

Method of Generated Solutions as a
Numerical Verification Tool for Ice Code

Polina Milyavskaya, Christopher

Sikorski, Todd Harman*

UUCS-08-07

School of Computing
University of Utah

Salt Lake City, UT 84112 USA

*Department of Mechanical Engineering
University of Utah

Salt Lake City, UT 84112 USA

Abstract

Method of Manufactured solutions is a well-known method used to verify numerical
algorithms. It is used to estimate convergence and order of accuracy of the algorithms.
The method involves design of analytical solutions to the set of equations solved by the
algorithm and generation of the forcing function, which becomes the input to the solver.
The disadvantage of this method is that the solutions it investigates may not reflect
physical solutions. Method of Generated Solutions was designed to overcome this
limitation. Method of Generated Solutions interpolates or approximates experimental data
or data from a solver in order to design analytical solution. These solutions closely
resemble physical solutions, which leads to a more accurate baseline for testing and
verification of a numerical solver. The method was used to verify ICE (Implicit,
Continuous fluid, Eulerian), a semi-implicit finite volume solver, that simulates fluid
phenomena. This paper describes the results of numerical experiments, which
demonstrate the effectiveness of the method.

1. Introduction

Numerical algorithms are widely used in various fields for different purposes including
development and testing of the models resembling behavior of real life systems. Code
verification and validation are methods used to assess accuracy and build confidence in
the algorithms. [1]

There are many definitions of the terms verification and validation. Charles Hirsch
defines them as:

Verification is “the process of determining that a model implementation
accurately represents the underlying mathematical model and its solutions.”

Validation is “the process of determining the degree to which a model is an
accurate representation of the real world from the perspective of the intended
uses of the model.” [2]

In other words, validation and verification are two different steps in code development
and assessment. Validation is used to determine how close the numerical model
represents a real life phenomenon; while verification ensures that the model is working
within the allowed error limits.

Roache defines code verification as:

“The [code] author defines precisely what continuum partial differential
equations and continuum boundary conditions are being solved, and convincingly
demonstrates that they are solved correctly, i.e. usually with some order of
accuracy, and always consistently, so that as some measure of discretization (e.g.
mesh increments) ��0, the code produces a solution to the continuum
equations” [3]

Thus, code verification is used to verify that the code solves numerical model or set of
equations consistently and follows the established theoretical order of accuracy of the
discretization method. Verification is based on comparing the numerical results with
analytical, exact solutions.

Various methods are used for verification of different systems and solvers including
Method of Exact Solutions and Method of Manufactured Solutions. This paper focuses
on the Method of Generated Solutions (MGS) [8] and its application for verification of
the ICE (Implicit, Continuous fluid, Eulerian), a semi-implicit finite volume solver, that
simulates fluid phenomena. In this paper, we analyze order of accuracy, consistency of
the discretization errors for various 2D problems. We also analyze factors which can
influence the accuracy of the solver.

2. Previous Work

Suppose one needs to solve partial differential equation of the form

 (1)

on some domain � with boundary �. D is the differential operator, g is the source term
and u is the exact solution that is sought.

2.1 Method of Exact Solutions

In the widely used verification Method of Exact Solutions one first derives exact
solutions to the set of equations solved by the code. Exact solution is a mathematical
expression that gives solutions at all locations in space and time. They can be derived
using mathematical methods such as the separation of variables, integral transforms
(Laplace transforms, Green functions, etc.), etc. Then the code is run with corresponding
inputs and a numerical (discrete) solution is generated. This generated numerical solution
is compared against exact solution. [3, 7]

One of the major disadvantages of the Method of Exact Solutions is that it is not always
possible or often very difficult to find exact solution to the equation or set of equations
(e.g. in case when D is non-linear). Also, certain exact solutions (e.g., which use Laplace
transforms, infinite sums, etc.) are difficult to implement, which is required for
computing their values at a number of points in space and time in order to compare exact
and code-generated solutions.

2.2 Method of Manufactured Solutions

Another widely used technique for verifying numerical solvers is the Method of
Manufactured solutions [4, 5, 6, 7]. In order to verify that code solves equation (1)
correctly one has to, first, manufacture a solution u (e.g. using an arbitrary mathematical
function), and then apply operator D and compute the source terms g, which become the
input to the solver. [3, 4]

Method of Manufactured Solutions is much simpler than the Method of Exact solutions
because it does not require user to solve equations (i.e., invert the differentiation operator
D). However, this method has certain limitations. One of them is that the solutions
chosen by the Method of Manufactured solutions are arbitrary and may not reflect the
true nature of a real life system and the physical solution that is being simulated. For
instance, in order to avoid unnatural oscillations (due to discontinuities, sharp changes in
the solution, etc.), which can occur at high resolutions, solvers use special techniques

such as gradient, slope limiters, etc. As a result, in this case the Method of Manufactured
Solutions may not be an appropriate code verification technique.

