
A Collective Approach to Harness
Idle Resources

Sachin Goyal and John Carter

UUCS-08-009

School of Computing
University of Utah

Salt Lake City, UT 84112 USA

September 25, 2008

Abstract

We propose a collective approach for harnessing the idle resources (cpu, storage, and band-
width) of nodes (e.g., home desktops) distributed across the Internet. Instead of a purely
peer-to-peer (P2P) approach, we organize participating nodes to act collectively usingcol-
lective managers(CMs). Participating nodes provide idle resources to CMs, which unify
these resources to run meaningful distributed services forexternal clients. We do not as-
sume altruistic users or employ a barter-based incentive model; instead, participating nodes
provide resources to CMs for long durations and are compensated in proportion to their
contribution.

In this paper we discuss the challenges faced by collective systems, present a design that
addresses these challenges, and compare it with previous approaches. We show that the
collective service model is a useful alternative to the pureP2P models. It provides more
effective utilization of idle resources, has a more meaningful economic model, and is better
suited for building legal and commercial distributed services.

A Collective Approach to Harness Idle Resources

Sachin Goyal and John Carter
School of Computing, University of Utah

{sgoyal, retrac}@cs.utah.edu

Abstract

We propose a collective approach for harnessing the idle resources (cpu, storage, and bandwidth) of nodes
(e.g., home desktops) distributed across the Internet. Instead of a purely peer-to-peer (P2P) approach, we
organize participating nodes to act collectively usingcollective managers(CMs). Participating nodes pro-
vide idle resources to CMs, which unify these resources to run meaningful distributed services for external
clients. We do not assume altruistic users or employ a barter-based incentive model; instead, participating
nodes provide resources to CMs for long durations and are compensated in proportion to their contribution.

In this paper we discuss the challenges faced by collective systems, present a design that addresses
these challenges, and compare it with previous approaches.We show that the collective service model is a
useful alternative to the pure P2P models. It provides more effective utilization of idle resources, has a more
meaningful economic model, and is better suited for building legal and commercial distributed services.

1 Introduction

Modern computers are becoming progressively more powerfulwith ever-improving processing, storage,
and networking capabilities. Typical desktop systems havemore computing/communication resources than
most users need and are underutilized most of the time. Theseunderutilized resources provide an interesting
platform for new distributed applications and services.

We envision a future where the idle compute, storage, and networking resources of cheap network-
connected computers distributed around the world are harnessed to build meaningful distributed services.
Many others have espoused a similar vision. A variety of popular peer-to-peer (P2P) services exploit the
resources of their peers to implement specific functionality, e.g., Kaaza [17], BitTorrent [8], and Skype [14].
The large body of work on distributed hash tables (DHTs) exploit peer resources to support DHTs (e.g.,
Chord [15], Pastry [24], Tapestry [31], and CAN [22]), on topof which a variety of services have been built.
SETI@home [25] and Entropia [7] farm out compute-intensivetasks from a central server to participating
nodes.

We propose a new way to harness idle resources as managed “collectives”. Rather than a purely P2P
solution, we introduce the notion ofcollective managers(CMs) that manage the resources of large pools of
untrusted, selfish, and unreliableparticipating nodes(PN). PNs contact CMs to make their resources avail-
able, in return for which they expect to receive compensation. After registering with a CM, each PN runs
a virtual machine (VM) image provided by the CM. CMs remotelycontrol these VMs and use their pro-
cessing, storage, and network resources to build distributed services. Unlike projects like Xenoservers [23],
a CM does not provide raw access to end node’s resources to external customers. A CM is an application
service provider, aggregating idle resources to provide services like content distribution and remote backup.
Figure 1 illustrates a possible use of a collective to implement a commercial content distribution service that
sells large content files (e.g., movies, music, or software updates) to thousands of clients in a cost-effective
way.

The Collective uses an economic model based on currency. A collective manager earns money in return
for providing services and then shares its profits with PNs inproportion to their contribution towards differ-

Figure 1: Collective Content Distribution Service

ent services. The basic unit of compensation is a CM-specificcredit that acts as a kind of currency. Users
can convert credits to cash or use them to buy services from the CM or associated partners.

Since collectives may include selfish nodes, it is importantto mitigate the neagative effects of selfish-
ness. Selfish nodes can resort to cheating for earning more than their fair share of compensation. Cheating
behavior has been observed extensively in distributed systems, e.g., free riding in Gnutella [1] and software
modifications to get more credit than earned in SETI@home [16]. To mitigate negative impact of selfishness,
we propose to employ economic deterrents comprised of an offline data-analysis-based accounting system
and a consistency-based incentive model. Services are designed specifically to facilitate these economic
deterrents, and use security mechanisms to ensure accountability across different transactions. While we
cannot prevent users from cheating, our mechanisms mitigate cheating behavior by making it economically
unattractive.

The rest of the paper is organized as follows. In Section 2, wedisuss the target environment and different
approaches for addressing the problem. In Section 3, we compare collective approach to existing work. In
Section 4 we do a simple cost analysis of a collective system and compare it with self managed clusters and
utility computing systems (amazon s3/ec2 [2]). In Section 5, we describe the architecture of a collective
system, its security infrastructure, and its incentive model. We then conclude in Section 6.

