v,w);

if (check_valid(1,i,j,k,U_tmp, - (b*u* (p-U_tmp)+e*wk (r-U_tmp))/d,nv[i]) &&
check_valid(2,i,j,k,U_tmp,-(cxu*(p-U_tmp)+e*v*(q-U_tmp))/f,nw[il) &&
U_tmp >= min(q,r) &&

13

University of Utah Technical Report UUCS-07-010

U_tmp < U_new)

{
U_new = U_tmp;
}
}
}
2. Faces
int nul] = {-1,+1, 0, 0, 0, 0};

=
B
ct
B
=
—
—
1]

for(int n=0; n<2; n++)

{
float p = U(i+uln],j,k);
if(p < INF)
{
float q = p;
float r = p;
float u = nuln];
float v = ux(cke-bxf)/(fxd-ex*xe);
float w = ux(bxe-c*d)/(f*xd-ex*e);
float U_tmp = solve_HJ(p,q,r,u,v,w);
if (check_valid(0,i,j,k,U_tmp,-(bxv*(q-U_tmp)+c*wk(r-U_tmp))/a,nulil) &&
U_tmp >= p && U_tmp < U_new)
{
U_new = U_tmp;
}
}
}
for(int n=2; n<4; n++)
{
float q = U(i,j+nv[n],k);
if(q < INF)
{

float p = q;

14

University of Utah Technical Report UUCS-07-010

float r = q;

float v = nv([n];

float u = vx(cxe-f*xb)/(f*xa-c*c);
float w = vx(c*b-exa)/(f*a-cx*c);

float U_tmp = solve_HJ(p,q,r,u,v,w);
if (check_valid(1,i,j,k,U_tmp, - (bxu*(p-U_tmp)+e*wk (r-U_tmp))/d,nv[i]) &&
U_tmp >= q && U_tmp < U_new)

{
U_new = U_tmp;
}
}
}
for(int n=4; n<6; n++)
{
float r = U(i,j,k+nw[n]);
if (r < INF)
{
float p = r;
float q = r;
float w = nw([n];
float u = wkx(e*b-c*xd)/(a*xd-bx*b);
float v = wx(bxc-axe)/(axd-bx*b) ;
float U_tmp = solve_HJ(p,q,r,u,v,w);
if (check_valid(2,1i,j,k,U_tmp,-(cxu*(p-U_tmp)+e*v*(q-U_tmp))/f,nw[il) &&
U_tmp >= r &% U_tmp < U_new)
{
U_new = U_tmp;
}
}
}

return U_new;

15

University of Utah Technical Report UUCS-07-010

4 GPU Implementation
4.1 GPU FIM for H-J Solver

The FIM algorithm should scale well on various parallel architectures, e.g.,
multi-core processors, shared memory multiprocessor machines, or cluster
systems. We chose the GPU to implement FIM to solve the H-J equation
because the current GPUs are massively parallel SIMD processors, providing
a very powerful general-purpose computational platform.

The major difference between the CPU and the GPU implementation of
FIM is that the GPU employs a block-based updating scheme, as proposed
in [7], because the GPU architecture favors coherent memory access and
control flows. The original node-based FIM (Algorithm 2.1) can be easily
extended to a block-based FIM as shown in Algorithm 4.1. For a block-
based update, the domain is decomposed into pre-defined size blocks (we
use a 43 cube for 3D in the GPU implementation), and solutions of the
pixels in the same block are updated simultaneously with a Jacobi update
scheme. Therefore, the active list of the GPU maintains the list of active
blocks instead of nodes.

The GPU FIM algorithm consists of three steps. First, each active block
is updated with a pre-defined number of iterations. During each iteration,
a new solution of Equation 1 is computed, replace the old solution if the
new solution is smaller, and its convergence is encoded as a boolean value.
After the update step, we perform a reduction (Section 4.2.3) on each active
block to check whether it is converged or not. If a block is converged,
we mark it as to-be-removed. The second step is checking which neighbor
blocks of to-be-removed blocks need to be re-activated. To do this, all the
adjacent neighbor blocks of to-be-removed blocks are updated once, and
another reduction operation is applied on each of the neighbor blocks. The
final step is updating the active list by checking the convergence of each
block and remove or insert only active blocks to the list. The following is a
GPU FIM pseudo code for updating active blocks (C,, and Cj, are introduced
in Section 4.2).