3. Method of Generated Solutions

To overcome limitations of the Methods of Exact Solutions and Manufactured Solutions,
we propose a new verification method – Method of Generated Solutions (MGS) [8]. The
method is designed to verify computational performance of differential and/or integral
solvers on exact (analytic) solutions which resemble physical solutions. Physical
phenomena such as fluid flow are simulated numerically by solving a system of partial
differential equations using some discrete approximation method. Method of Generated
Solutions is the technique proposed in [8] to verify such numerical solvers.

In order to verify that equation (1) is solved correctly one has to:

1. Obtain an approximate solution u by a computational algorithm or by experiment.

2. Approximate or interpolate the data from u using an appropriate technique (e.g.,

spline interpolation or least-squares approximation). These results, u1, in the
analytical form provide the values at all locations in space and time.

3. Apply the differential operator D (exact analytical differentiation) to the functions

resulting in step 2. This yields new function g1 and new problem

, (2)

 where exact solution u1 and source terms g1 are known.

4. Solve new problem (2) using the numerical solver; forcing functions g1 generated
in step 3 are used as the source terms. As a result, new solution u2 is generated.

5. Compare solution u2 generated in step 4 against exact solution u1 (from step 2)

and compute the errors introduced by the solver.

Diagram in figure 1 shows the verification process described above.

4. Discretization errors, consistency and order of accuracy

As a result of the experiments, we try to quantify the discretization error, its consistency
and order of accuracy of the Advect and Advance in Time (AAT) module of the ICE
algorithm developed by the C-SAFE (Center for Simulations of Accidental Fires and
Explosions) research group at the University of Utah.

Discretization of the governing equations subdivides the domain of the problem into
finite number of cells. The approximate solution, which satisfies these discretized
equations, is not the same as the exact solution, which satisfies the mathematical
continuum equations. Discretization error is the difference between the two. [3] We use
normalized L2 and L� norms of the difference between exact solution, generated by MGS
method, and approximated solution, computed using ICE, to evaluate the discretization
errors.

Since in the verification we are using uniform grid NxN, we compute normalized L2 norm
using the following formula:

(3)

We compute L� norm using the following formula:

 (4)

where,
 un – Exact solution evaluated at xn, yn, zn
 Un – Approximate solution of the discretized equation

Figure 1. Verification process using MGS method

Discrete solution (u)

Approximation

Du1 g1

Run code

Numerical Solution (u2)

Experiments or Simulations

Compare u1 and numerical solution u2

u1

Du=g

Discretization methods are consistent if the error goes to zero as the cell size decreases to
zero. [3] In order to evaluate consistency of the discretization error, we run experiments
for the various cell sizes and compute ratios of L2 and L� norms.

Order of accuracy is the rate at which the error decreases to zero. We use the following
formula to compute the order of accuracy, �:

where,

(5)

5. Experiments

As already mentioned before, we decided to verify the performance of the ICE algorithm
developed by the C-SAFE (http://www.csafe.utah.edu) research group at the University
of Utah. ICE algorithm is utilized to simulate explosions, fires and other fluid phenomena.
ICE is a cell-centered, finite volume version of an algorithm developed and described by
Kashiwa, et. al. [9]. ICE uses gradient limiter to suppress unnatural oscillations
introduced by the higher-order numerical methods. The effect of the gradient limiter on
the order of accuracy will be discussed in this paper as well.

ICE algorithm has several modules which solve various problems. As part of the research,
we decided to focus on the Advect and Advance in Time (AAT) module. This module
was chosen for verification for the following reasons:

1. The advection operator is an important part of ICE algorithms – it’s invoked
multiple times during full-scale fluid simulations. Therefore, its accuracy is
crucial.

2. The advection operator involves only one governing equation; therefore, it is
relatively simple to verify. [10]

In order to isolate the Advect and Advence in Time module, the advection of a passive
scalar is employed as a verification experiment. The profiles of the passive scalar are
defined using bell-shaped exponential and squared-exponential functions. The 2D
governing equation for the experiment is as follows:

where
 PS(x, y, t) – Passive scalar
 Ux, Uy – Constant velocity in x and y directions correspondingly
 g(x, y, t) – Source terms

(6)

As already mentioned above, MGS method can use an approximate solution from a
numerical solver or measurements from a physical experiment. Since physical
experimental data is not available, we decided to use approximate solution generated by
ICE to build our analytical solution. This completes step 1 of the verification process.