2 Design Space

Our target environment consists of potentially millions ofend-nodes distributed all across the Internet. They
are untrusted, and unreliable - i.e., they suffer from frequent node churning as well as failures. Each node
can exhibit selfish behaviors. Our goal is to use unutilized resources of these end-nodes to build meaningful
commercial services. Our design is similar to a firm in traditional economic systems, where multiple people
come together to work for a common goal. Our incentive and interaction model is neither based on altruism,
nor on the bartering.

A system based on altruism relies onaltruistic users that provide services without any incentive, or
provide more than the required service to others. For example, in the context of file sharing P2P systems,
altruistic users share the files on their computer even though they do not get anything in return. Others
remain in the system after downloading a file and upload the data to other users even when they are not
required to do so. Systems like gnutella and Kazaa were basedon altruism. These systems eventually suffer
from freeloading, which degrades the quality of the networksubstantially. More importantly, these systems
do not have an incentive model and thus are more useful for free or illegal content distribution instead of a
commercial system.

Bartering is the exchange of goods or services between two people in a mutually beneficial way. One
can use bartering based mechanisms to provide incentives for interaction. We categorize bartering systems
into two categories - lazy bartering and active (currency-based) bartering. We use the term“lazy bartering”
for systems where people participate in the system only longenough to perform a particular transaction such
as downloading a song. As stated above, this leads to the underutilization of a node’s resources unless the
node’s administrator is altruistic. BitTorrent is based onlazy bartering. To overcome this underutilization
problem, one may tryactive bartering, that is using bartering to maximally utilize available resources (not
just when a node needs some service in return). Using currencies as an intermediary in bartering provides
the necessary tool for achieving that. But it is still tough to find eligible users with whom to barter. One
is limited by the goods (e.g., music/movies) that one has forsharing and by the availability of other users
interested in paying currency for the objects one owns. Additionally the inherent untrusted and unreliable
nature of end nodes makes currency-based bartering risky For example, it is easy for a cracker to use a
currency-based bartering mechanism to acquire resources at multiple nodes, and then use them for network
attacks. Also, individual nodes can provide only a limited amount of resources, so anyone interested in
building a service like a content distribution system will have to find and make bartering agreements with
many end nodes. This process has to be repeated whenever a newservice is built.

The collective model provides a useful approach to handle these problems in a simple but realistic
manner. First, in a collective, a participating nodes shares its resources using a VM instance and provides
root access to that instance to the CM. Only the trusted collective manager has direct access to the VM
running on a participating node, so we do not need to worry about an unknown party using the nodes
for nefarious purposes, e.g., to launch network attacks. Second, the collective system uses the long term
association with nodes and the presence of a CM to counteractthe untrusted and unreliable nature of PNs.
A collective manager provides a simple service model to potential partners/customers, who do not have to
worry about inherent chaos of a system built out of end nodes.

Another way to think about a collective is by comparing it to aperson having $10000 of savings. He/she
can either deposit their savings in a bank and get paid interest, or he/she can lend it to other people, poten-
tially getting a higher rate of return than provided by banks. Like bartering in P2P, personal lending suffers
from a trust problem; what if borrower does not return your money? Additionally one has to search for
potential borrowers and the savings remain unutilized during the search period.

We can compare a collective to the formation of organizations in real life. As human civilization has
progressed, there has been a clear move towards forming organizations - whether it is universities, banks,
manufacturing plants, or other commercial organizations.While we still have freelancers, the majority of
productive work is performed by well defined organizations.

In some ways, a collective resembles the collections of zombie machines often used by malicious users
to launch distributed denial of service attacks. We differ from “zombie nets” in that we only use the resources
of willing participants and allow PNs to limit how their resources are used (e.g., no more than X kilobytes-
per-second of network bandwidth).

3 Related Work

Our collective model, while similar in certain aspects to previous work, differs in a number of important
ways. There are four main domains of related projects that also deal with utilizing the resources of com-
puters distributed across the Internet. The first is peer to peer systems like bittorrent [8], gnutella [11] etc.
The second is compute-only services like seti@home [25], entropia [7] etc. The third is utility computing
systems like Xenoservers [23]. The fourth is grid computingsystems [9].

Peer to Peer Services:
Unlike typical P2P systems, we do not assume that PNs are altruistic (e.g., Kazaa [17] or Gnutella [11])

or willing to “barter” their resources in return for access to the end service (e.g., BitTorrent [8]). Rather, PNs
make their resources available to CMs to build distributed services, in return for which they are compensated
by CMs.

Using idle resources to runarbitrary services, rather than only services that the local user uses, im-
proves resource utilization. A node’s compute and network resources are perishable — if they are not used,
their potential value is lost. In an incentive model that employs bartering, e.g., BitTorrent, nodes typically
participate in the system only long enough to perform a particular transaction such as downloading a song.
At other times, that node’s idle resources are not utilized unless the node’s administrator is altruistic. In the
collective, a CM will have much larger and more diverse poolsof work than personal needs of individual
participants; thus a CM will be better able to consume the perishable resources of PNs. PNs, in turn, will
accumulate credits for their work, which they can use in the future however they wish (e.g., for cash or for
access to services provided by the CM). In a sense, we are moving the incentive model from a primitive
barter model to a more modern currency model.

Additionally in a collective the CM has direct control over the VMs running in participating nodes.
This control can be utilized to provide a predictable service to the customers, e.g., the CM can dynamically
change the caching patterns in response to sudden demand.

