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Abstract 
 
Method of Manufactured solutions is a well-known method used to verify numerical 
algorithms. It is used to estimate convergence and order of accuracy of the algorithms. 
The method involves design of analytical solutions to the set of equations solved by the 
algorithm and generation of the forcing function, which becomes the input to the solver. 
The disadvantage of this method is that the solutions it investigates may not reflect 
physical solutions. Method of Generated Solutions was designed to overcome this 
limitation. Method of Generated Solutions interpolates or approximates experimental data 
or data from a solver in order to design analytical solution. These solutions closely 
resemble physical solutions, which leads to a more accurate baseline for testing and 
verification of a numerical solver. The method was used to verify ICE (Implicit, 
Continuous fluid, Eulerian), a semi-implicit finite volume solver, that simulates fluid 
phenomena. This paper describes the results of numerical experiments, which 
demonstrate the effectiveness of the method. 



1. Introduction 
 
Numerical algorithms are widely used in various fields for different purposes including 
development and testing of the models resembling behavior of real life systems. Code 
verification and validation are methods used to assess accuracy and build confidence in 
the algorithms. [1] 
 
There are many definitions of the terms verification and validation. Charles Hirsch 
defines them as: 
 

Verification is “the process of determining that a model implementation 
accurately represents the underlying mathematical model and its solutions.” 
 
Validation is “the process of determining the degree to which a model is an 
accurate representation of the real world from the perspective of the intended 
uses of the model.” [2] 

 
In other words, validation and verification are two different steps in code development 
and assessment. Validation is used to determine how close the numerical model 
represents a real life phenomenon; while verification ensures that the model is working 
within the allowed error limits.  
 
Roache defines code verification as: 
 

“The [code] author defines precisely what continuum partial differential 
equations and continuum boundary conditions are being solved, and convincingly 
demonstrates that they are solved correctly, i.e. usually with some order of 
accuracy, and always consistently, so that as some measure of discretization (e.g. 
mesh increments) ��0, the code produces a solution to the continuum 
equations” [3] 

 
Thus, code verification is used to verify that the code solves numerical model or set of 
equations consistently and follows the established theoretical order of accuracy of the 
discretization method. Verification is based on comparing the numerical results with 
analytical, exact solutions. 
 
Various methods are used for verification of different systems and solvers including 
Method of Exact Solutions and Method of Manufactured Solutions. This paper focuses 
on the Method of Generated Solutions (MGS) [8] and its application for verification of 
the ICE (Implicit, Continuous fluid, Eulerian), a semi-implicit finite volume solver, that 
simulates fluid phenomena. In this paper, we analyze order of accuracy, consistency of 
the discretization errors for various 2D problems. We also analyze factors which can 
influence the accuracy of the solver. 
 



2. Previous Work 
 
Suppose one needs to solve partial differential equation of the form 
 

 (1) 
 
on some domain � with boundary �. D is the differential operator, g is the source term 
and u is the exact solution that is sought. 
 
 
2.1 Method of Exact Solutions 
 
In the widely used verification Method of Exact Solutions one first derives exact 
solutions to the set of equations solved by the code. Exact solution is a mathematical 
expression that gives solutions at all locations in space and time. They can be derived 
using mathematical methods such as the separation of variables, integral transforms 
(Laplace transforms, Green functions, etc.), etc.  Then the code is run with corresponding 
inputs and a numerical (discrete) solution is generated. This generated numerical solution 
is compared against exact solution. [3, 7] 
 
One of the major disadvantages of the Method of Exact Solutions is that it is not always 
possible or often very difficult to find exact solution to the equation or set of equations 
(e.g. in case when D is non-linear). Also, certain exact solutions (e.g., which use Laplace 
transforms, infinite sums, etc.) are difficult to implement, which is required for 
computing their values at a number of points in space and time in order to compare exact 
and code-generated solutions. 
 
2.2 Method of Manufactured Solutions 
 
Another widely used technique for verifying numerical solvers is the Method of 
Manufactured solutions [4, 5, 6, 7]. In order to verify that code solves equation (1) 
correctly one has to, first, manufacture a solution u (e.g. using an arbitrary mathematical 
function), and then apply operator D and compute the source terms g, which become the 
input to the solver. [3, 4] 
 
Method of Manufactured Solutions is much simpler than the Method of Exact solutions 
because it does not require user to solve equations (i.e., invert the differentiation operator 
D). However, this method has certain limitations. One of them is that the solutions 
chosen by the Method of Manufactured solutions are arbitrary and may not reflect the 
true nature of a real life system and the physical solution that is being simulated. For 
instance, in order to avoid unnatural oscillations (due to discontinuities, sharp changes in 
the solution, etc.), which can occur at high resolutions, solvers use special techniques 



such as gradient, slope limiters, etc. As a result, in this case the Method of Manufactured 
Solutions may not be an appropriate code verification technique. 
 