We decided to use natural cubic splines to approximate the data extracted from ICE to
build up the exact solution. Since the differential operator D from equation (1)
corresponding to equation (6), defined as

,

(7)

is a degree one function, the analytical solution resulting from approximation or
interpolation of the approximate solution u has to be at least C1 continuous. Since natural
cubic spline interpolation produces C2 continuous functions, which fits the requirement, it
was chosen as an interpolation technique for computing exact solution and gradients at
the specified points of time and space. These gradients are then used to compute source
terms g1(x,y,t) on the right-hand side of the equation (6).

Using these new source terms, we use ICE to solve the new problem given by equation
(2), and generate the solution u2.

Finally, we compare the generated solution u2 with the original solution u1 and compute
L2 and L� error, error consistency and order of accuracy.

Summary
1. For our verification experiments we decided to choose profile of the passive scalar to

be represented by some of the well-known forms of analytical functions: a 2D bell-
shaped exponential and a squared exponential;

2. We decided to choose a 1x1m2 2D domain in X and Y dimensions (from -0.5 to 0.5
meters in each direction). We also chose time step, �t = 10-6, and the number of time
steps in experiments equal to 20.

3. The tests are executed on the grid resolutions 100x100, 200x200, 400x400 and
800x800, which correspond to �x and �y equal to 1x10-2, 0.5x10-2, 0.25x10-2 and
0.125x10-2 respectively.

4. The source terms g1(x,y,t) are computed using the MGS method from two different

input sources:

a. Exact analytical solution;
b. Ice generated solution.

5. ICE allows specifying the desired order of accuracy of the solution. We decided to
verify its performance when we select both first and second orders.

6. As already mentioned before, ICE utilizes gradient limiter to suppress unnatural
oscillations at places where the gradient of a quantity changes rapidly. The limiter
implemented in ICE is computed using Van Leer method [9, 11]:

where,

,

 uj – value of the solution at the cell center;
 uv – value of the solution at the cell vertices;
 umin, umax – min and max values of the solution at the surrounding cell centers.

The values of the gradient limiters are used to bound the values of gradients:

To evaluate the effect of the gradient limiter on the solution, discretization error
consistency and order of accuracy, we decided to verify the code with gradient limiter
enabled and disabled (this applies only to the second order of accuracy tests).

6. Results of the experiments

6.1 Exponential profile

We chose the following function for describing the bell-shaped exponential profile:

 where,

,

(8)

Figure 2. 2D exponential function profile at t=0
The profile of the exponential function at time t=0 is shown in Figure 2. Figure 3 shows
the cross-section of the 2D exponential profile at y=0 and corresponding gradient limiter
values.

Figure 3.

• Cross-section of the 2D exponential profile at time t = 0 and y = 0;
• Cross-section of the gradient limiter profile for the 2D exponential profile at t = 0 and y = 0.

We ran three sets of tests on the exponential function profile:

1. Gradient limiter is enabled in the ICE code, and second order is the desired order
of accuracy of the solution.

2. First order is the desired order of accuracy of the solution.
3. Gradient limiter disabled (or, in other words, gradient limiter values are set to 1)

and second order is the desired order of accuracy of the solution.

6.1.1 Second order accuracy, gradient limiter enabled

First, we ran mesh refinement experiments (with the grid refinement ratio equal to two)
on the exponential profile, gradient limiter enabled in the solver (ICE) and desired order
of accuracy equal to two.

Figures 4 and 5 show results of the experiments – L2 and L� errors and their ratios as
functions of time – for the source terms from analytical solution and ice-generated
solution correspondingly. Tables 1 and 2 show the approximate computed errors and
observed order of accuracy for analytical and ice-generated solutions correspondingly at
the time step 20.

From these results, we can conclude that the resulting discretization error is consistent
(the L2-norm decreases by a factor of approximately 3-3.1 and L�-norm decreases by a
factor of 2-2.1 when we refine our grid by a factor of two). However, the order of
accuracy doesn’t match our expectations and theoretical predictions. Instead of order of
accuracy two, we got approximately 1.6-1.7 (for L2-norm) and 1-1.1 (for L�-norm).