Distributed Compute Intensive Services:
Unlike seti@home [25] and Entropia [7], the idle storage andnetworking resources of PNs can be har-

nessed, in addition to idle processing resources. As a result, collectives can be used to implement distributed
services (e.g., content distribution or remote backup) in addition to compute-intensive services. These ser-
vices have different design chanllenges than compute intensive services.

First, seti@home or other compute-only services are embarrassingly parallel and does not require any in-
teraction between different nodes. Services like content distribution or backup services require cooperation
from multiple nodes to successfully cache/replicate a piece of content, and to provide service to the cus-
tomers. Handling these interactions (e.g., multiple node collusion) while still being able to manage selfish
behaviors is a much different and tougher problem than handling embarrassingly parallel applications.

Second, applications like content distribution or remote backup require timely delivery of service to
customers – thus adding a real time response component. There are no similar real-time requirements in
seti@home-like applications.

Third, applications like content distribution or remote backup require different mechanisms and design
to detect selfish behaviors by participating nodes.

Utility Computing Systems:
Utility computing systems like Xenoservers [23], Planetlab [20], and SHARP [10] deal with similar

problems, but these systems handle resource sharing at the granularity of VMs, and are not bothered about
the design and challenges of building a service using those resources.

For example, unlike collective they do not provide solutions for service level selfish behaviors by the
participating nodes (or sites). Many of these assume trusted nodes. Projects like SHARP [10] assume that
the service managers have some external means to verify thateach site provides contracted resources and
that they function correctly (assumption 7 in their paper [10]).

The focus of these projects are dedicated powerful servers of high reliability. While in collective, our
main focus is to harness the idle resources of unreliable end-nodes.

Similar to these projects, PNs in a collective exploit VM technology for safely running arbitrary un-
trusted code provided by CMs. But unlike utility computing projects like Xenoservers or SHARP, we do
not provide raw VMs to external clients. We allocate only oneVM on a node, and run multiple services

inside that one VM. In other systems any untrusted third party can acquire VMs and potentially use them for
nefarious activities like network attacks. In contrast, our one VM per participating node is only controlled
by the trusted collective manager.

Grid Computing Systems:
Systems like Condor [18] manage the idle resources of collections of nodes, but typically manage the re-

sources oftrustednodes that remain in the “pool” for substantial periods of time. In contrast, we assume that
PNs are unreliable (frequently fail or leave the collective) and are non-altruistic (will do as little productive
work as possible while maximizing their compensation).

Systems like computational grids [9] also deal with distributed resources at multiple sites, though again
their main focus is on trusted and dedicated servers.

4 Cost Analysis - Clusters, Utility Computing, and Collective

Modern computers have become quite powerful over the years,and typically have more processing, storage,
and communication resources than most user need, and remainunderutilized. A verification of this can be
seen from the success of systems like seti@home, Gnutella, Kazaa, and BitTorrent. Based on data from
Jan 2004 to June 2004, CacheLogic reported that peer-to-peer systems (P2P) consume 80% or more of the
traffic for last mile service providers [6]. Another study from CacheLogic put the P2P percentage of Internet
traffic at about 60% at the end of 2004 [5]. The same study reports that BitTorrent was responsible for as
much as 30% of all Internet traffic at the end of 2004 [5].

Our collective system intends to harness these unutilized resources of already deployed computers. Our
target nodes can be either home desktops or computers deployed in communities or enterprise environ-
ments. These nodes are bought and deployed to serve some specific purpose, but their resources are not
utilized 100% all the time. The goal of the collective systemis to harness these unutilized resources to build
commercial services, and distribute the profits back to participating nodes.

Instead of using unutilized resources of end-nodes, one canpotentially use a cluster of PCs to provide
similar resources. In this subsection, we do a quick quantitative analysis to understand the opportunity cost
of a collective in comparison to the cluster approach. We first estimate the resource capabilities of a collec-
tive system consisting of one million nodes. We then use those estimates to calculate the potential cost for
building an equivalent cluster using a self-managed and a utility computing approach.

Assumptions: In this analysis, we assume that 10% resources of a given nodeare available when the end-
user is actively using the node; 100% resources are available otherwise. We assume that on average a node
is used actively for 10 hours per day by the end-user. We further assume an average upload bandwidth of 50
KBps (i.e., what Comcast cable Internet provides currentlyto non-commercial customers), which is quite
conservative considering that other broadband options like DSL, VVD Communication [30] or Utopia [28]
provide better bandwidth, and countries like South Korea and Japan have broadband connections providing
Mbps of upload bandwidth. We assume that each node in the collective contributes on average 5GB of
storage, which is a quite conservative estimate considering the sizes of modern hard disks. For processing
capabilities, we assume a 2GHz processor with 1GB of RAM.

4.1 Collective

A million nodes with 50 KBps of upload bandwidth means an available aggregate upload bandwidth of 50
GBps. Since we assume that on average only 10% of each node’s capacity is available for 10 hours each day,
we can probabilistically estimate the available upload bandwidth as(5 ∗ 10 + 50 ∗ 14)/24, i.e., 31.25 GBps
at any instant, although not constant. Similarly we can estimate that at any instant this collective will have

processing capabilities worth(0.2∗10+2∗14)/24∗106 = 1.25 *106 GHz. For storage, disk space remains
available all the time irrespective of the node’s use by the end-user or not. Thus we estimate5 ∗ 106GB of
available storage.