3. Method of Generated Solutions 
 
To overcome limitations of the Methods of Exact Solutions and Manufactured Solutions, 
we propose a new verification method – Method of Generated Solutions (MGS) [8]. The 
method is designed to verify computational performance of differential and/or integral 
solvers on exact (analytic) solutions which resemble physical solutions. Physical 
phenomena such as fluid flow are simulated numerically by solving a system of partial 
differential equations using some discrete approximation method. Method of Generated 
Solutions is the technique proposed in [8] to verify such numerical solvers. 
 
In order to verify that equation (1) is solved correctly one has to: 
 

1. Obtain an approximate solution u by a computational algorithm or by experiment.  
 
2. Approximate or interpolate the data from u using an appropriate technique (e.g., 

spline interpolation or least-squares approximation). These results, u1, in the 
analytical form provide the values at all locations in space and time. 

 
3. Apply the differential operator D (exact analytical differentiation) to the functions 

resulting in step 2. This yields new function g1 and new problem 
 

, (2) 
 
 where exact solution u1 and source terms g1 are known. 
 

4. Solve new problem (2) using the numerical solver; forcing functions g1 generated 
in step 3 are used as the source terms. As a result, new solution u2 is generated. 

 
5. Compare solution u2 generated in step 4 against exact solution u1 (from step 2) 

and compute the errors introduced by the solver. 
 
Diagram in figure 1 shows the verification process described above. 
 
4. Discretization errors, consistency and order of accuracy 
 
As a result of the experiments, we try to quantify the discretization error, its consistency 
and order of accuracy of the Advect and Advance in Time (AAT) module of the ICE 
algorithm developed by the C-SAFE (Center for Simulations of Accidental Fires and 
Explosions) research group at the University of Utah.  



Discretization of the governing equations subdivides the domain of the problem into 
finite number of cells. The approximate solution, which satisfies these discretized 
equations, is not the same as the exact solution, which satisfies the mathematical 
continuum equations. Discretization error is the difference between the two. [3] We use 
normalized L2 and L� norms of the difference between exact solution, generated by MGS 
method, and approximated solution, computed using ICE, to evaluate the discretization 
errors. 
 
Since in the verification we are using uniform grid NxN, we compute normalized L2 norm 
using the following formula: 
 

 

 
(3) 

 
We compute L� norm using the following formula: 
 

 (4) 
 
where,  
                                   un – Exact solution evaluated at xn, yn, zn 
                                   Un – Approximate solution of the discretized equation 

 

 
 

 

 
 
Figure 1. Verification process using MGS method 

Discrete solution (u) 

Approximation 

Du1 g1 

Run code 

Numerical Solution (u2) 

Experiments or Simulations 

Compare u1 and numerical solution u2 

u1 

Du=g 



Discretization methods are consistent if the error goes to zero as the cell size decreases to 
zero. [3] In order to evaluate consistency of the discretization error, we run experiments 
for the various cell sizes and compute ratios of L2 and L� norms. 
 
Order of accuracy is the rate at which the error decreases to zero. We use the following 
formula to compute the order of accuracy, �: 
 

 
where, 

                                    
                                    

 
 
 
(5) 

 
 
5. Experiments 
 
As already mentioned before, we decided to verify the performance of the ICE algorithm 
developed by the C-SAFE (http://www.csafe.utah.edu) research group at the University 
of Utah. ICE algorithm is utilized to simulate explosions, fires and other fluid phenomena. 
ICE is a cell-centered, finite volume version of an algorithm developed and described by 
Kashiwa, et. al. [9]. ICE uses gradient limiter to suppress unnatural oscillations 
introduced by the higher-order numerical methods. The effect of the gradient limiter on 
the order of accuracy will be discussed in this paper as well.  
 
ICE algorithm has several modules which solve various problems. As part of the research, 
we decided to focus on the Advect and Advance in Time (AAT) module. This module 
was chosen for verification for the following reasons: 
 

1. The advection operator is an important part of ICE algorithms – it’s invoked 
multiple times during full-scale fluid simulations. Therefore, its accuracy is 
crucial. 

