
Inspect: A Runtime Model Checker
for Multithreaded C Programs

Yu Yang
Xiaofang Chen

Ganesh Gopalakrishnan

UUCS-08-004

School of Computing
University of Utah

Salt Lake City, UT 84112 USA

Abstract

We present Inspect, a runtime model checker for revealing concurrency bugs in mul-
tithreaded C programs. Inspect instruments a given program at all global interaction
points, and with the help of a new scheduler, examines all relevant thread interleavings
under dynamic partial order reduction (DPOR). While the ideas behind Inspect are well
known, there hasn’t been a previously reported effort in which these ideas are applied to
multithreaded C programs. We report on our engineering efforts to endow Inspect with
(i) automatic source program instrumentation, (ii) practical DPOR implementation, and
(iii) optimizations such as using locksets to compute more precise co-enabled relation. Our
initial experience shows that such a tool can, indeed, be very effective for obtaining a han-
dle on the notorious complexity of thread programming.

1 Introduction

Writing correct multithreaded programs is difficult. Many “unexpected” thread interactions
can only be manifested with intricate low-probability event sequences. As a result, they
often escape conventional testing, and manifest years after code deployment [1]. Many
tools have been designed to address this problem. They can be generally classified into
three categories: dynamic detection, static analysis, and model checking.

Eraser [2] and Helgrind [3] are two examples of data race detectors that dynamically track
the set of locks held by shared objects during program execution. These tools predict
potential data races by inferring them based on the observation of one feasible execution
path. There is no guarantee that the program is free from data races if no error is reported
(full coverage is not guaranteed).

Tools such as RacerX [4], ESC/Java [5], and LockSmith [6] detect potential errors in pro-
grams by statically analyzing the source code. Since they do not get the benefit of analyzing
concrete executions, the false positive (false alarm) rates of these tools can be high.

Scheduler
with

dynamic partial

order reduction

request/permit

request/permit

request/permit

Executable

compile

thread 1

thread 2

thread n

...
Multithreaded

C programs

Source code

transformer

Instrumented

programs

Thread library

wrapper

re-run the program until all

interleavings are explored

report

errors

Figure 1: Inspect’s workflow

Traditional model checking can guarantee complete coverage, but on implicitly or explic-
itly extracted models before model checking (e.g., [7, 8, 9]), or in the context of lan-
guages whose interpreters can be easily modified for backtracking (e.g., [10]). As far as
we know, none of these model checkers can easily check (or be easily adapted to check)
general application-level multithreaded C programs. For instance, if we want to follow
Java PathFinder’s [10] approach to check multithreaded C programs, we will have to build
a virtual machine that can handle C programs. This is very involved. For model checkers
like Bogor [7], Spin [9], Zing [8] and so on, modeling library functions and the runtime
environment of C programs is difficult as well as error-prone: the gap between modeling
languages and programming languages is unbridgeably large in many cases.

Predicate abstraction based model checkers, such as [11, 12, 13], have demonstrated the

abilities to prove properties of sequential programs. However, these model checkers haven’t
been able to verify realistic multithreaded programs because realistic programs often in-
volve a lot of complicated data structures, and existing decision procedures haven’t been
able to handle them yet.

Verisoft [14] is able to check concurrent C/C++ programs without incurring modeling over-
heads. However, Verisoft focuses on message-passing based concurrent programs that in-
teract only through inter-process communication mechanisms. In a multithreaded program,
the threads can affect each other not only through explicit synchronization/mutual exclu-
sion primitives, but also through read/write operations on shared data objects. We need a
mechanism that is different from Verisoft to take the control of scheduling away from the
operating system and explore different interleavings.

1.1 Our Contribution

We designed Inspect, a runtime model checker for data races, deadlocks, or other con-
currency related errors in multithreaded C programs for a fixed environment (fixed set of
input drivers). Inspect can systematically explore all possible interleavings of a multi-
threaded C program under a specific input driver, and guarantee that there are no concur-
rency errors. Inspect does not generate false positives, and to our best knowledge, is the
first runtime model checker that can handle multithreaded C programs.

An overview of Inspect is shown in Figure 1. It consists of three parts:

• A source code transformer to instrument the program at the source code level.

• A thread library wrapper that helps intercept the thread library calls

• A centralized scheduler that schedules the interleaved executions of the threads.