16

University of Utah Technical Report UUCS-07-010

Algorithm 4.1: GPU FIM(L,V)

comment: Update blocks b in active list L, V:list of all blocks

while L is not empty
(comment: Step 1 - Update Active Blocks

for each b € L
for i=0ton
do do {(b,Cy(b)) — g(b)
Cy(b) « reduction(Cy(b))

comment: Step 2 - Check Neighbors

for each b € L and
do if Cy(b) = true
do for each 1-neighbor b,;, of b

then ¢ [(bnb; Cp(bns)) — g(bnb)
Cy(bpp) < reduction(Cp(bpp))

comment: Step 3 - Update Active List

clear(L)
for each b eV
do {if Cy(b) = false
then {Insert bto L

4.2 GPU Implementation Detail

Our GPU H-J solver is implemented on an NVIDIA GeForce 8800 GTX
graphics card. NVIDIA CUDA [1] is used for GPU programming, and we will
explain the GPU implementation details based on the CUDA programming
model, so please refer the CUDA programming guide [1] for more details
about the GPGPU programming using CUDA. Computing on the GPU is
running a kernel with a batch process of a large group of fixed size thread
blocks, which matches well the block-based update method used in the FIM
algorithm. We fix the block size to 43, so 64 threads share the same shared
memory and are executed in parallel on the same processor unit.

Since it is not necessary to use special data structures, e.g., list or vector,
to implement the active list on the GPU, we use a simple 1D integer array
whose size is the total number of blocks to store active blocks. Only the

17

University of Utah Technical Report UUCS-07-010

array elements of index ranging between 0 to (number of total active blocks-
1) are valid at any given time. For each CUDA kernel call, the grid size is
adjusted to the current number of active blocks, and when a block is being
processed, its block index is retrieved from the active list on the GPU.
Updating solutions and reductions, which are computationally dominant in
the overall process, are done entirely on the GPU.

On the GPU memory, we create two sets of boolean arrays, one C, with
a size of # of pixels (i.e., nodes), and the other C}, with a size of # of blocks,
to store convergence of pixels and blocks, in addition to a float array with a
size of # of pixels to store solutions. To check the convergence of blocks, we
run a reduction on C), to get (. Managing the active list, e.g., inserting or
deleting blocks from the list, is efficiently done on the CPU by reading back
Cy to the CPU and looping over it to insert only non-converged blocks to
the active list. When the list is completely updated on the CPU, it is copied
to the GPU, but only a small part of the active list is actually used at any
given time (index 0 to (# of active blocks-1)), so only a small fraction of
contiguous memory needs to be copied to the GPU.

4.2.1 Data Packing for Coalesced Global Memory Access

To efficiently move data from global to shared memory on the GPU, we
need to pack the data on the GPU memory space in a certain way to access
global memory as coalesced as possible. A volume is stored in memory as
an 1D array with a certain traversing order. Figure 3 shows an example of
two different cases of storing a 4x4 image in the GPU global memory space
as 1D array when a block is copied to shared memory. Host memory is the
CPU side memory, and global / shared memory is the GPU side memory.
Color represents the pixels in the same block. Usually pixels are stored from
the fastest to the slowest axis order, as shown in Figure 3 (a). In this case,
a block is split into two regions in global memory space, which leads to split
block accesses. However, if we re-order global memory as shown in Figure 3
(b), accessing a block can be a single coalesced memory access, which is the
most efficient way to access global memory on the GPU. Hence, whenever
input volumes are copied from the CPU to the GPU memory, a proper re-
ordering should be applied so that the block access can be done through a
coalesced memory access.