6.1.2 First order accuracy

As a result, we decided to reduce the desired order of accuracy to one and ran the same
set of tests (mesh size is 100x100, 200x200, 400x400 and 800x800) in order to see how
the solver will perform. The results are shown in figures 6 and 7, and tables 3 and 4.

As we can see from the results, discretization errors are consistent and go down by a
factor of two when resolution is increased by a factor of two. The resulting order of
accuracy is equal to the expected value - one - for both solver generated and analytical
function generated sources.

6.1.3 Second order accuracy, gradient limiter disabled

To evaluate the effect of the gradient limiter on the order of accuracy of the solution we
decided to run an experiment with the desired order accuracy equal to two and gradient
limiter disabled. In other words, the values of gradient limiter are set to one. We are
testing the same mesh sizes as before – 100x100, 200x200, 400x400 and 800x800.
Similar to the first two experiments, the results are presented in figures 8 and 9, and
tables 5 and 6.

The results show that disabling the gradient limiter gives us the expected order of
accuracy equal to two in case of both solver-generated sources and sources generated
from the analytical function.

Figure 4. L2 and L� errors and their ratios as functions of time from second order accuracy with gradient
limiter enabled test for exponential 2D profile using source terms from analytical function for resolutions:

• 100x100 (�x = �y = 0.01m);
• 200x200 (�x = �y = 0.005m);
• 400x400 (�x = �y = 0.0025m);
• 800x800 (�x = �y = 0.00125m).

Table 1. L2 and L� - norms, error ratios and order of accuracy for 2D exponential profile (source terms are
from analytical function)

Grid L2-norm Ratio Observed
order of
accuracy

Max Error Ratio Observed
order of
accuracy

100x100 1.41659e-08 2.33979e-07
200x200 4.63891e-09 3.05 1.61 1.15025e-07 2.03 1.02
400x400 1.52472e-09 3.04 1.61 5.54151e-08 2.08 1.05
800x800 4.88037e-10 3.12 1.64 2.55816e-08 2.17 1.12

Figure 5. L2 and L� errors and their ratios as functions of time from second order accuracy with gradient
limiter enabled test for exponential 2D profile using source terms from solver’s solution for resolutions:

• 100x100 (�x = �y = 0.01m);
• 200x200 (�x = �y = 0.005m);
• 400x400 (�x = �y = 0.0025m);
• 800x800 (�x = �y = 0.00125m).

Table 2. L2 and L� - norms, error ratios and order of accuracy for 2D exponential profile (source terms are
from ICE-generated solution)

Grid L2-norm Ratio Observed
order of
accuracy

Max Error Ratio Observed
order of
accuracy

100x100 1.38635e-08 2.26970e-07
200x200 4.43660e-09 3.12 1.64 1.08364e-07 2.09 1.07
400x400 1.39746e-09 3.17 1.67 4.94638e-08 2.19 1.13
800x800 4.18437e-10 3.34 1.74 2.09230e-08 2.36 1.24

Figure 6. L2 and L� errors and their ratios as functions of time from first second order accuracy test for
exponential 2D profile using source terms from analytical function for resolutions:

• 100x100 (�x = �y = 0.01m);
• 200x200 (�x = �y = 0.005m);
• 400x400 (�x = �y = 0.0025m);
• 800x800 (�x = �y = 0.00125m).

Table 3. L2 and L� - norms, error ratios and order of accuracy for 2D exponential profile (source terms are
from analytical function)

Grid L2-norm Ratio Observed
order of
accuracy

Max Error Ratio Observed
order of
accuracy

100x100 1.08795e-07 2.37928e-07
200x200 5.43964e-08 2.00 1.00 1.18995e-07 2.00 1.00
400x400 2.71525e-08 2.00 1.00 5.94001e-08 2.00 1.00
800x800 1.35247e-08 2.01 1.01 2.95864e-08 2.01 1.01

Figure 7. L2 and L� errors and their ratios as functions of time from first order accuracy test for exponential
2D profile using source terms from solver’s solution for resolutions:

• 100x100 (�x = �y = 0.01m);
• 200x200 (�x = �y = 0.005m);
• 400x400 (�x = �y = 0.0025m);
• 800x800 (�x = �y = 0.00125m).