Typically there will be an overhead in terms of bandwidth andstorage to maintain service level proper-
ties. For example, bandwidth will be used to maintain caching in a content distribution system. Similarly
there will be storage overhead to maintain durability (using either straightforward replication or erasure cod-
ing). Assuming 10% overhead for bandwidth, we are left with 28.125 GBps of bandwidth. Assuming 80%
overhead for storage (required for 4 extra replicas), we areleft with 106 GB of storage available.

4.2 Self Managed Cluster

Assuming dual core 2*3GHz machines, we can build a comparable computing cluster using(1.25∗106)/6)
= 200K such machines. So let us use 100K machines as a conservative estimate for our analysis here.
Assuming each machine costs around $1000 including storage, the initial investments for such a cluster will
be around $100 million. Plus we will need to upgrade such cluster periodically to keep up with technology
advancements. Assuming a 5-year life cycle, we need to depreciate it at $40M per year, i.e, $1.66M per
month.

To estimate data center and bandwidth costs, we use the colocation costs advertised on websites like
creativedata.net, colocation.com, andapvio.netas a guide. For bandwidth, the typical costs advertised on
were around $45 per Mbps per month. Using that estimate, for 28.125 GBps we require28.125∗8∗1000∗45
= $10.125 million per month. Typical cabinet prices for these datacenters start at $650 for 40 units. Using
this as an estimate, we require50∗1000∗650/40 = $0.8125 million per month. Adding these two costs and
ignoring setup fees and related costs, we require $10.93 million per month to operate.

As reflected in some of the TCO (total cost of ownership) studies available on Internet, administrative
personal costs are one of the biggest part of overall cost of managing a cluster. For example, a TCO study
by the hostbasket web hosting company [27] puts the labor cost at 54% of total cost, while Aruba.it [26]
puts the labor cost at 41% of the total cost. We do not have any good way to quantify our costs here, so we
use a conservatively estimate of $3 million per month for labor costs.

Thus overall we will need around $15.5 M per month to build a cluster equivalent to a million node
collective.

4.3 Utility Computing Services from Amazon

Amazon web services [2] provides utility computing services for computing, storage, and bandwidth through
Simple Storage Service (S3) and Edge Computing Service (EC2). EC2 provides an instance of 1.7Ghz x86
processor, 1.75GB of RAM, 160GB of local disk, and 250Mb/s ofnetwork bandwidth. It has following
prices: $0.10 per instance-hour consumed, $0.20 per GB of data transferred into/out of Amazon (i.e., Internet
traffic). S3 has the following pricing: $0.15 per GB-Month ofstorage used and $0.20 per GB of data
transferred.

Considering the computing resources of 1.25 *106 GHz, we will require around 735K instances. Let’s
take an conservative estimate of 300K instances for 24x30 hours; it will cost (300 ∗ 1000 ∗ 0.1 ∗ 24 ∗ 30)
= 21.6 million dollars per month. These machines will have enough storage space available for matching
5∗106 GB storage of collective. If we use S3 for storage, we will require 0.15 million dollars per month. For
bandwidth, costs are same for both EC2 and S3. Based on 28.125GB/s, we will require 14.58 million dollars
per month for bandwidth. This is a very conservative estimate, as amazon does not promise a bandwidth of
28.125 GBps with that pricing.

Thus overall we will require around $36M per month to have a system comparable to a million node
collective.

Figure 2: Main Players in Collective

4.4 Opportunity

Now that we have a quantitative idea of the cost of a collective-equivalent cluster, we can use that to get
an estimate of potential rewards possible for participating nodes. So from the raw resource point of view,
a collective can provide around $15 to $30 per month to participating nodes having resources as defined in
above assumptions. From a service point of view, services built on collective overlay may be worth much
more than raw resources, and hence it may be possible to give even better returns. Additionally a collective
can provide return services to the PNs in addition to direct cash payout. This can increase the profit margins
even more.

Overall we are trying to monetize resources (cycles, storage, and network) that have already been paid
for to support something else (e.g., I already own a PC so I cansurf the net; business already have machines
that they use to run their business). Thus a collective can provide equivalent services at a more competitive
rate than a cluster based approach, while still providing decent return back to its participating nodes. Addi-
tionally a collective does not require huge amount of initial investment that is needed for a setting up a big
cluster. It does not require the costly maintenance or powercosts. End-nodes are upgraded in due time by
their users, thus it gets the advantage of technology advancements for free.

5 Collective Design

The collective system as a whole is a collection of distributed services built by aggregating the idle resources
provided by willing end-nodes in return for compensation. There are four main players:

1. Participating Nodes (PNs)are end nodes that have idle compute, storage, or network resources.
They are typically connected to the Internet though some sort of broadband service. These nodes
have different compute/communication capabilities, go upand down in unpredictable ways, and are
inherently untrusted.

2. Collective Managers (CMs)are service providers to whom individual nodes provide their idle re-
sources. A CM uses these resources to provide a set of meaningful services to clients and then com-
pensates the PNs. Multiple competing CMs can co-exist, eachproviding different services and/or
pricing models.