18

University of Utah Technical Report UUCS-07-010

Host Memory Global Memory \
; 13| 14| 15| 16
| 9 /10[11 12| |
: 5/ 6
| 12
1

(a) Non-coalesced (b) Coalesced

Shared Memory Host Memory Global Memory Shared Memory

13| 14| 15| 16

L

Figure 3: Example of coalesced /non-coalesced global memory access

4.2.2 Efficient Neighbor Access using Shared Memory

Another factor that affects the GPU performance is accessing shared mem-
ory. The shared memory space in the NVIDIA G80 architecture is divided
into 16 banks, and 16 shared memory accesses can be done simultaneously
as long as all the memory requests refer to different memory banks or to the
same memory bank. If any two memory requests, but not all, refer to the
same memory bank, i.e., bank conflict, then this request must be serialized
and impairs the performance. Because the block size is fixed as 43, there
is no bank conflict to access pixels inside blocks (block size is a multiple
of warp size [1]). However, since we need adjacent neighbor pixels to solve
the H-J equation, we should set up an additional shared memory space for
left /right /up/down/top/bottom neighbors of the boundary pixels of each
block. To avoid bank conflicts, we assign the neighbor pixels to pre-defined
banks, which requires a slightly larger extra shared memory space. Figure 4
shows a 2D example of the bank assignment that avoids bank conflicts for
neighbor pixel access. The block size for this example is 16 (4x4), which
is drawn as a yellow box on the leftmost image in Figure 4. The extra
four pixels on each left/right/up/down side of the block are neighbor pix-
els. The number on each pixel represents the bank number to be assigned.
By assigning pixels to shared memory in this pattern, memory requests for
left /right /up/down neighbors can be done simultaneously without a bank
conflict (Figure 4 red : left neighbors, cyan : right neighbors, green : up
neighbors, blue : down neighbors). We need shared memory of size 3*block-
size to store a block and its neighbors because some bank numbers appear
twice (1, 4, 13, and 16 in Figure 4). Figure 5 shows an example of actual
pixel assignment in shared memory. Figure 5 (a) shows a 2D block diagram
with pixel indices (not bank numbers). Figure 5 (b) shows which bank each

19

University of Utah Technical Report UUCS-07-010

pixel is actually assigned to. Figure 5 (¢) shows a snapshot of a shared
memory access pattern when left neighbors are accessed (same case as the
second diagram from left in Figure 4). Pixels colored in red are accessed
by 16 threads in parallel, and since there is no bank conflict, this memory
request can be processed simultaneously. The bank assignment technique
shown here can be easily extended to 3D cases.

11234 112134 112134 112134 11234
16|13|14(15/16| 13 |16|13(14|15/16| 13 |16|13|14|15/16| 13 |16|13|14|15/16| 13 |16|13|14|15|16| 13
121 9/10(11|12| 9 12| 9]10|11 /12| 9 12| 9]10(11|12| 9 12| 9]10(11|12| 9 12| 9]10(11|12| 9
8/5/6/7|8|5 8 6|7 8|5 8/5/6/7|8|5 8/5/6|/7|8 5/6/7/8|5
41112]3|4|1 411 2/3|4|1 41112341 411121341 41112/3|4|1
13/14|15|16 13/14|15|16 13/14/15|16 13/14/15|16 13|14/15|16

a1
al
©

Figure 4: Neighbor pixel access without shared memory bank-conflict

Bank 1 [1 [21]29] Bank 1 [1]21]29]
29 30 31 32 Benk 2| 220 Benk 2 [2]20
Bank 3 | 3 |31 Bank 3 | 331
2013|1415 |16 | 24 anaa e
Bank 6 | 6 Bank 6 | 6
Bank 7 | 7 Bank 7 | 7
19 9 10 11 12 23 szs 8 18} B:ks 8 13‘
Bank 9 | 9|23 Bank 9 [9]23
18/ 5 6|7 822 Benk 1010 Benk 1010
Bank 11]11 Bank 11]11
Bank 12[12[19 Bank 12[12[19
17 1 2 3 4 21 B;k1313 24[25) B:kla 13| 24/ 25]
Bank 14| 14|26 Bank 14]14/ 26
Bank 15| 15|27 Bank 15|15| 27
25 26 27 28 B:kl&» 16[20[28] B:kle 16[20] 28]
(a) Pixel indices (b) Bank assignment (c) Left neighbors

Figure 5: Bank assignment example

4.2.3 Reduction

Reduction is one of the commonly used computational techniques in the
streaming programming model to produce a smaller stream from a larger
input stream. To check the convergence of a block, we need to check the
convergence of every pixel in the block. Therefore, we need to reduce a
block down to a single pixel that represents the convergence of the block.
Since CUDA provides a block-wise thread synchronization mechanism, we
can perform a parallel reduction [2] in a single kernel execution. To reduce
a block of size n, start with § threads. For each iteration, every thread
participating in reduction reads two convergence values from the current

20

University of Utah Technical Report UUCS-07-010

block and write a true or false to one of the original locations (both converge
: true, else false). In the next iteration, the number of participating threads
is halved and the same reduction is performed. This process is repeated
until a block is reduced to a single pixel.