Table 4. L2 and L� - norms, error ratios and order of accuracy for 2D exponential profile (source terms are
from ICE-generated solution)

Grid L2-norm Ratio Observed
order of
accuracy

Max Error Ratio Observed
order of
accuracy

100x100 1.08779e-07 2.37901e-07
200x200 5.43921e-08 2.00 1.00 1.18989e-07 2.00 1.00
400x400 2.71514e-08 2.00 1.00 5.93984e-08 2.00 1.00
800x800 1.35244e-08 2.01 1.01 2.95860e-08 2.01 1.01

Figure 8. L2 and L� errors and their ratios as functions of time from second order accuracy with gradient
limiter disabled test for exponential 2D profile using source terms from analytical function for resolutions:

• 100x100 (�x = �y = 0.01m);
• 200x200 (�x = �y = 0.005m);
• 400x400 (�x = �y = 0.0025m);
• 800x800 (�x = �y = 0.00125m).

Table 5. L2 and L� - norms, error ratios and order of accuracy for 2D exponential profile (source terms are
from analytical function)

Grid L2-norm Ratio Observed
order of
accuracy

Max Error Ratio Observed
order of
accuracy

100x100 3.14777e-09 5.18447e-09
200x200 7.55431e-10 4.17 2.06 1.21124e-09 4.28 2.10
400x400 1.85757e-10 4.07 2.02 2.96308e-10 4.09 2.03
800x800 4.60069e-11 4.04 2.01 7.41494e-11 4.00 2.00

Figure 9. L2 and L� errors and their ratios as functions of time from second order accuracy with gradient
limiter disabled test for exponential 2D profile using source terms from solver’s solution for resolutions:

• 100x100 (�x = �y = 0.01m);
• 200x200 (�x = �y = 0.005m);
• 400x400 (�x = �y = 0.0025m);
• 800x800 (�x = �y = 0.00125m).

Table 6. L2 and L� - norms, error ratios and order of accuracy for 2D exponential profile (source terms are
from ICE-generated solution)

Grid L2-norm Ratio Observed
order of
accuracy

Max Error Ratio Observed
order of
accuracy

100x100 3.14765e-09 5.18349e-09
200x200 7.55428e-10 4.17 2.06 1.21121e-09 4.28 2.10
400x400 1.85758e-10 4.07 2.02 2.96308e-10 4.09 2.03
800x800 4.60085e-11 4.04 2.01 7.41542e-11 4.00 2.00

Results of the experiments show that the errors reduce consistently by a factor of two
when the mesh size is doubled. Also, observed order of accuracy agrees with the
theoretical predictions when the desired order of accuracy is set to one and when gradient
limiter is disabled in the code.

Figure 10 shows where the worst errors are occurring at y=0 and time step = 1. The
figure shows the plot of the computed solution u2 and the difference between computed
and exact solutions (u2 – u1) when:

1. the desired order of accuracy is one;
2. the desired order of accuracy is two and gradient limiter values are set to 0;
3. the desired order of accuracy is two and gradient limiter values are set to 0.5;
4. the desired order of accuracy is two and gradient limiter values are set to 1 (or, in

other words, gradient limiter is disabled);
5. the desired order of accuracy is two and gradient limiter values are set to 0.75;
6. the desired order of accuracy is two and gradient limiter values are enabled (in

other words set to the computed values).

As we can see from the figure when the desired order of accuracy is one, the worst errors
occur at the peak of the bell-shaped profile (the error at the peak is on order of 10-8) and
around point -0.2 and 0.2 – around the points where gradient changes rapidly. Setting the
desired order of accuracy to two and gradient limiter value to zero is equivalent to the
first order test. The figure indicates that, indeed, in this case we get the same errors as in
case of the first order accuracy.

Setting the desired order of accuracy to two and enabling the gradient limiter (setting it to
the computed values) reduces the error at the peak by a factor of two, and is equal to the
error when gradient limiter is set to 0.5. The errors at the other locations where the
gradient changes rapidly are approximately ten times smaller than in case of the first
order of accuracy test.

Finally, we can conclude that for fixed values of the gradient limiter as their (gradient
limiters’) values approach one the errors go to zero.

Figure 10. Errors (u2 – u1) for the exponential function for time step = 1 and y=0, when:

• the desired order of accuracy to one;
• the desired order of accuracy is two and gradient limiter is set to 0;
• the desired order of accuracy is two and gradient limiter is set to 0.5;
• the desired order of accuracy is two and gradient limiter is set to 1 (in other words disabled);
• the desired order of accuracy is two and gradient limiter is set to 0.75;
• the desired order of accuracy is two and gradient limiter is enabled (in other words set to the

computed values).

6.2 Exponential squared profile

We also chose the following squared exponential function to describe the profile of the
passive scalar:

 where,

,

(8)

The profile of the exponential function at time t=0 is shown in Figure 11. Figure 12
shows the cross-section of the squared exponential profile at y=0 and corresponding
gradient limiter values.