Given a multithreaded program, Inspect first instruments the program with code that
is used to communicate with the scheduler. Thereafter it compiles the program into an
executable and runs the executable repeatedly under the control of the scheduler until all
relevant interleavings among the threads are explored. Before performing any operation
that might have side effects on other threads, the instrumented program sends a request
to the scheduler. The scheduler can block the requester by postponing a reply. We use
blocking sockets as communication channels between the threads and the scheduler. As
the number of possible interleavings grows exponentially with the size of the program,

we implemented the dynamic partial order reduction (DPOR [15]) algorithm to reduce the
search space. 1

2 Runtime Model Checking

Model checking is a technique for verifying a transition system by exploring its state space.
Cycles in the state space are detected by checking whether a state has been visited before or
not. Usually the visited states information is stored in a hash table. Runtime model check-
ers explore the state space by executing the program concretely and observing its visible
operations. Runtime model checkers do not keep the search history because it is not easy
to capture and restore the state of a program which runs concretely. As a result, runtime
model checkers avoid the memory blowup problem that many static model checkers suffer.
As a trade-off, runtime model checkers are not capable of checking programs that have
cyclic state spaces.

Inspect follows the common design principles of a runtime model checker, and uses
a depth-first strategy to explore the state space. As a result, Inspect can only handle
programs that can terminate in a finite number of steps. Fortunately the execution of many
multithreaded programs terminates eventually.2

3 An Example

In this section we show how Inspect works with a simple example which captures a
common concurrent scenario in database systems. Suppose that a shared database supports
two distinct classes of operations, A and B. Let the semantics of the two types of opera-
tions be such that multiple operations of the same class can run concurrently, but operations
belonging to different classes cannot be run concurrently. Figure 2 is a buggy implemen-
tation which can lead to a deadlock. Global variables A count and B count capture the
number of threads that are performing operations A and B respectively. Here, the variable
lock is used for mutual exclusion between threads, and mutex is used to guarantee the
atomicity of updating the counters, a count and b count.

1The method we present in this paper can also be applied to C++ programs. However, due of the lack of
a C++ front end for source code transformation, we need manual instrumentation for C++ programs.

2If termination is not guaranteed, Inspect can still work by depth-bounding the search.

shared variables among threads:

pthread_mutex_t mutex, lock;
int A_count = 0, B_count = 0;

class A operation:

1: pthread_mutex_lock(&mutex);
2: A_count++;
3: if (A_count == 1) {
4: pthred_mutex_lock(&lock);
5: }
6: pthread_mutex_unlock(&mutex);
7: performing class A operation;
8: pthread_mutex_lock(&mutex);
9: A_count--;

10: if (A_count == 0){
11: pthread_mutex_unlock(&lock);
12: }
13: pthread_mutex_unlock(&mutex);

class B operation:

1: pthread_mutex_lock(&mutex);
2: B_count++;
3: if (B_count == 1){
4: pthred_mutex_lock(&lock);
5: }
6: pthread_mutex_unlock(&mutex);
7: performing class B operation;
8: pthread_mutex_lock(&mutex);
9: B_count--;
10: if (B_count == 0){
11: pthread_mutex_unlock(&lock);
12: }
13: pthread_mutex_unlock(&mutex);

Figure 2: An example on concurrent operations in a shared database

Conventional testing might miss the potential deadlock hidden in the code as it runs with
random scheduling. In general it is difficult to get a specific scheduling that leads to the er-
ror. Inspect first instruments the program with code that can take the control of schedul-
ing away from the runtime system. Then it compiles the instrumented code into an ex-
ecutable. With the help of a centralized scheduler, Inspect can systematically explore

relevant interleavings. As for this example, Inspect will report that a1 → a2 → a3 →
a4 → a6 → b1 → b2 is an interleaving which leads to a deadlock (here ai and bi stand for
line i of class A and class B threads).

4 Inspect

4.1 Identifying Threads and Shared Objects Out of Multiple Runs

When Inspect re-executes the program under test, the runtime environment may change
across re-executions. For instance, the threads may not be allocated to the same identity
by the operating system. Also, dynamically-created shared objects (e.g., mallocs) may not
reside in the same physical memory address in different runs. Handling these practical
issues is essential for the success of runtime model checking.