2. The advection operator involves only one governing equation; therefore, it is 
relatively simple to verify. [10] 

 
In order to isolate the Advect and Advence in Time module, the advection of a passive 
scalar is employed as a verification experiment. The profiles of the passive scalar are 
defined using bell-shaped exponential and squared-exponential functions. The 2D 
governing equation for the experiment is as follows: 
 

 

 
 



 
where  
                              PS(x, y, t) – Passive scalar 
                              Ux, Uy – Constant velocity in x and y directions correspondingly 
                              g(x, y, t) – Source terms 

 
(6) 

 
As already mentioned above, MGS method can use an approximate solution from a 
numerical solver or measurements from a physical experiment. Since physical 
experimental data is not available, we decided to use approximate solution generated by 
ICE to build our analytical solution. This completes step 1 of the verification process. 
 
We decided to use natural cubic splines to approximate the data extracted from ICE to 
build up the exact solution. Since the differential operator D from equation (1) 
corresponding to equation (6), defined as  
 

, 

 
(7) 

 
is a degree one function, the analytical solution resulting from approximation or 
interpolation of the approximate solution u has to be at least C1 continuous. Since natural 
cubic spline interpolation produces C2 continuous functions, which fits the requirement, it 
was chosen as an interpolation technique for computing exact solution and gradients at 
the specified points of time and space. These gradients are then used to compute source 
terms g1(x,y,t) on the right-hand side of the equation (6). 
 
Using these new source terms, we use ICE to solve the new problem given by equation 
(2), and generate the solution u2. 
 
Finally, we compare the generated solution u2 with the original solution u1 and compute 
L2 and L� error, error consistency and order of accuracy. 
 
Summary  
1. For our verification experiments we decided to choose profile of the passive scalar to 

be represented by some of the well-known forms of analytical functions: a 2D bell-
shaped exponential and a squared exponential; 
 

2. We decided to choose a 1x1m2 2D domain in X and Y dimensions (from -0.5 to 0.5 
meters in each direction). We also chose time step, �t = 10-6, and the number of time 
steps in experiments equal to 20. 
 

3. The tests are executed on the grid resolutions 100x100, 200x200, 400x400 and 
800x800, which correspond to �x and �y equal to 1x10-2, 0.5x10-2, 0.25x10-2 and 
0.125x10-2 respectively. 



 
4. The source terms g1(x,y,t) are computed using the MGS method from two different 

input sources: 
 
a. Exact analytical solution; 
b. Ice generated solution. 
 

5. ICE allows specifying the desired order of accuracy of the solution. We decided to 
verify its performance when we select both first and second orders. 
 

6. As already mentioned before, ICE utilizes gradient limiter to suppress unnatural 
oscillations at places where the gradient of a quantity changes rapidly. The limiter 
implemented in ICE is computed using Van Leer method [9, 11]:  

 

                                              
where,  

,   
 

        uj – value of the solution at the cell center; 
        uv – value of the solution at the cell vertices; 
        umin, umax – min and max values of the solution at the surrounding cell centers. 

 
The values of the gradient limiters are used to bound the values of gradients: 
 

 
 
To evaluate the effect of the gradient limiter on the solution, discretization error 
consistency and order of accuracy, we decided to verify the code with gradient limiter 
enabled and disabled (this applies only to the second order of accuracy tests).  
 

 



6. Results of the experiments 
 
6.1 Exponential profile 

 
We chose the following function for describing the bell-shaped exponential profile:  

 

 
 

                 where,  

,  

 
 
(8) 

 

 
 
Figure 2. 2D exponential function profile at t=0 
The profile of the exponential function at time t=0 is shown in Figure 2. Figure 3 shows 
the cross-section of the 2D exponential profile at y=0 and corresponding gradient limiter 
values. 
 



 
 
Figure 3.  

• Cross-section of the 2D exponential profile at time t = 0 and y = 0; 
• Cross-section of the gradient limiter profile for the 2D exponential profile at t = 0 and y = 0. 

 
 
We ran three sets of tests on the exponential function profile: 
 

1. Gradient limiter is enabled in the ICE code, and second order is the desired order 
of accuracy of the solution.  

2. First order is the desired order of accuracy of the solution.  
3. Gradient limiter disabled (or, in other words, gradient limiter values are set to 1) 

and second order is the desired order of accuracy of the solution.  



6.1.1 Second order accuracy, gradient limiter enabled 
 
First, we ran mesh refinement experiments (with the grid refinement ratio equal to two) 
on the exponential profile, gradient limiter enabled in the solver (ICE) and desired order 
of accuracy equal to two.  

 
Figures 4 and 5 show results of the experiments – L2 and L� errors and their ratios as 
functions of time – for the source terms from analytical solution and ice-generated 
solution correspondingly. Tables 1 and 2 show the approximate computed errors and 
observed order of accuracy for analytical and ice-generated solutions correspondingly at 
the time step 20. 
 