Figure 11. 2D squared exponential function profile at t=0

Figure 12.

• Cross-section of the 2D squared exponential profile at time t = 0 and y = 0;
• Cross-section of the gradient limiter profile for 2D squared exponential profile at t = 0 and y = 0.

Similarly to the bell-shaped exponential profile (section 6.1), we ran three sets of tests on
the bell-shaped squared exponential function profile:

1. Gradient limiter is enabled in the ICE code, and second order is the desired order
of accuracy of the solution;

2. First order is the desired order of accuracy of the solution;
3. Gradient limiter is disabled (or, in other words, gradient limiter values are set to

one), and second order is the desired order of accuracy of the solution.

6.2.1 Second order of accuracy, gradient limiter enabled

Similarly to the exponential function experiments, first we ran mesh refinement tests
(with the grid refinement ratio equal to two) on the squared exponential profile with
gradient limiter enabled in the solver (ICE) and the desired order of accuracy equal to
two.

Figures 13 and 14 show the results – L2 and L� errors and their ratios as functions of time
– for the source terms from analytical and ice-generated solutions correspondingly.
Tables 7 and 8 show the approximate computed errors and observed order of accuracy for
analytical and ice-generated solutions correspondingly.

We can conclude that the resulting discretization errors are consistent (the L2-norm
decreases by a factor of approximately 3.2-3.3 and L�-norm decreases by a factor of 2-
2.3 when we refine our grid by a factor of two). However, the order of accuracy does not
match our expectations and theoretical predictions. Instead of order of accuracy equal to
two, we got approximately 1.7 (for L2-norm) and 1-1.2 (for L�-norm).

6.2.2 First order accuracy

As a result, similarly to the case of exponential function profile, we decided to run
experiments with the desired order of accuracy equal to one. The results of the
experiments are shown in the figures 15 and 16, and tables 9 and 10.

As we can see from the results, when one is the desired order of accuracy discretization
errors are also consistent. In addition, they go down by a factor of two; therefore, the
resulting order of accuracy is equal to the expected value - one - for both solver-
generated and analytical function generated sources.

6.2.3 Second order accuracy, gradient limiter disabled.

Results for the second order accuracy test with the gradient limiter disabled (in other
words, gradient limiter values are set to one) for the squared exponential function are
presented in figures 17, 18 and tables 11 and 12.

The results show that disabling the gradient limiter gives us the expected order of
accuracy equal to two in case of both solver-generated sources and sources generated
from the analytical function.

Figure 13. L2 and L� errors and their ratios as functions of time from second order accuracy with gradient
limiter enabled test for squared exponential 2D profile using source terms from analytical function for
resolutions:

• 100x100 (�x = �y = 0.01m);
• 200x200 (�x = �y = 0.005m);
• 400x400 (�x = �y = 0.0025m);
• 800x800 (�x = �y = 0.00125m).

Table 7. L2 and L� - norms, error ratios and order of accuracy for 2D squared exponential profile (source
terms are from analytical function)

Grid L2-norm Ratio Observed
order of
accuracy

Max Error Ratio Observed
order of
accuracy

100x100 2.71748e-12 6.96352e-11
200x200 8.41135e-13 3.23 1.69 3.46223e-11 2.01 1.01
400x400 2.65838e-13 3.16 1.66 1.67238e-11 2.07 1.05
800x800 8.31542e-14 3.20 1.68 7.72489e-12 2.16 1.11

Figure 14. L2 and L� errors and their ratios as functions of time from second order accuracy with gradient
limiter enabled test for squared exponential 2D profile using source terms from solver’s solution for
resolutions:

• 100x100 (�x = �y = 0.01m);
• 200x200 (�x = �y = 0.005m);
• 400x400 (�x = �y = 0.0025m);
• 800x800 (�x = �y = 0.00125m).

Table 8. L2 and L� - norms, error ratios and order of accuracy for 2D squared exponential profile (source
terms are from ICE-generated solution)

Grid L2-norm Ratio Observed
order of
accuracy

Max Error Ratio Observed
order of
accuracy

100x100 2.66661e-12 6.77022e-11
200x200 8.06013e-13 3.31 1.73 3.26456e-11 2.07 1.05
400x400 2.44279e-13 3.30 1.72 1.49334e-11 2.19 1.13
800x800 7.14662e-14 3.42 1.77 6.31949e-12 2.36 1.24

Figure 15. L2 and L� errors and their ratios as functions of time from first order accuracy test for squared
exponential 2D profile using source terms from analytical function for resolutions:

• 100x100 (�x = �y = 0.01m);
• 200x200 (�x = �y = 0.005m);
• 400x400 (�x = �y = 0.0025m);
• 800x800 (�x = �y = 0.00125m).