3. Clients are individuals that wish to utilize the services offered byCMs, e.g., using a collective remote
backup service or downloading a video from the collective content distribution service.

4. Partners are commercial users of a CM, e.g., an online movie distribution company can utilize the
collective service for movie distribution, while managingthe content acquisition and sales itself.

A service may not necessarily have both clients and partners. For example, a compute service may have
partners but no clients, while a remote backup service may have clients but no partners. The Collective
Content Distribution Service (CCDS) has both clients and partners. Figure 2 illustrates main players in a
collective. PNs can also be clients of services offered by the collective overlay.

5.1 Participating Nodes

To provide resources to a CM, a PN runs a VM instance and provides root access to that instance to the CM.
The decision to use a virtual machine instance as the unit of resource allocation has several important ad-
vantages over alternative approaches. Virtual machine technology provides greaterisolation, flexibility, and
resource controlthan simply running application processes directly on top of a standard Unix or Windows
box.

In terms of isolation, applications running on a virtual machine instance cannot directly interfere with
applications running on the host machine, nor can they access resources (e.g., the file system) reserved
for the host machine. VM technology makes it effectively impossible for rogue client software to access
resources to which it does not have access rights, install viruses, or “crack root”.

The virtual machine monitor can enforce resource controls (e.g., disk quota, cpu share, and physical
memory allocation) on a per-VM basis. This design allows normal work to proceed on the host machine
without undue impact by applications running on a VM. The protection and resource controls provided by
VMs will make people more willing to make their machines accessible to a collective overlay, without fear
that they will be misused or infected.

Using VM technology also provides advantages to a collective manager. A collective manager has
root access and can install and execute arbitrary software on participating nodes. This design provides
tremendous flexibility – what a collective manager can do is not limited by what some middleware layer
supports. Programmers can use different middleware layerslike CORBA, RPC, or SOAP based on their
needs, which enables our system to support a wide variety of distributed services and applications. For our
prototype, we use the free VMware Player [29] and Xen [3] for the VM layer.

In addition to the VM, each PN runs a smallnode-agent. Thenode-agenthandles the basic interaction
between the user and CM, e.g., to determine when the node has sufficient idle resources to warrant joining
the CM’s collective or to start/stop the VM. Thenode-agentprovides a simple UI through which the user
can set limits on the resources provided to the collective (e.g., limits on disk/memory space or limits on
network bandwidth that may vary depending on the time of day). Thenode-agentalso provides a way for
the host to temporarily suspend/resume the collective’s VM.

5.2 Collective Manager

A typical distributed service built on a collective consists of components that run colocated on the CM
(calledservice managers) and other components that run on the PNs. A service manager is responsible for
converting service requirements into small components anddistributing these components to a set of PNs.
Typically each service component will be replicated to provide availability and scalability.

As an example, Figure 1 shows how we might provide a collective content distribution service (CCDS).
Here a content distribution partner collaborates with the CM to provide a content distribution service. The
content distributor interfaces with the service manager todistribute (probably encrypted) content. The ser-
vice manager divides the content into multiple chunks, and proactively caches them across multiple PNs.

Clients run an application, e.g., an iTunes content download application, that interacts directly with the
content distributor for browsing and sales. After a client purchases a particular song or video, the content
distributor sends it a signed certificate that gives the client the right to download the song/video from the

Figure 3: System Architecture

CCDS overlay network and a contact list of PNs. The client then downloads the content directly from PNs,
with different chunks coming from different nodes.

Figure 3 shows the high level architecture of a collective. Apart from the service managers, the CM
consists of anode managerand ascheduler. The node manager tracks the set of PNs currently registered
with the CM, including their available resources and resource restrictions. The scheduler helps schedule the
resources on individual PNs. A given PN can run multiple services.

5.2.1 Failure tracking and Liveness server

Node churning and failures are an inherent part of a system built from end-nodes distributed across the
Internet. We use multiple methods to detect node failures (churn) in a timely fashion. The techniques we
use to determine when a participating node has failed or leftthe collective are as follows:

• Centralized liveness server: Every node sends a join/leave message to a centralized liveness server
whenever it joins the collective or shuts down gracefully.

• Application-level alertness mechanism: The CM, other PNs, and clients regularly contact other
nodes as part of normal service operations. If they are unable to contact a node, they inform liveness
server.

The liveness server (also called thenode manager) keeps track of all registered nodes, as well as cur-
rently active (online) nodes in the collective. Whenever a participating node joins/rejoins the collective, it
pings thenode managerwith an ’I-came-online’ message. On receiving that, the node manager adds that
node to the active node list. That node remains there until the node-manager receives a direct or indirect in-
dication of node’s not being online. A direct indication is sent by a node-agent if a user temporarily disables
the node’s participation in collective or when a node shutdowns gracefully (e.g. as part of node’s shutdown).
Indirect indications are reported either by service manager, clients or other PNs, whenever they happen to
contact the node for certain data, and does not get any response. On direct indication, CM removes the node
from the active list. Indirect indications may be a genuine shutdown or failure, but it can also result from
network partitioning, or due to wrong reporting by a malicious client/PN. So on indirect indication, CM
adds the list to a check-alive list. CM pings the nodes on check-alive list few times (mostly when CM is free
from other work) before it removes the node from active list.