T F F F
F / F -~ F — F
T / T T T
T / T T T
F F F F
F F F F
T T T T
T T T T
Figure 6: Reduction on a block of size 8
5 Results

Table 1 and Figure 7, 8 show the running time of three H-J equation solvers
(GPU, CPU Fast Sweeping with Godunov Hamiltonian, and CPU Fast
Sweeping with Lax-Friedrichs Hamiltonian) and their solutions on three syn-
thetic and real tensor volumes. We have tested H-J solvers on a PC equipped
with a Intel Core 2 Duo 2.4GHz processor and an NVIDIA GeForce 8800
GTX graphics card.

Example 1 | Example 2 | Example 3
GPU FIM 1 sec 1.5 sec 2.8 sec
CPU FS Gdv 54 sec 76 sec 301 sec
CPU FS L-F 142 sec 220 sec N/A

Table 1: Running time on 3D tensor volumes
Example 1 is a 642 volume with a constant tensor elongated along the

diagonal direction (a =d = f = 1.0 and b = ¢ = e = 0.9). The level sets of
the solution on this volume is shown in Figure 7 left. The GPU solver took

21

University of Utah Technical Report UUCS-07-010

Figure 7: Visualization of distance from a seed point. Left (Example 1) :
tensor elongated toward diagonal direction; Right(Example 2) : helix.

only 1 sec while the CPU solvers take about 1-2 minutes to compute the
solution on this volume.

Example 2 is a 643 volume with tensors aligned to a helix. We built
a tensor whose dominant eigenvector is parallel to the tangent vector of
the helix curve, and set the dominant eigenvalue as 1 and the other two
eigenvalues as 0.1. Figure 7 right is the solution and characteristic paths
tracing from randomly distributed points to the seed point placed on the
center of the bottom slice. The GPU solver took 1.5 second, while the CPU
solvers took 1-3 minutes on this volume.

Example 3 is a DT-MRI brain volume of size 256x256x100, with the
number of effective pixels is 196K (we only run the solver inside the white
matter mask), and the solution is given in Figure 8. We put a seed at the
center of the white matter region. The GPU solver runs less than 3 sec-
onds while the CPU solver took 5 minutes on this volume. We have not
tested the Lax-Friedrichs method on this volume because the L-F boundary
conditions on the arbitrary boundary is not implemented yet. Overall, the
proposed GPU H-J solver runs roughly 50-100 times faster than the com-
monly used CPU-based methods, allowing users for interactive volumetric
paths extraction in DT-MRI volumes.

22

University of Utah Technical Report UUCS-07-010

Figure 8: Visualization of distance from a seed point. Example 3: DT-MRI
brain data.

6 Conclusion and Future Work

In this paper we propose a parallel H-J solver based on the selective iterative
method. The proposed method employs the narrow band approach to keep
track of the points to be updated, and iteratively updates the solutions until
they converge. Instead of using an expensive sorting data structure to keep
the causality, the proposed method uses a simple list to store active points
and updates all of them in parallel until they converge. The points in the
list can be removed from or added to the list based on the convergence
measure. The proposed method is simple to implement and runs faster than
the existing solvers on a class of convex Hamilton-Jacobi equations. Our
prototype implementation on the GPU runs roughly 50-100 times faster
than the state-of-the-art CPU H-J solvers.

Introducing a fast parallel H-J solver opens up a numerous interesting
future research directions. Since the GPU implementation allows rapid com-
putation of distance computation on DT-MRI volumes, this makes interac-
tive white matter connectivity analysis feasible. Seismic wave propagation
simulation in an anisotropic speed volume will be an interesting application
of the proposed method. Fast geodesic computation on parameteric sur-
faces or volumes can be also interesting future work related to the proposed

23

University of Utah Technical Report UUCS-07-010

method.