Table 9. L2 and L� - norms, error ratios and order of accuracy for 2D squared exponential profile (source
terms are from analytical function)

Grid L2-norm Ratio Observed
order of
accuracy

Max Error Ratio Observed
order of
accuracy

100x100 9.33918e-12 7.07463e-11
200x200 4.68822e-12 1.99 0.99 3.58000e-11 1.98 0.98
400x400 2.34264e-12 2.00 1.00 1.79217e-11 2.00 0.99
800x800 1.16722e-12 2.01 1.01 8.93293e-12 2.01 1.00

Figure 16. L2 and L� errors and their ratios as functions of time from first order accuracy test for squared
exponential 2D profile using source terms from solver’s solution for resolutions:

• 100x100 (�x = �y = 0.01m);
• 200x200 (�x = �y = 0.005m);
• 400x400 (�x = �y = 0.0025m);
• 800x800 (�x = �y = 0.00125m).

Table 10. L2 and L� - norms, error ratios and order of accuracy for 2D squared exponential profile (source
terms are from ICE-generated solution)

Grid L2-norm Ratio Observed
order of
accuracy

Max Error Ratio Observed
order of
accuracy

100x100 9.33147e-12 7.06531e-11
200x200 4.68628e-12 1.99 0.99 3.57758e-11 1.97 0.98
400x400 2.34218e-12 2.00 1.00 1.79158e-11 2.00 1.0
800x800 1.16712e-12 2.01 1.00 8.93147e-12 2.01 1.0

Figure 17. L2 and L� errors and their ratios as functions of time from second order accuracy with gradient
limiter disabled test for squared exponential 2D profile using source terms from analytical function for
resolutions:

• 100x100 (�x = �y = 0.01m);
• 200x200 (�x = �y = 0.005m);
• 400x400 (�x = �y = 0.0025m);
• 800x800 (�x = �y = 0.00125m).

Table 11. L2 and L� - norms, error ratios and order of accuracy for 2D squared exponential profile (source
terms are from analytical function)

Grid L2-norm Ratio Observed
order of
accuracy

Max Error Ratio Observed
order of
accuracy

100x100 6.41230e-13 4.56135e-12
200x200 1.45620e-13 4.4 2.14 9.75007e-13 4.68 2.23
400x400 3.52794e-14 4.13 2.05 2.24302e-13 4.35 2.12
800x800 8.65682e-15 4.08 2.03 5.33483e-14 4.20 2.07

Figure 18. L2 and L� errors and their ratios as functions of time from second order accuracy with gradient
limiter disabled test for squared exponential 2D profile using source terms from solver’s solution for
resolutions:

• 100x100 (�x = �y = 0.01m);
• 200x200 (�x = �y = 0.005m);
• 400x400 (�x = �y = 0.0025m);
• 800x800 (�x = �y = 0.00125m).

Table 12. L2 and L� - norms, error ratios and order of accuracy for 2D squared exponential profile (source
terms are from ICE-generated solution)

Grid L2-norm Ratio Observed
order of
accuracy

Max Error Ratio Observed
order of
accuracy

100x100 6.42001e-13 4.56070e-12
200x200 1.46065e-13 4.40 2.14 9.78557e-13 4.66 2.22
400x400 3.49763e-14 4.18 2.06 2.25096e-13 4.35 2.12
800x800 7.70293e-15 4.54 2.18 5.38521e-14 4.18 2.06

Figure 19. Summary of the errors (u2 – u1) for the squared exponential function for time step = 1 and y = 0,
when:

• desired order of accuracy is 1;
• desired order of accuracy is 2 and gradient limiter is enabled;
• desired order of accuracy is 2 and gradient limiter is disabled.

We can conclude that in all three scenarios the L2 and L� errors decrease consistently
when the resolution is increased by a factor of two. Also, observed order of accuracy
agrees with the theoretical predictions when the desired order of accuracy is set to one
and when gradient limiter is disabled in the code. However, when the gradient limiter is
enabled in the second order of accuracy tests, the order of accuracy decreases by
approximately 0.4 in case of L2 norm and almost by one in case of L� norm.