Apart from the active/non-active status, node manager keeps historical record of each node. Basically
different node-agents running on PNs collect lot of useful information - e.g. observed upload bandwidth,
node’s boot up timings etc., and send these information to the node-manager periodically (e.g. after every 3
days).

5.2.2 Scheduler

One of the biggest challenge of CM is to effectively utilize the resources of participating nodes towards
meaningful activities. CM need to understand the importance, and resourcefulness of individual nodes, and
should try to maximize the utilization of its idle resources. At the same time, appropriate resources should
be made available to the different services to maintain acceptable performance.

The scheduler helps schedule available resources on individual PNs to different services running on the
collective. The scheduler uses historical data available at the node manager to group PNs according to their
typical availability (when they typically enter/leave thecollective) and resources (how much processing,
storage, and network resources are available). These grouping are then used to decide on which node a
given service component should be scheduled.

We can divide scheduler decision making process into two main categories - past history based schedul-
ing and reactive scheduling.

Past History Based Scheduling
The collective incentive model rewards consistency of participating nodes and hence it leads to nodes

staying for longer duration in the system. This provides an opportunity to learn about participating nodes’
available resources and performance over an extended period of time. This information is used strategically
during scheduling of services.

A collective manager (CM) periodically collects historical data about all participating nodes in the sys-
tem. The historical data is collected with the help of a smallagent callednode-agentthat runs on every
node participating in a collective. Anode-agentcollects lot of useful information - e.g. observed upload
bandwidth, node’s boot up timings etc., and send these information to the collective manager periodically
(e.g. after every 3 days). Based on these information, the collective manager has an idea about each par-
ticipating node resources, and its past history about active/non-active timings in the collective. Typically
the collective manager creates different clusters (information lists) based on different desired behaviors -
e.g., nodes having longest active time during last 5 days, during last month, or node having highest upload
bandwidth etc. These information lists are then used to makeinformed decisions for various activities, e.g.,
to decide the caching pattern of a content. Nodes can be grouped based on a node’s up/down timings, a node
computing or storage or networking capabilities or a node network location.

Reactive Scheduling
Apart from a proactive information based scheduling, a collective system can reactively take actions

based on observed dynamic behaviors. Here we describe some of the possible approaches towards reactive
scheduling.

• Service Demand: A collective manager can monitor service demand rate with the help of partners
(e.g. content distributor in CCDS) and then use that information to achieve better scheduling of
resources. For example, if a there is a rise in a particular content demand (e.g., from a sale of 10 per
day to 1000 per day), the scheduler can increase replicationto handle the increased load.

• Churning Detection: Another technique is to detect failures/churning and thentake actions to mask
those failures by creating more replicas when a previous replica fails.

• Client Reports: Another approach to get feedback is based on performance reports sent by client
application. For example, if a client downloading a contentdoes not get sufficient bandwidth, it
can send a report to the collective manager. The collective manager can then take actions to fix the
problem by creating more replicas or moving replicas to better nodes.

5.3 Security

The basic security problems that must be addressed in a collective infrastructure are (i) how to uniquely
identify and authenticate each entity, (ii) how to ensure that a PN is not misused or corrupted as a side-effect
of participating in a collective, and (iii) how to handle selfish or malicious behaviors.

5.3.1 Identity and Authentication

Each PN and each client is identified by a unique machine-generated ID and a unique public/private key
pair. The CM acts as the root of the public key infrastructure(PKI) employed by its collective. Each PN
and client is issued a certificate signed by the CM that associates the public key of the PN or client with
their unique IDs. Similarly each partner also is identified by a unique public/private key pair. These keys
and certificates are used to create secure communication channels and to digitally sign the reports sent to
the CM.

5.3.2 Trust and Access Control at PNs

The collective uses a VM sandboxing environment where a PN runs a VM instance to provide resources to
a CM. This ensures that the collective software is isolationfrom the host PN. That is, applications running
inside the VM cannot directly interfere nor access resources belonging to the host PN. Additionally the
host PN can enforce resource controls such as disk quota, cpushare, and physical memory allocation for the
VM. This allows normal work to proceed on the host PN without undue impact. The protection and resource
controls provided by VM technology will make people more willing to make their machines accessible to
the collective, without fear that they will be misused or infected.

Even though VMs provides good isolation, a malicious user can still misuse the virtual machine to
launch network attacks [12]. This problem is handled through access control, i.e., a VM instance on a PN
can only be directly controlled by the CM. We do not allow external entities to run arbitrary code on VMs.
All entities other than the CM interact with VMs only througha well defined application-level protocol.

On the flip side, a host PN has complete access to the VM runningon it. A selfish PN administrator can
potentially see or even modify files and data loaded on the virtual machine. Selfish behaviors and prevention
mechanisms are discussed in the next section.

5.4 Incentive Model and Selfish Behaviors

Since collectives may include selfish nodes, it is importantto mitigate the negative effects of selfish behavior.
Selfish nodes strive to earn more than their fair share of compensation. Selfish behavior has been observed
extensively in distributed systems, e.g., free riding in Gnutella [1] and software modifications to get more
credit than earned in SETI@home [16].

For a collective system to work, the system must discourage dishonest behaviors (e.g., cheating users
who lie about how many resources they have provided) and encourage nodes to stay in the collective for
extended periods of time.