We handle these issues in Inspect aided by a few (practically realistic) assumptions.
First, we assumes that given the same external input, multiple threads in a program are
always created in the same order across different runs. Banking on this fact, we can identify
threads (which may be allocated different thread IDs in various re-executions) across two
different runs by examining the sequence of thread creations. We let each thread register
itself to the scheduler. If the threads are created in the same sequential order in different
runs, threads will be registered in the same order. In this way, we can easily assign the
same ID for the same thread across multiple runs.

Identifying the shared objects is done in the same manner: if two runs of the program have
the same visible operation sequence, the shared objects will also be created with malloc,
etc., in the same sequence. As a result, shared objects across multiple runs can be identified,
even though the actual objects may be getting created at different memory addresses in
different re-executions.

4.2 Instrumenting the code

We describe how Inspect works for a simple C-like language shown in Figure 3. A
program is composed of a main function and a set of threads. Each thread is a sequence
of statements. The condition expression in the if statement is simplified as a variable.
Inspect uses CIL [16] to convert more complex statements into this simplified form by

P ::= T ∗

T ::= main | thread
thread ::= Stmt∗

main ::= Stmt∗

Stmt ::= [l :]s
s ::= lhs← e |if lhs then goto l′| create | join | exit | lock | unlock| lhs← malloc

lhs ::= v | &v | ∗ v
e ::= lhs | lhs op lhs

where op ∈ {+,−, ∗, /, %, <, >,≤,≥, 6=, =, ...}

Figure 3: Syntax of a simple language that is similar to C

introducing temporary variables

Before instrumentation After instrumentation
create inspect create()
join inspect join()
exit inspect exit()
lock inspect lock()
unlock inspect unlock()

thread begin
thread thread

thread end
global object registration()

main thread begin
main
thread end

//allocating memory for a shared object lhs← malloc()
lhs← malloc object registration(&lhs)
//if lhs is a shared object
lhs← v write shared(&lhs, v)
//if v is a shared object
lhs← v; lhs← read shared(&v)

Figure 4: Inspect’s instrumentation

Figure 4 shows how Inspect instruments a multithreaded program based on the syntax
shown in Figure 3. The instrumentation does the following things:

• Replace the function calls to the thread library routines with function calls to In-
spect wrapper functions.

• Add extra code before thread starting/exiting points to notify the scheduler.

• Add object registration code at the beginning of main function for global objects.
Object registration code is also needed after malloc operations which allocate new
objects which are shared among threads.

• For each read/write access on data objects that are shared among threads, Inspect
intercepts the operations by adding a wrapper around it.

To achieve the last step, we need to know whether an update to a data object is a visible
operation or not. Doing this exactly is undecidable,as it amounts to context sensitive lan-
guage reachability [17]. We conservatively over-approximate this step by performing an
inter-procedural flow-sensitive alias analysis [18] on the program. Based on the results of
the alias analysis, we have a may-escape analysis [19] on the program to find all operations
on shared objects that may “escape” the thread scope. As the may-escape analysis is an
over-approximation of all-possible shared variables among threads, our instrumentation is
safe for intercepting all the visible operations in the concrete execution. Figure 5 shows the
instrumented code of class A thread in Figure 2. It is the engineering of these details that
sets Inspect apart from previous prototype implementations of DPOR, and for the first
time makes it possible to assess the impact of a well-engineered DPOR algorithm in the
setting of realistic multithreaded C programs.

4.3 Dynamic Partial Order Reduction

While the number of possible interleavings grows exponentially as the program becomes
large, we use dynamic partial order reduction [15] to avoid exploring redundant interleav-
ings. In this section, we describe our implementation of the DPOR algorithm, and our
improvement on the original.

4.3.1 Definitions

Partial order reduction (POR) techniques [20] are those that avoid interleaving independent
transitions during search. Given the set of enabled transitions from a state s, partial order
reduction algorithms try to explore only a (proper) subset of the enabled transitions at s,

void *thread_A(void *arg)
{
void *__retres2 ;
int __cil_tmp3 ;
int __cil_tmp4 ;
int __cil_tmp5 ;
int __cil_tmp6 ;
int __cil_tmp7 ;
int __cil_tmp8 ;
int __cil_tmp9 ;
int __cil_tmp10 ;