From these results, we can conclude that the resulting discretization error is consistent 
(the L2-norm decreases by a factor of approximately 3-3.1 and L�-norm decreases by a 
factor of 2-2.1 when we refine our grid by a factor of two). However, the order of 
accuracy doesn’t match our expectations and theoretical predictions. Instead of order of 
accuracy two, we got approximately 1.6-1.7 (for L2-norm) and 1-1.1 (for L�-norm).  
 
6.1.2 First order accuracy 
 
As a result, we decided to reduce the desired order of accuracy to one and ran the same 
set of tests (mesh size is 100x100, 200x200, 400x400 and 800x800) in order to see how 
the solver will perform. The results are shown in figures 6 and 7, and tables 3 and 4. 
 
As we can see from the results, discretization errors are consistent and go down by a 
factor of two when resolution is increased by a factor of two. The resulting order of 
accuracy is equal to the expected value - one - for both solver generated and analytical 
function generated sources. 
 
6.1.3 Second order accuracy, gradient limiter disabled 
 
To evaluate the effect of the gradient limiter on the order of accuracy of the solution we 
decided to run an experiment with the desired order accuracy equal to two and gradient 
limiter disabled. In other words, the values of gradient limiter are set to one. We are 
testing the same mesh sizes as before – 100x100, 200x200, 400x400 and 800x800. 
Similar to the first two experiments, the results are presented in figures 8 and 9, and 
tables 5 and 6.  
 
The results show that disabling the gradient limiter gives us the expected order of 
accuracy equal to two in case of both solver-generated sources and sources generated 
from the analytical function.  



 

 
 
Figure 4. L2 and L� errors and their ratios as functions of time from second order accuracy with gradient 
limiter enabled test for exponential 2D profile using source terms from analytical function for resolutions: 

• 100x100 (�x = �y = 0.01m); 
• 200x200 (�x = �y = 0.005m); 
• 400x400 (�x = �y = 0.0025m); 
• 800x800 (�x = �y = 0.00125m). 

 
 
Table 1.  L2 and L� - norms, error ratios and order of accuracy for 2D exponential profile (source terms are 
from analytical function) 

Grid L2-norm Ratio Observed 
order of 
accuracy 

Max Error Ratio Observed 
order of 
accuracy 

100x100 1.41659e-08   2.33979e-07   
200x200 4.63891e-09 3.05 1.61 1.15025e-07 2.03 1.02 
400x400 1.52472e-09 3.04 1.61 5.54151e-08 2.08 1.05 
800x800 4.88037e-10 3.12 1.64 2.55816e-08 2.17 1.12 

 



 

 
 
Figure 5. L2 and L� errors and their ratios as functions of time from second order accuracy with gradient 
limiter enabled test for exponential 2D profile using source terms from solver’s solution for resolutions: 

• 100x100 (�x = �y = 0.01m); 
• 200x200 (�x = �y = 0.005m); 
• 400x400 (�x = �y = 0.0025m); 
• 800x800 (�x = �y = 0.00125m). 

 
 
Table 2.  L2 and L� - norms, error ratios and order of accuracy for 2D exponential profile (source terms are 
from ICE-generated solution) 
 

Grid L2-norm Ratio Observed 
order of 
accuracy 

Max Error Ratio Observed 
order of 
accuracy 

100x100 1.38635e-08   2.26970e-07   
200x200 4.43660e-09 3.12 1.64 1.08364e-07 2.09 1.07 
400x400 1.39746e-09 3.17 1.67 4.94638e-08 2.19 1.13 
800x800 4.18437e-10 3.34 1.74 2.09230e-08 2.36 1.24 

 
 



 
 
Figure 6. L2 and L� errors and their ratios as functions of time from first second order accuracy test for 
exponential 2D profile using source terms from analytical function for resolutions: 

• 100x100 (�x = �y = 0.01m); 
• 200x200 (�x = �y = 0.005m); 
• 400x400 (�x = �y = 0.0025m); 
• 800x800 (�x = �y = 0.00125m). 