References

1]

2]

NVIDIA CUDA Programming Guide,
http: //developer.nvidia.com/object/cuda.html, 2007.

NVIDIA CUDA SDK, http://developer.nvidia.com/object/cuda.html,
2007.

A. Bruss. The eikonal equation: some results applicable to computer
vision. J. Math. Phy., 23(5):890-896, 1982.

M. Jackowski, C. Y. Kao, M. Qiu, R. T. Constable, and L. H. Staib.
Estimation of anatomical connectivity by anisotropic front propagation
and diffusion tensor imaging. In MICCAI pages 663667, 2004.

C. Kao, S. Osher, and J. Qian. Lax-friedrichs sweeping scheme for
static Hamilton-Jacobi equations. Journal of Computational Physics,
196(1):367-391, 2004.

C. Kao, S. Osher, and Y. Tsai. Fast sweeping methods for static
Hamilton-Jacobi equations. Technical report, Department of Mathe-
matics, University of California, Los Angeles, 2002.

A. Lefohn, J. Kniss, C. Hansen, and R. Whitaker. Interactive deforma-
tion and visualization of level set surfaces using graphics hardware. In
IEEFE Visualization 2003 Conference Proceedings, pages 75-82, 2003.

R. Malladi and J. Sethian. A unified approach to noise removal, image
enhancement, and shape recovery. IEEE Trans. on Image Processing,
5(11):1554-1568, 1996.

L. O’Donnell, S. Haker, and C.-F. Westin. New approaches to estima-
tion of white matter connectivity in diffusion tensor MRI: elliptic PDEs
and geodesics in a tensor-warped space. In MICCAI pages 459466,
2002.

G. Parker, C. Wheeler-Kingshott, and G. Barker. Estimating dis-
tributed anatomical connectivity using fast marching methods and dif-

fusion tensor imaging. Transactions on Medical Imaging, 21:505-512,
2002.

24

University of Utah Technical Report UUCS-07-010

[11]

E. Pichon, C.-F. Westin, and A. Tannenbaum. A Hamilton-Jacobi-
Bellman approach to high angular resolution diffusion tractography. In
MICCAI pages 180-187, 2005.

F. Qin, Y. Luo, K. Olsen, W. Cai, and G. Schuster. Finite-difference so-
lution of the eikonal equation along expanding wavefronts. Geophysics,
57(3):478-487, 1992.

N. Rawlinson and M. Sambridge. The fast marching method: an ef-
fective tool for tomographics imaging and tracking multiple phases in
complex layered media. Fxploration Geophysics, 36:341-350, 2005.

E. Rouy and A. Tourin. A viscosity solutions approach to shape-from-
shading. SIAM Journal of Numerical Analysis, 29:867-884, 1992.

J. Sethian. A fast marching level set method for monotonically ad-
vancing fronts. In Proc. Natl. Acad. Sci., volume 93, pages 1591-1595,
February 1996.

J. Sethian. Fast marching methods. SIAM Review, 41(2):199-235, 1999.

J. Sethian. Level set methods and fast marching methods. Cambridge
University Press, 2002.

James A. Sethian and Alexander Vladimirsky. Ordered upwind meth-
ods for static Hamilton-Jacobi equations: Theory and algorithms.
SIAM Journal of Numerical Analysis, 41(1):325-363, 2003.

R. Sheriff and L. Geldart. Ezploration Seismology. Cambridge Univer-
sity Press, 1995.

K. Siddiqi, S. Bouix, A. Tannenbaum, and S. Zucker. The hamilton-
jacobi skeleton. In Proc. International Conference on Computer Vision,
pages 828-834, September 1999.

Y.-H. R. Tsai, L.-T. Cheng, S. Osher, and H.-K. Zhao. Fast sweeping
algorithms for a class of Hamilton-Jacobi equations. SIAM Journal of
Numerical Analysis, 41(2):659-672, 2003.

H. Zhao. A fast sweeping method for eikonal equations. Mathematics
of Computation, 74:603-627, 2004.

25