To address these challenges, we have designed an incentive system based on game theory and the eco-
nomic theory behind law enforcement that motivates just these behaviors. In 1968, Becker [4] presented
an economic model of criminal behavior where actors comparethe expected costs and expected benefits of
offending, and only commit crimes when the expected gains exceed the expected costs. Since then there
has been significant research extending the work of Becker – Polinsky et. al [21] provides a comprehen-
sive overview of the research dealing with deterrents in lawenforcement. In this section we describe our
incentive system and our mechanisms to discourage dishonesty.

In a collective system, a PN’s compensation is based on how much its resources contribute to the success
of services running on the collective. A CM shares its profitswith PNs in proportion to their contribution
towards different services. For example, in the CCDS example, PNs will receive a fraction of the money
paid by the content distributor roughly proportional to thefraction of the total content that they deliver. The
basic unit of compensation is a CM-specific credit that acts as a kind of currency. Users can convert credits
to cash or use them to buy services from the CM or associated partners.

For the incentive system to work, the CM needs an accurate accounting of each PN’s contribution. The
CM cannot simply trust the contribution reported by each node, since selfish nodes can exaggerate their
contributions. In this section we discuss how we discourageselfish behavior economically.

5.4.1 Contribution Accounting and Accountability

Contribution accounting is mostly done at the service leveland depends on the design of the service in-
volved. The basic idea is to collect information from multiple sources (e.g., PNs, partners, clients, and the
CM) and do offline data analysis to decide the individual node’s contribution. We employ the following
mechanisms:

Credits Earned∝ Work Performed : The work performed to support a service invocation, e.g., down-
loading a movie, should be credited to the appropriate PNs. Each PN sends a detailed daily report of its
activities to the CM. In the absence of selfish/malicious PNs, each service activity can be credited to unique
contributing PNs. If nodes are selfish, more than one node will request credit for the same work. To resolve
conflicts, the accounting system needs additional information.

Accountability : Each PN and each client is identified by a unique public/private key pair. The CM acts
as the root of the public key infrastructure (PKI) employed by its collective. Each PN and client is issued a
certificate signed by the CM that associates the public key ofthe PN or client with their unique IDs. These
keys and certificates are used to create secure communication channels and to digitally sign the reports sent
to the CM.

Offline Cheater Detection:To identify selfish nodes, the system collects data from PNs,CM scheduling
records, service scheduling records, partners’ sales records, and even completion reports by client applica-
tions (if available). This data is used to resolve conflicts by comparing what work nodes claim they did
against what other entities claim was done. Conflict resolution is done offline periodically (e.g., daily).
With multiple information sources, it is possible to detectselfish behaviors by PNs. However, we do not
assume that CMs will be able to detect all instances of selfishbehaviors.

Collusion: Of course, PNs can collude with each other and with clients. Collusion allows cheaters
to confuse the CMs by providing incorrect reports from multiple channels. We counteract this by using
service-specific mechanisms to make it economically un-attractive to collude.

5.4.2 Variable Pay Rates (Raises and Cuts)

To provide an incentive for nodes to provide stable resourcelevels and to penalize node churn, the amount
of credits received by a node in return for work depends on thenode’s long termconsistency. A node that
remains in the CM’s pool for long periods of time and that provides continuous predictable performance
receives more credit for a unit of work than a node that flits inand out of the CM’s pool.

Credit-per-unit-work (pay) rates are divided into levels.PNs enter the system at the lowest pay rate; a
node’s pay rate increases as it demonstrates stable consistent contributions to the collective. The number of
levels and the behavior required to get a “pay raise” are configurable parameters for any given service.

To discourage selfish behavior, the system can apply a pay cutwhen it identifies a node mis-reporting
the amount of work it performs. The size of the pay cut can be configured on a per-service basis. Selfish
behavior in one service leads to pay cuts in other services run on that node. As an alternative, we could ban
PNs from the system when they are caught cheating, but doing so eliminates nodes who might “learn their
lesson” after finding that cheating does not pay in the long run. If a node continues to cheat, its pay rate
becomes negative (i.e., it accumulates debt that must be worked off before being paid), which has the same
effect as simply banning them.

Other factors can be applied to determine a particular node’s pay rate. For example, nodes that are
particularly important to a given service due to their location or unique resources (e.g., a fat network pipe
or extremely high availability) may receive a bonus pay rateto encourage them to remain part of the CM’s
pool.

5.4.3 Summary

Our incentive model employs a currency-based system that rewards work performed, as well as the consis-
tency of the work. Further, it is a well known phenomenon in game theory that repeated interactions give
rise to incentives that differ fundamentally from isolatedinteractions [19]. Thus, the collective manager
employs offline analysis of data provided by participating nodes, partners, clients, and collective managers
to determine future pay rates for each node. Consistently desirable behavior leads to increased rewards,
e.g., the pay rate of nodes increases in response to predictable long term availability. Undesirable behavior
results in decreased rewards, e.g., the pay rate of nodes decreases in response to being caught lying about
work done in an attempt to receive undeserved compensation.

In [13], we analyze the impact of our incentive model from an economic standpoint to derive key prop-
erties of our incentive system. We examine the impact of decisions made by selfish nodes and analyze the
gain vs loss possibilities for participating nodes as we vary the likelihood of bad actors being caught. We
show that while we cannot prevent users from being dishonest, our mechanisms mitigate dishonest behavior
by making it economically unattractive. We show that a smallprobability of catching cheaters (under 4%) is
sufficient for creating a successful deterrence against selfishness. We further show that our incentive system
can be used successfully to motivate nodes to remain in the system for prolonged durations.