 
 
Table 3.  L2 and L� - norms, error ratios and order of accuracy for 2D exponential profile (source terms are 
from analytical function) 
 

Grid L2-norm Ratio Observed 
order of 
accuracy 

Max Error Ratio Observed 
order of 
accuracy 

100x100 1.08795e-07   2.37928e-07   
200x200 5.43964e-08 2.00 1.00 1.18995e-07 2.00 1.00 
400x400 2.71525e-08 2.00 1.00 5.94001e-08 2.00 1.00 
800x800 1.35247e-08 2.01 1.01 2.95864e-08 2.01 1.01 

 



 

 
 
Figure 7. L2 and L� errors and their ratios as functions of time from first order accuracy test for exponential 
2D profile using source terms from solver’s solution for resolutions: 

• 100x100 (�x = �y = 0.01m); 
• 200x200 (�x = �y = 0.005m); 
• 400x400 (�x = �y = 0.0025m); 
• 800x800 (�x = �y = 0.00125m). 

 
 
Table 4.  L2 and L� - norms, error ratios and order of accuracy for 2D exponential profile (source terms are 
from ICE-generated solution) 
 

Grid L2-norm Ratio Observed 
order of 
accuracy 

Max Error Ratio Observed 
order of 
accuracy 

100x100 1.08779e-07   2.37901e-07   
200x200 5.43921e-08 2.00 1.00 1.18989e-07 2.00 1.00 
400x400 2.71514e-08 2.00 1.00 5.93984e-08 2.00 1.00 
800x800 1.35244e-08 2.01 1.01 2.95860e-08 2.01 1.01 



 

 
 
Figure 8. L2 and L� errors and their ratios as functions of time from second order accuracy with gradient 
limiter disabled test for exponential 2D profile using source terms from analytical function for resolutions: 

• 100x100 (�x = �y = 0.01m); 
• 200x200 (�x = �y = 0.005m); 
• 400x400 (�x = �y = 0.0025m); 
• 800x800 (�x = �y = 0.00125m). 

 
Table 5.  L2 and L� - norms, error ratios and order of accuracy for 2D exponential profile (source terms are 
from analytical function) 
 

Grid L2-norm Ratio Observed 
order of 
accuracy 

Max Error Ratio Observed 
order of 
accuracy 

100x100 3.14777e-09   5.18447e-09   
200x200 7.55431e-10 4.17 2.06 1.21124e-09 4.28 2.10 
400x400 1.85757e-10 4.07 2.02 2.96308e-10 4.09 2.03 
800x800 4.60069e-11 4.04 2.01 7.41494e-11 4.00 2.00 



 

 
 
Figure 9. L2 and L� errors and their ratios as functions of time from second order accuracy with gradient 
limiter disabled test for exponential 2D profile using source terms from solver’s solution for resolutions: 

• 100x100 (�x = �y = 0.01m); 
• 200x200 (�x = �y = 0.005m); 
• 400x400 (�x = �y = 0.0025m); 
• 800x800 (�x = �y = 0.00125m). 

 
 
Table 6.  L2 and L� - norms, error ratios and order of accuracy for 2D exponential profile (source terms are 
from ICE-generated solution) 
 

Grid L2-norm Ratio Observed 
order of 
accuracy 

Max Error Ratio Observed 
order of 
accuracy 

100x100 3.14765e-09   5.18349e-09   
200x200 7.55428e-10 4.17 2.06 1.21121e-09 4.28 2.10 
400x400 1.85758e-10 4.07 2.02 2.96308e-10 4.09 2.03 
800x800 4.60085e-11 4.04 2.01 7.41542e-11 4.00 2.00 



Results of the experiments show that the errors reduce consistently by a factor of two 
when the mesh size is doubled. Also, observed order of accuracy agrees with the 
theoretical predictions when the desired order of accuracy is set to one and when gradient 
limiter is disabled in the code.  
 
Figure 10 shows where the worst errors are occurring at y=0 and time step = 1. The 
figure shows the plot of the computed solution u2 and the difference between computed 
and exact solutions (u2 – u1) when: 
 

1. the desired order of accuracy is one; 
2. the desired order of accuracy is two and gradient limiter values are set to 0; 
3. the desired order of accuracy is two and gradient limiter values are set to 0.5; 
4. the desired order of accuracy is two and gradient limiter values are set to 1 (or, in 

other words, gradient limiter is disabled); 
5. the desired order of accuracy is two and gradient limiter values are set to 0.75; 
6. the desired order of accuracy is two and gradient limiter values are enabled (in 

other words set to the computed values). 
 
As we can see from the figure when the desired order of accuracy is one, the worst errors 
occur at the peak of the bell-shaped profile (the error at the peak is on order of 10-8) and 
around point -0.2 and 0.2 – around the points where gradient changes rapidly. Setting the 
desired order of accuracy to two and gradient limiter value to zero is equivalent to the 
first order test. The figure indicates that, indeed, in this case we get the same errors as in 
case of the first order accuracy.  
 