Figure 19 shows where the worst errors are occurring at y = 0 and time step = 1. The
figure shows the plot of the computed solution u2 and the difference between computed
and exact solutions (u2 – u1) when:

1. the desired order of accuracy is one;
2. the desired order of accuracy is two and gradient limiter values are set to one (or,

in other words, the gradient limiter is disabled);
3. the desired order of accuracy is two and gradient limiter values are enabled (in

other words, set to the computed values).

As we can see from the figure when the desired order of accuracy is one, the worst errors
occur at the peak of the profile (the error at the peak is on order of 10-12) and around -0.07
and 0.07 – the points where gradient changes rapidly. Increasing the desired order of
accuracy from one to two (in case when gradient limiter is enabled) reduces the error at
the peak by a factor of two. In addition, when gradient limiter is enabled in the algorithm,
the errors increase in the areas where the limiter values are not equal to one.

7. Analysis

The results of the experiments indicate that the order of accuracy of the Advect and
Advance Module of the solver depends on the problem. Squared exponential function is a
c� function and smoother than regular bell-shaped exponential. As a result, the errors are
smaller and the order of accuracy is slightly better for the squared exponential function
compared to regular exponential.

Also the experiments demonstrated that the L2 and L� errors are decreasing when we are
using higher resolution. Moreover they are decreasing consistently (by the same factor).

Also, we can see that the gradient limiter reduces order of accuracy in case of both
functions. Although, the limiter limits the value of the gradients only in a few places
(places where the gradient changes rapidly), overall order of accuracy decreases
significantly. If the reduction in the order of accuracy is not as bad in case of L2 norm (it
reduces from order two to approximately 1.7), in case of L� norm it reduces almost by
one order (from 2 to 1.1 approximately). Disabling the gradient limiter reduces error at
the peak to a smaller number and increases order of accuracy.

8. Conclussion

The Method of Generated Solutions was developed to evaluate the discretization errors,
their consistency and order of accuracy of ICE algorithm. The method designs analytical
solution by interpolating numerical solution from physical experiments or from a solver’s
solution. Since MGS solutions originate from the actual problems, the results are more
representative than the ones obtained by using Method of Manufactured Solutions.

We have used MGS to verify Advect and Advance in Time module of ICE solver on a
2D domain. In the future it is necessary to verify the solver in a 3D domain and on
practical test problems. All other modules of the software also need to be verified. Finally,
more research should be done in the area of the gradient limiter. Gradient limiter that is
being used now does not preserve the order of accuracy well for the functions we used in
the experiments (especially in case of L�-norm). So, there is a need for a different
gradient limiter that would better preserve second order of accuracy.

References

1. Dr. W. L. Oberkampf, Verification and Validation in Computational Simulations,
Sandia National Laboratories, 2004 Transport Task Force Meeting, 2004

2. C. Hirsch, Numerical computation of internal and external flows: Fundementals of
computational fluid dynamics, 2007, pp. 541, 542.

3. P. J. Roache, Verification and Validation in Computational Science and Engineering,
Hermosa Publishers, 1998.

4. C. J. Roy, C. C. Nelson, T. M. Smith, C. C. Ober, Verification of Euler / Navier-Stokes
Codes using the Method of Manufactured Solutions, International Journal for Numerical
Methods in Fluids, Vol. 44, No. 6, 2004, pp. 599-620.

5. L. Shunn, F. Ham, Method of Manufactured Solutions Applied to variable density flow
solvers”, Center for Turbulence Research, 2007

6. W. L. Oberkampf and T. G. Trucano, Verification and validation in computational
fluid dynamics, Sandia National Laboratories, 2002 (SAND2002-0529)

7. K. Salari, P. Knupp, Code Verification by the Method of Manufactured Solutions,
Sandia National Laboratories, 2000 (SAND2000-1444)

8. A. Ramanujam, P. Milyavskaya, K. Sikorski, T. Harman, Method of Generated
Solutions as a Verification Tool for Numerical Code, Work in Progress.

9. B. A. Kashiwa, N. T. Padial, R. M. Rauenzahn, W. B. VanderHeyden, A Cell-Centered
Ice Method For Multiphase Flow Simulation, 1994.

10. A. Ramanujam, C. Sikorski, T. Harman, The Method Of Generated Solutions for
Numerical Verification of the ICE Code, Technical Report, School of Computing,
University of Utah, 2007 (UUCS-07-006)

11. W. B. VanderHeyden, B. A. Kashiwa, Compatible Fluxes for van Leer Advection,
Journal of Computational Physics, vol. 146, pp. 1-28, 1998