inspect_thread_start("thread_A");
inspect_mutex_lock(& mutex);
__cil_tmp7 = read_shared_0(& A_count);
__cil_tmp3 = __cil_tmp7 + 1;
write_shared_1(& A_count, __cil_tmp3);
__cil_tmp8 = read_shared_2(& A_count);
__cil_tmp4 = __cil_tmp8 == 1;
if (__cil_tmp4) {

inspect_mutex_lock(& lock);
}
inspect_mutex_unlock(& mutex);
inspect_mutex_lock(& mutex);
__cil_tmp9 = read_shared_3(& A_count);
__cil_tmp5 = __cil_tmp9 - 1;
write_shared_4(& A_count, __cil_tmp5);
__cil_tmp10 = read_shared_5(& A_count);
__cil_tmp6 = __cil_tmp10 == 0;
if (__cil_tmp6) {

inspect_mutex_unlock(& lock);
}
inspect_mutex_unlock(& mutex);
__retres2 = (void *)0;
inspect_thread_end();
return (__retres2);

}

Figure 5: Instrumented code for the class A thread shown in Figure 2.

and at the same time guarantee that the properties of interest will be preserved. Such a
subset is called persistent set.

Static POR algorithms compute the persistent set of a state immediately after reaching
it. In the context of multithreaded C/C++ programs, persistent sets computed statically
will be excessively large because of the limitations of static analysis. For instance, if two
transitions leading out of s access an array a[] by indexing it at locations captured by
expressions e1 and e2 (i.e., a[e1] and a[e2]), a static analyzer may not be able to de-
cide whether e1=e2. Flanagan and Godefroid introduced dynamic partial-order reduction
(DPOR) [15] to dynamically compute smaller persistent sets (smaller persistent sets are
almost always better).

Given a state s and a transition t, we use the following notations:

• t.tid denotes the identity of the thread that executes t.

• next(s, t) refers to the state which is reached from s by executing t.

• s.enabled denotes the set of transitions that are enabled from s. A thread p is enabled
in a state s if there exists some transition t such that t ∈ s.enabled and t.tid = p.

• s.backtrack refers to the backtrack set at state s. s.backtrack is a set of thread
identities. Here, {t | t.tid ∈ s.backtrack} is the set of transitions which are enabled
but have not been executed from s.

• s.done denotes the set of threads examined at s. Similar to s.backtrack, s.done is
also a set of thread identities. Here, {t | t.tid ∈ s.done} is the set of transitions that
have been executed from s.

• s.sleep refers to the sleep set associated with a state. A sleep set [21] is a set of
transitions that are enabled but will not be executed from a state s. We use sleep sets
in our implementation for further reducing redundant interleavings.

In DPOR, given a state s, the persistent set of s is not computed immediately after reaching
s. Instead, DPOR explores the states that can be reached from s with depth-first search, and
dynamically computes the persistent set of s. Assume t ∈ s.enabled is the transition which
the model checker chose to execute, and t′ is a transition that can be enabled with DFS (with
one or more steps) from s by executing t. For each to-be-executed transition t′, DPOR will
check whether t′ and t are dependent and can be enabled concurrently (i.e. co-enabled). If
t′ and t are dependent and can be co-enabled, t′.tid will be added to the s.backtrack. Later,
when backtracking during DFS, if a state s is found with non-empty s.backtrack, DPOR

1: StateStack S;
2: State s, s′;

3: DPOR() {
4: run P , which is the program under test;
5: s← the initial state of the program;
6: while (s.enabled 6= ∅) {
7: S.push(s);
8: choose t ∈ s.enabled;
9: s← next(s, t);

10: update backtrack info(s); //described in Figure 7
11: }
12: while (¬S.empty()) {
13: s← S.pop();
14: if (s.backtrack 6= ∅)
15: backtrack checking(s);
16: }
17: }

18: backtrack checking(State sbt) {
19: replay the program from the beginning until sbt

20: s← sbt

21: choose t, t ∈ s.enabled ∧ t.tid ∈ s.backtrack
22: s.backtrack← s.backtrack \ {t.tid};
23: s.sleep← {t ∈ s.enabled | t.tid ∈ s.done}
24: s.done← s.done ∪ {t.tid};
25: repeat
26: S.push(s);
27: s′← next(s, t);
28: s′.sleep← { t′ ∈ s.sleep | (t, t′) are independent};
29: s′.enabled← s′.enabled \ s′.sleep;
30: s← s′;
31: update backtrack info();
32: choose t ∈ s.enabled;
33: until (s.enabled = ∅)
34: }

Figure 6: Our implementation of dynamic partial-order reduction

will pick one transition t such that t ∈ s.enabled and t.tid ∈ s.backtrack, and explore a
new branch of the state space by executing t.