Setting the desired order of accuracy to two and enabling the gradient limiter (setting it to 
the computed values) reduces the error at the peak by a factor of two, and is equal to the 
error when gradient limiter is set to 0.5. The errors at the other locations where the 
gradient changes rapidly are approximately ten times smaller than in case of the first 
order of accuracy test.  
 
Finally, we can conclude that for fixed values of the gradient limiter as their (gradient 
limiters’) values approach one the errors go to zero.  
 
 



 
Figure 10. Errors (u2 – u1) for the exponential function for time step = 1 and y=0, when: 

• the desired order of accuracy to one; 
• the desired order of accuracy is two and gradient limiter is set to 0; 
• the desired order of accuracy is two and gradient limiter is set to 0.5; 
• the desired order of accuracy is two and gradient limiter is set to 1 (in other words disabled); 
• the desired order of accuracy is two and gradient limiter is set to 0.75; 
• the desired order of accuracy is two and gradient limiter is enabled (in other words set to the 

computed values).  
 
 



6.2 Exponential squared profile 
 
We also chose the following squared exponential function to describe the profile of the 
passive scalar:  

 

 
 

                 where,  

,  

 
 
(8) 

 
The profile of the exponential function at time t=0 is shown in Figure 11. Figure 12 
shows the cross-section of the squared exponential profile at y=0 and corresponding 
gradient limiter values. 
 

 
 
Figure 11. 2D squared exponential function profile at t=0 



 
 
Figure 12.  

• Cross-section of the 2D squared exponential profile at time t = 0 and y = 0; 
• Cross-section of the gradient limiter profile for 2D squared exponential profile at t = 0 and y = 0. 

 
 
Similarly to the bell-shaped exponential profile (section 6.1), we ran three sets of tests on 
the bell-shaped squared exponential function profile: 
 

1. Gradient limiter is enabled in the ICE code, and second order is the desired order 
of accuracy of the solution; 

2. First order is the desired order of accuracy of the solution; 
3. Gradient limiter is disabled (or, in other words, gradient limiter values are set to 

one), and second order is the desired order of accuracy of the solution. 
 
 



6.2.1 Second order of accuracy, gradient limiter enabled 
 
Similarly to the exponential function experiments, first we ran mesh refinement tests 
(with the grid refinement ratio equal to two) on the squared exponential profile with 
gradient limiter enabled in the solver (ICE) and the desired order of accuracy equal to 
two.  

 
Figures 13 and 14 show the results – L2 and L� errors and their ratios as functions of time 
– for the source terms from analytical and ice-generated solutions correspondingly. 
Tables 7 and 8 show the approximate computed errors and observed order of accuracy for 
analytical and ice-generated solutions correspondingly. 
 
We can conclude that the resulting discretization errors are consistent (the L2-norm 
decreases by a factor of approximately 3.2-3.3 and L�-norm decreases by a factor of 2-
2.3 when we refine our grid by a factor of two). However, the order of accuracy does not 
match our expectations and theoretical predictions. Instead of order of accuracy equal to 
two, we got approximately 1.7 (for L2-norm) and 1-1.2 (for L�-norm).  
 
6.2.2 First order accuracy 
 
As a result, similarly to the case of exponential function profile, we decided to run 
experiments with the desired order of accuracy equal to one. The results of the 
experiments are shown in the figures 15 and 16, and tables 9 and 10. 
 
As we can see from the results, when one is the desired order of accuracy discretization 
errors are also consistent. In addition, they go down by a factor of two; therefore, the 
resulting order of accuracy is equal to the expected value - one - for both solver-
generated and analytical function generated sources. 
 
6.2.3 Second order accuracy, gradient limiter disabled. 
 
Results for the second order accuracy test with the gradient limiter disabled (in other 
words, gradient limiter values are set to one) for the squared exponential function are 
presented in figures 17, 18 and tables 11 and 12. 
 
The results show that disabling the gradient limiter gives us the expected order of 
accuracy equal to two in case of both solver-generated sources and sources generated 
from the analytical function.  
 
 
 



 

 
 
Figure 13. L2 and L� errors and their ratios as functions of time from second order accuracy with gradient 
limiter enabled test for squared exponential 2D profile using source terms from analytical function for 
resolutions: 

• 100x100 (�x = �y = 0.01m); 
• 200x200 (�x = �y = 0.005m);  
• 400x400 (�x = �y = 0.0025m); 
• 800x800 (�x = �y = 0.00125m). 