6 Conclusion and Future Work

In this paper, we present a newcollectivemodel for exploiting the idle compute, storage, and networking
resources of unreliable and untrusted computers distributed around the world. Unlike previous efforts to
harness idle distributed resources, we propose a system based oncollective managersthat provide explicit
credits for work performed on behalf of services. To discourage selfish behavior, we use a combination
of offline data analysis to detect selfishness and an incentive model that encourages stable, collusion-free,
unselfish behavior. Collectives provide a useful alternative to the dominant pure P2P approach; they utilize
idle resources more effectively, have a more meaningful economic model, and are better suited to building
legal commercially interesting services.

We believe that a collective system centered around competing CMs can grow to millions of nodes
and serve as an excellent infrastructure for building new and interesting services that exploit otherwise
idle resources. We are currently developing a content distribution service, a backup service, and a high-
performance computing service based on collectives.

References

[1] E. Adar and B. Huberman. Free riding on gnutella.First Monday, 5(10), October 2000.

[2] Amazon Web Services.http://www.amazon.com/aws/.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield.
Xen and the art of virtualization. InProceedings of the 19th Symposium on Operating Systems Princi-
ples (SOSP), October, 2003.

[4] G. S. Becker. Crime and punishment: An economic approach. The Journal of Political Economy,
76(2):169–217, 1968.

[5] Cachelogic. P2p in 2005. http://www.cachelogic.com/home/pages/research/
p2p2005.php.

[6] Cachelogic. True picture of file sharing, 2004.http://www.cachelogic.com/home/pages/
research/p2p2004.php.

[7] B. Calder, A. Chien, J. Wang, and D. Yang. The entropia virtual machine for desktop grids. In
International Conference on Virtual Execution Environment, 2005.

[8] B. Cohen. Incentives build robustness in bittorrent. InProceedings of the Workshop on Economics of
Peer-to-Peer Systems, 2003.

[9] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of theGrid - enabling scalable virtual organiza-
tion. Internation Journal of Supercomputer Applications, 15(3), 2001.

[10] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat. Sharp:An architecture for secure resource
peering. InProceedings of the 19th ACM Symposium on Operating Systems Principles, 2003.

[11] Gnutella.http://www.gnutella.com.

[12] S. Goyal and J. Carter. Safely harnessing wide area surrogate computing -or- how to avoid building the
perfect platform for network attacks. InProceedings of the First Workshop on Real Large Distributed
Systems, Dec. 2004.

[13] S. Goyal and J. Carter. Ensuring prolonged participation and deterring cheating behaviors in a collec-
tive. Technical Report UUCS-08-010, School of Computing, University of Utah, September 2008.

[14] S. Guha, N. Daswani, and R. Jain. An experimental study of the skype peer-to-peer voip system. In
5th International Workshop on Peer-to-Peer Systems, Feb. 2006.

[15] Ion Stoicaet al. Chord: A scalable peer-to-peer lookup service for internet applications. InProceedings
of the ACM SIGCOMM ’01 Conference, pages 149–160, Aug. 2001.

[16] L. Kahney. Cheaters bow to peer pressure.Wired, 2001.

[17] Kazaa.http://www.kazaa.com.

[18] M. Litzkow, M. Livny, and M. Mutka. Condor — a hunter of idle workstations. InProceedings of the
8th International Conference on Distributed Computing Systems, pages 104–111, June 1988.

[19] G. J. Mailath and L. Samuelson.Repeated Games and Reputations. Oxford University Press, 2006.

[20] PlanetLab.http://www.planet-lab.org.

[21] A. M. Polinsky and S. Shavell.The Theory of Public Enforcement of Law, volume 1 ofHandbook of
Law and Economics. North Holland, Nov 2007.

[22] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content addressable net-
work. In Proceedings of the ACM SIGCOMM Conference, Aug. 2001.

[23] D. Reed, I. Pratt, P. Menage, S. Early, and N. Stratford.Xenoservers: Accounted execution of untrusted
code. InIEEE Hot Topics in Operating Systems (HotOS) VII, Mar. 1999.

[24] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for large-scale
peer-to-peer systems. InInternational Conference on Distributed Systems Platforms, Nov. 2001.

[25] SETI@home.http://setiathome.ssl.berkeley.edu.

[26] M. S. P. S. C. Study. Aruba.it.http://download.microsoft.com/download/6/b/e/
6be5466b-51a5-4eaf-a7fc-590f32bc9cb3/Aruba.it%20Case%20Study.doc.

[27] M. S. P. S. C. Study. Hostbasket.http://download.microsoft.com/download/b/f/3/
bf34b7be-81e9-46a8-a5e3-ccb648a98547/Hostbasket%20Final.doc.

[28] Utopia.http://www.utopianet.org/.

[29] VMware Player.http://www.vmware.com/player.

[30] VVD Communications.http://www.vvdcommunications.com.

[31] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubiatowicz. Tapestry: A
resilient global-scale overlay for service deployment.IEEE Journal on Selected Areas in Communica-
tions, January 2004.