1: update backtrack info(State s) {
2: let T be the sequence of transitions that are executed from the initial state of the

program to reach state s;
3: for each thread h {
4: let tn ∈ s.enabled, tn.tid = h;
5: let td be the latest transition in T that is dependent and may be co-enabled with

tn;
6: if (td 6= null) {
7: let sd be the state in the state stack S from which td is executed;
8: let E be {q ∈ sd.enabled | q.tid = h, or q in T , q happened after td and

is dependent with some transition in T which was executed by h and
happened after q }

9: if (E 6= ∅)
10: choose any q in E, add q.tid to sd.backtrack;
11: else
12: sd.backtrack← sd.backtrack ∪ {q.tid | q ∈ sd.enabled};
13: }
14: }
15: }

Figure 7: Update the backtracking information for the states in the search stack

Figure 6 shows our implementation of the DPOR algorithm. Given a program under test,
DPOR first runs the program randomly(Line 6-11). After this, DPOR keeps backtrack until
the state stack is empty (Line 12-16). The key point is that in this process, each time a new
state is reached, update backtrack info is called to update the backtrack sets for
states in the search stack (Line 10 and line 31).

The detail of update backtrack info is explained in Figure 7. The backtrack set of a
state, sd.backtrack, is updated while exploring a state s reached from sd.backtrack under
DFS. Observe from line 10 of Figure 7 that we add to sd.backtrack a thread id q, where sd is
the most recent state, searching back from s, where a transition that depends on a transition
tn that is about to be taken from s occurs. When the DFS unwinds to state sd.backtrack,
the backtrack set is consulted and the threads recorded in there are scheduled.

4.3.2 An Example

Here we give out an example to illusrate the DPOR algorithm. Consider two threads t1 and
t2 which share two variables x and y:

t1 : x = 1; x = 2
t2 : y = 1; x = 3

Assume the first random execution of the program is:

t1 : x = 1; t1 : x = 2; t2 : y = 1; t2 : x = 3;

Before executing the last transition t2 : x = 3, DPOR will add a backtracking point for
thread t2 before the last transition of t1. With sleep sets enabled, DPOR will force the
following execution (the sleeps sets are shown in the parenthesis) :

(∅)t1 : x = 1; ({t1 : x = 2})t2 : y = 1; ({t1 : x = 2})t2 : x = 3; (∅)t1 : x = 2;

which in turn forces

({t1 : x = 1})t2 : y = 1; ({t1 : x = 1})t2 : x = 3; (∅)t1 : x = 1; (∅)t1 : x = 2;

4.3.3 Avoiding Redundant Backtracking

One optimization we made on DPOR algorithm is on avoiding redundant backtracking.
State backtracking is an expensive operation for runtime model checkers as the model
checker need to restart the program, and replay the program from the initial state until
the backtrack point. Obviously, we want to avoid backtracking as much as possible to
improve efficiency. Line 4 of Figure 7 is the place in DPOR where a backtrack point is
identified. It treats td, which is dependent and may-be co-enabled with tn as a backtrack
point. However, if two transitions that may be co-enabled are never co-enabled, we may
end up exploring redundant backtrackings, and reduce the efficiency of DPOR.

We use locksets to avoid exploring transition pairs that can not be co-enabled. Each transi-
tion t is associated with the set of locks that are held by the thread which executes t. With
these locks, we compute the may co-enabled relation more precisely by testing whether the
intersection of the locksets held by two threads is empty or not.

5 Implementation

Inspect is designed in a client/server style. The server side is the scheduler which con-
trols the program’s execution. The client side is linked with the program under test to
communicate with the scheduler. The client side includes a wrapper for the pthread library,
and facilities for communication with the scheduler.

We have the scheduler and the program under test communicate using Unix domain sock-
ets. Comparing with Internet domain sockets, Unix domain sockets are more efficient as
they do not have the protocol processing overhead, such as adding or removing the network
headers, calculating the check sums, sending the acknowledgments, etc. Besides, the Unix
domain datagram service is reliable. Messages will neither get lost nor delivered out of
order. we use CIL [16] to implement the program analysis and transformation part. An
initial version of Inspect is available at http://www.cs.utah.edu/∼yuyang/inspect.