 
 
Table 7.  L2 and L� - norms, error ratios and order of accuracy for 2D squared exponential profile (source 
terms are from analytical function) 
 

Grid L2-norm Ratio Observed 
order of 
accuracy 

Max Error Ratio Observed 
order of 
accuracy 

100x100 2.71748e-12   6.96352e-11   
200x200 8.41135e-13 3.23 1.69 3.46223e-11 2.01 1.01 
400x400 2.65838e-13 3.16 1.66 1.67238e-11 2.07 1.05 
800x800 8.31542e-14 3.20 1.68 7.72489e-12 2.16 1.11 

 



 

 
 
Figure 14. L2 and L� errors and their ratios as functions of time from second order accuracy with gradient 
limiter enabled test for squared exponential 2D profile using source terms from solver’s solution for 
resolutions:  

• 100x100 (�x = �y = 0.01m); 
• 200x200 (�x = �y = 0.005m);  
• 400x400 (�x = �y = 0.0025m); 
• 800x800 (�x = �y = 0.00125m). 

 
 
Table 8.  L2 and L� - norms, error ratios and order of accuracy for 2D squared exponential profile (source 
terms are from ICE-generated solution) 
 

Grid L2-norm Ratio Observed 
order of 
accuracy 

Max Error Ratio Observed 
order of 
accuracy 

100x100 2.66661e-12   6.77022e-11   
200x200 8.06013e-13 3.31 1.73 3.26456e-11 2.07 1.05 
400x400 2.44279e-13 3.30 1.72 1.49334e-11 2.19 1.13 
800x800 7.14662e-14 3.42 1.77 6.31949e-12 2.36 1.24 



 

 
 
Figure 15. L2 and L� errors and their ratios as functions of time from first order accuracy test for squared 
exponential 2D profile using source terms from analytical function for resolutions: 

• 100x100 (�x = �y = 0.01m); 
• 200x200 (�x = �y = 0.005m); 
• 400x400 (�x = �y = 0.0025m); 
• 800x800 (�x = �y = 0.00125m). 

 
 
Table 9.  L2 and L� - norms, error ratios and order of accuracy for 2D squared exponential profile (source 
terms are from analytical function) 
 

Grid L2-norm Ratio Observed 
order of 
accuracy 

Max Error Ratio Observed 
order of 
accuracy 

100x100 9.33918e-12   7.07463e-11   
200x200 4.68822e-12 1.99 0.99 3.58000e-11 1.98 0.98 
400x400 2.34264e-12 2.00 1.00 1.79217e-11 2.00 0.99 
800x800 1.16722e-12 2.01 1.01 8.93293e-12 2.01 1.00 

 



 

 
 
Figure 16. L2 and L� errors and their ratios as functions of time from first order accuracy test for squared 
exponential 2D profile using source terms from solver’s solution for resolutions: 

• 100x100 (�x = �y = 0.01m); 
• 200x200 (�x = �y = 0.005m); 
• 400x400 (�x = �y = 0.0025m); 
• 800x800 (�x = �y = 0.00125m). 

 
 
Table 10.  L2 and L� - norms, error ratios and order of accuracy for 2D squared exponential profile (source 
terms are from ICE-generated solution) 
 

Grid L2-norm Ratio Observed 
order of 
accuracy 

Max Error Ratio Observed 
order of 
accuracy 

100x100 9.33147e-12   7.06531e-11   
200x200 4.68628e-12 1.99 0.99 3.57758e-11 1.97 0.98 
400x400 2.34218e-12 2.00 1.00 1.79158e-11 2.00 1.0 
800x800 1.16712e-12 2.01 1.00 8.93147e-12 2.01 1.0 



 

 
 
Figure 17. L2 and L� errors and their ratios as functions of time from second order accuracy with gradient 
limiter disabled test for squared exponential 2D profile using source terms from analytical function for 
resolutions: 

• 100x100 (�x = �y = 0.01m); 
• 200x200 (�x = �y = 0.005m); 
• 400x400 (�x = �y = 0.0025m); 
• 800x800 (�x = �y = 0.00125m). 

 
 
Table 11. L2 and L� - norms, error ratios and order of accuracy for 2D squared exponential profile (source 
terms are from analytical function) 
 

Grid L2-norm Ratio Observed 
order of 
accuracy 

Max Error Ratio Observed 
order of 
accuracy 

100x100 6.41230e-13   4.56135e-12   
200x200 1.45620e-13 4.4 2.14 9.75007e-13 4.68 2.23 
400x400 3.52794e-14 4.13 2.05 2.24302e-13 4.35 2.12 
800x800 8.65682e-15 4.08 2.03 5.33483e-14 4.20 2.07 

 



 

 
 
Figure 18. L2 and L� errors and their ratios as functions of time from second order accuracy with gradient 
limiter disabled test for squared exponential 2D profile using source terms from solver’s solution for 
resolutions: 

• 100x100 (�x = �y = 0.01m); 
• 200x200 (�x = �y = 0.005m); 
• 400x400 (�x = �y = 0.0025m); 
• 800x800 (�x = �y = 0.00125m). 