In pfscan, Inspect found an error that a condition variable is used without initialization.
This may mess up synchronization among threads and end up with incorrect results. In
addition, two mutexes that are initialized at the beginning of the program never get released,
which may result in resource leakage.

As for the other two benchmarks, we did not find any bugs. However, when we deliberately
inserted some races/deadlock bugs into these benchmarks, Inspect found all of them.

6 Additional Related Work

CMC [22] verifies C/C++ programs by using a user-model Linux as a virtual machine.
CMC captures the virtual machine’s state as the state of a program. Unfortunately, CMC is
not fully-automated. As CMC takes the whole kernel plus the user space as the state, it is
not convenient for CMC to adapt the dynamic partial order reduction method.

ConTest [23] debugs multithreaded programs by injecting context switching code to ran-
domly choose the threads to be executed. As randomness does not guarantee all interleav-
ings will be explored for a certain input, it is possible that ConTest can miss bugs. Given
an input, if there exists some interleavings that can lead to error, Inspect can guarantee
that the error will be caught.

Lei et al. [24] designed RichTest, which used reachability testing to detect data races in

http://www.cs.utah.edu/~yuyang/inspect

concurrent programs. Reachability testing views an execution of a concurrent program as a
partially-ordered synchronization sequence. However, RichTest does not address the prac-
tical issues like how to control the scheduling of multithreaded C program which Inspect
solves.

Helmstetter et al. [25] show how to generate scheduling based on dynamic partial order re-
duction. It solves the problem of exploring different interleavings in the context of SystemC
models. Inspect handles general multithreaded C applications, using a different method to
handle the practical scheduling problem.

CHESS [26] is a runtime model checker for testing multithreaded programs. CHESS as-
sumes that a program is data-race free, every access to shared objects is protected by some
locks. Inspect does not require this assumption. CHESS takes control of the scheduling
by intercepting only library calls. Inspect intercepts not only library calls, but also visible
operations on data objects by performing source code transformation, as discussed in Sec-
tion 4.2. As a result of this, CHESS captures the happen-before relation of the events, and
reports a race when it observes two events between which there is no happen-before rela-
tion. Different from CHESS, Inspect reports a race if and only if a real racing scenario
is observed.

7 Conclusion

In summary, in this paper, we present a practical runtime model checker for checking
concurrency-related errors in multithreaded C programs. Our method works by automati-
cally enumerating all possible interleavings of the threads in a multithreaded program, and
forcing these interleavings to execute one by one. We use dynamic partial-order reduction
to eliminate unnecessary explorations. Our preliminary results show that this method is
promising for revealing bugs in real multithreaded C programs.

In the future, Inspect can be improved by combining the static analysis techniques with
the dynamic partial order reduction to further reduce the number of interleavings we need
to explore to reveal errors. Inspect can also adapt more efficient algorithms such as
Goldilocks [27] for computing happen-before relations to improve efficiency. We can
also improve the automated instrumentation part by employing more efficient and precise
pointer-alias analysis so as to reduce the communication overhead between the scheduler
and the program under test.

References

[1] Edward A. Lee. The problem with threads. volume 39, pages 33–42, Los Alamitos, CA, USA,
2006. IEEE Computer Society Press.

[2] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Anderson.
Eraser: a dynamic data race detector for multithreaded programs. ACM Trans. Comput. Syst.,
15(4):391–411, 1997.

[3] Nicholas Nethercote and Julian Seward. Valgrind: A program supervision framework. Electr.
Notes Theor. Comput. Sci., 89(2), 2003.

[4] Dawson Engler and Ken Ashcraft. Racerx: effective, static detection of race conditions and
deadlocks. In SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating systems
principles, pages 237–252, New York, NY, USA, 2003. ACM Press.

[5] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and
Raymie Stata. Extended static checking for java. In Proceedings of the ACM SIGPLAN Con-
ference on Programming language design and implementation, pages 234–245, New York,
NY, USA, 2002. ACM Press.

[6] Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. Locksmith: context-sensitive cor-
relation analysis for race detection. In Proceedings of the ACM SIGPLAN conference on
Programming language design and implementation, pages 320–331, New York, NY, USA,
2006. ACM Press.

[7] Robby, Matthew B. Dwyer, and John Hatcliff. Bogor: an extensible and highly-modular
software model checking framework. In ESEC / SIGSOFT FSE, pages 267–276, 2003.

[8] Tony Andrews, Shaz Qadeer, Sriram K. Rajamani, Jakob Rehof, and Yichen Xie. Zing: A
model checker for concurrent software. In Computer Aided Verification, 16th International
Conference, CAV 2004, Boston, MA, USA, July 13-17, 2004, Proceedings, volume 3114 of
Lecture Notes in Computer Science, pages 484–487. Springer, 2004.

[9] Gerard J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, 2004.

[10] Willem Visser, Klaus Havelund, Guillaume P. Brat, and Seungjoon Park. Model checking
programs. In ASE, pages 3–12, 2000.

[11] Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. Race checking by context infer-
ence. In PLDI ’04: Proceedings of the ACM SIGPLAN 2004 conference on Programming
language design and implementation, pages 1–13, New York, NY, USA, 2004. ACM Press.

[12] Sagar Chaki, Edmund M. Clarke, Alex Groce, Somesh Jha, and Helmut Veith. Modular veri-
fication of software components in c. In ICSE, pages 385–395. IEEE Computer Society, 2003.

[13] Edmund M. Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav. Satabs: Sat-based
predicate abstraction for ansi-c. In Nicolas Halbwachs and Lenore D. Zuck, editors, TACAS,
volume 3440 of Lecture Notes in Computer Science, pages 570–574. Springer, 2005.

[14] Patrice Godefroid. Model checking for programming languages using verisoft. In POPL,
pages 174–186, 1997.

[15] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for model checking
software. In Jens Palsberg and Martı́n Abadi, editors, POPL, pages 110–121. ACM, 2005.

[16] http://manju.cs.berkeley.edu/cil/.

[17] Koushik Sen and Mahesh Viswanathan. Model checking multithreaded programs with asyn-
chronous atomic methods. In CAV, volume 4144 of Lecture Notes in Computer Science, pages
300–314. Springer, 2006.

[18] K. D. Cooper and K. Kennedy. Fast interprocedual alias analysis. In POPL ’89: Proceedings
of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 49–59, New York, NY, USA, 1989. ACM.

[19] Alexandru Salcianu and Martin Rinard. Pointer and escape analysis for multithreaded pro-
grams. In PPoPP ’01: Proceedings of the eighth ACM SIGPLAN symposium on Principles
and practices of parallel programming, pages 12–23, New York, NY, USA, 2001. ACM Press.

[20] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT Press, 2000.

[21] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems: An
Approach to the State-Explosion Problem. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 1996. Foreword By-Pierre Wolper.

[22] Madanlal Musuvathi, David Y. W. Park, Andy Chou, Dawson R. Engler, and David L. Dill.
Cmc: A pragmatic approach to model checking real code. In OSDI, 2002.

[23] Orit Edelstein, Eitan Farchi, Evgeny Goldin, Yarden Nir, Gil Ratsaby, and Shmuel Ur. Frame-
work for testing multi-threaded java programs. Concurrency and Computation: Practice and
Experience, 15(3-5):485–499, 2003.

[24] Yu Lei and Richard H. Carver. Reachability testing of concurrent programs. IEEE Trans.
Software Eng., 32(6):382–403, 2006.

[25] Claude Helmstetter, Florence Maraninchi, Laurent Maillet-Contoz, and Matthieu Moy. Auto-
matic generation of schedulings for improving the test coverage of systems-on-a-chip. fmcad,
0:171–178, 2006.

[26] http://research.microsoft.com/projects/CHESS/.

[27] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks: Efficiently computing the
happens-before relation using locksets. In Formal Approaches to Software Testing and Run-
time Verification, LNCS, pages 193–208, Berlin, Germany, 2006. Springer.

	Introduction
	Our Contribution

	Runtime Model Checking
	An Example
	Inspect
	Identifying Threads and Shared Objects Out of Multiple Runs
	Instrumenting the code
	Dynamic Partial Order Reduction
	Definitions
	An Example
	Avoiding Redundant Backtracking

	Implementation
	Additional Related Work
	Conclusion