 
 
Table 12. L2 and L� - norms, error ratios and order of accuracy for 2D squared exponential profile (source 
terms are from ICE-generated solution) 
 

Grid L2-norm Ratio Observed 
order of 
accuracy 

Max Error Ratio Observed 
order of 
accuracy 

100x100 6.42001e-13   4.56070e-12   
200x200 1.46065e-13 4.40 2.14 9.78557e-13 4.66 2.22 
400x400 3.49763e-14 4.18 2.06 2.25096e-13 4.35 2.12 
800x800 7.70293e-15 4.54 2.18 5.38521e-14 4.18 2.06 

 



 

 
Figure 19. Summary of the errors (u2 – u1) for the squared exponential function for time step = 1 and y = 0, 
when: 

• desired order of accuracy is 1; 
• desired order of accuracy is 2 and gradient limiter is enabled; 
• desired order of accuracy is 2 and gradient limiter is disabled. 

 
 
We can conclude that in all three scenarios the L2 and L� errors decrease consistently 
when the resolution is increased by a factor of two. Also, observed order of accuracy 
agrees with the theoretical predictions when the desired order of accuracy is set to one 
and when gradient limiter is disabled in the code. However, when the gradient limiter is 
enabled in the second order of accuracy tests, the order of accuracy decreases by 
approximately 0.4 in case of L2 norm and almost by one in case of  L�  norm. 
 
Figure 19 shows where the worst errors are occurring at y = 0 and time step = 1. The 
figure shows the plot of the computed solution u2 and the difference between computed 
and exact solutions (u2 – u1) when: 
 



1. the desired order of accuracy is one; 
2. the desired order of accuracy is two and gradient limiter values are set to one (or, 

in other words, the gradient limiter is disabled); 
3. the desired order of accuracy is two and gradient limiter values are enabled (in 

other words, set to the computed values). 
 
As we can see from the figure when the desired order of accuracy is one, the worst errors 
occur at the peak of the profile (the error at the peak is on order of 10-12) and around -0.07 
and 0.07 – the points where gradient changes rapidly. Increasing the desired order of 
accuracy from one to two (in case when gradient limiter is enabled) reduces the error at 
the peak by a factor of two. In addition, when gradient limiter is enabled in the algorithm, 
the errors increase in the areas where the limiter values are not equal to one.  
 
 
7. Analysis 
 
The results of the experiments indicate that the order of accuracy of the Advect and 
Advance Module of the solver depends on the problem. Squared exponential function is a 
c� function and smoother than regular bell-shaped exponential. As a result, the errors are 
smaller and the order of accuracy is slightly better for the squared exponential function 
compared to regular exponential. 
 
Also the experiments demonstrated that the L2 and L� errors are decreasing when we are 
using higher resolution. Moreover they are decreasing consistently (by the same factor). 
 
Also, we can see that the gradient limiter reduces order of accuracy in case of both 
functions. Although, the limiter limits the value of the gradients only in a few places 
(places where the gradient changes rapidly), overall order of accuracy decreases 
significantly. If the reduction in the order of accuracy is not as bad in case of L2 norm (it 
reduces from order two to approximately 1.7), in case of L� norm it reduces almost by 
one order (from 2 to 1.1 approximately). Disabling the gradient limiter reduces error at 
the peak to a smaller number and increases order of accuracy. 
 
 
8. Conclussion 
 
The Method of Generated Solutions was developed to evaluate the discretization errors, 
their consistency and order of accuracy of ICE algorithm. The method designs analytical 
solution by interpolating numerical solution from physical experiments or from a solver’s 
solution. Since MGS solutions originate from the actual problems, the results are more 
representative than the ones obtained by using Method of Manufactured Solutions.  
 



We have used MGS to verify Advect and Advance in Time module of ICE solver on a 
2D domain. In the future it is necessary to verify the solver in a 3D domain and on 
practical test problems. All other modules of the software also need to be verified. Finally, 
more research should be done in the area of the gradient limiter. Gradient limiter that is 
being used now does not preserve the order of accuracy well for the functions we used in 
the experiments (especially in case of L�-norm). So, there is a need for a different 
gradient limiter that would better preserve second order of accuracy. 
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