A Collective Approach to Harness
Idle Resources

Sachin Goyal and John Carter

UUCS-08-009

School of Computing
University of Utah
Salt Lake City, UT 84112 USA

September 25, 2008

Abstract

We propose a collective approach for harnessing the idturess (cpu, storage, and band-
width) of nodes (e.g., home desktops) distributed acrosgriternet. Instead of a purely
peer-to-peer (P2P) approach, we organize participatidgsto act collectively usingol-
lective manager¢CMs). Participating nodes provide idle resources to CMsctv unify
these resources to run meaningful distributed servicesXtarnal clients. We do not as-
sume altruistic users or employ a barter-based incentivdeinmstead, participating nodes
provide resources to CMs for long durations and are competisa proportion to their
contribution.

In this paper we discuss the challenges faced by collecyiseems, present a design that
addresses these challenges, and compare it with previgueammes. We show that the
collective service model is a useful alternative to the o2& models. It provides more
effective utilization of idle resources, has a more medfirgconomic model, and is better
suited for building legal and commercial distributed seeg..

A Collective Approach to Harness Idle Resources

Sachin Goyal and John Carter
School of Computing, University of Utah
{sgoyal, retra¢ @cs.utah.edu

Abstract

We propose a collective approach for harnessing the idt®iress (cpu, storage, and bandwidth) of nodes
(e.g., home desktops) distributed across the Interneteddsof a purely peer-to-peer (P2P) approach, we
organize participating nodes to act collectively usaajjective manager§CMs). Participating nodes pro-
vide idle resources to CMs, which unify these resourcesiamaaningful distributed services for external
clients. We do not assume altruistic users or employ a baased incentive model; instead, participating
nodes provide resources to CMs for long durations and ar@engated in proportion to their contribution.
In this paper we discuss the challenges faced by collecyigeess, present a design that addresses
these challenges, and compare it with previous approatleshow that the collective service model is a
useful alternative to the pure P2P models. It provides mifeete/e utilization of idle resources, has a more
meaningful economic model, and is better suited for bugdagal and commercial distributed services.

1 Introduction

Modern computers are becoming progressively more powerithl ever-improving processing, storage,
and networking capabilities. Typical desktop systems magee computing/communication resources than
most users need and are underutilized most of the time. Thekrutilized resources provide an interesting
platform for new distributed applications and services.

We envision a future where the idle compute, storage, andanking resources of cheap network-
connected computers distributed around the world are baedeto build meaningful distributed services.
Many others have espoused a similar vision. A variety of pappeer-to-peer (P2P) services exploit the
resources of their peers to implement specific functiopadilg., Kaaza [17], BitTorrent [8], and Skype [14].
The large body of work on distributed hash tables (DHTSs) @xgleer resources to support DHTs (e.qg.,
Chord [15], Pastry [24], Tapestry [31], and CAN [22]), on tfpwhich a variety of services have been built.
SETI@home [25] and Entropia [7] farm out compute-intensasks from a central server to participating
nodes.

We propose a new way to harness idle resources as managésttives”. Rather than a purely P2P
solution, we introduce the notion obllective manager6CMs) that manage the resources of large pools of
untrusted, selfish, and unreliatgarticipating nodegPN). PNs contact CMs to make their resources avail-
able, in return for which they expect to receive compengatiéfter registering with a CM, each PN runs
a virtual machine (VM) image provided by the CM. CMs remotetntrol these VMs and use their pro-
cessing, storage, and network resources to build distibsérvices. Unlike projects like Xenoservers [23],
a CM does not provide raw access to end node’s resources éonekicustomersA CM is an application
service provider, aggregating idle resources to provid@aes like content distribution and remote backup.
Figure lillustrates a possible use of a collective to im@ata commercial content distribution service that
sells large content files (e.g., movies, music, or softwadates) to thousands of clients in a cost-effective
way.

The Collective uses an economic model based on currencylléctiee manager earns money in return
for providing services and then shares its profits with PN&aportion to their contribution towards differ-

Collective Manager
{Overlay formation /
Resource Management-

Accounting)

Content Distributor

—Cop
,f;’“f Listing
Uying
Content
Downloading

Client
Figure 1: Collective Content Distribution Service

ent services. The basic unit of compensation is a CM-spemiidit that acts as a kind of currency. Users
can convert credits to cash or use them to buy services frer@kh or associated partners.

Since collectives may include selfish nodes, it is importarnitigate the neagative effects of selfish-
ness. Selfish hodes can resort to cheating for earning mamethieir fair share of compensation. Cheating
behavior has been observed extensively in distribute@syste.g., free riding in Gnutella [1] and software
modifications to get more credit than earned in SETI@homE [mitigate negative impact of selfishness,
we propose to employ economic deterrents comprised of aneffta-analysis-based accounting system
and a consistency-based incentive model. Services argngeisspecifically to facilitate these economic
deterrents, and use security mechanisms to ensure acbiityi@across different transactions. While we
cannot prevent users from cheating, our mechanisms natefaating behavior by making it economically
unattractive.

The rest of the paper is organized as follows. In Section 2jisuss the target environment and different
approaches for addressing the problem. In Section 3, we a@rgollective approach to existing work. In
Section 4 we do a simple cost analysis of a collective systahtampare it with self managed clusters and
utility computing systems (amazon s3/ec2 [2]). In Sectipnvd describe the architecture of a collective
system, its security infrastructure, and its incentive elow/e then conclude in Section 6.

2 Design Space

Our target environment consists of potentially millionsafl-nodes distributed all across the Internet. They
are untrusted, and unreliable - i.e., they suffer from feegunode churning as well as failures. Each node
can exhibit selfish behaviors. Our goal is to use unutiliz=burces of these end-nodes to build meaningful
commercial serviceOur design is similar to a firm in traditional economic sys$e where multiple people
come together to work for a common goal. Our incentive areradtion model is neither based on altruism,
nor on the bartering.

A system based on altruism relies atiruistic users that provide services without any incentive, or
provide more than the required service to others. For exaniplthe context of file sharing P2P systems,
altruistic users share the files on their computer even thdhgy do not get anything in return. Others
remain in the system after downloading a file and upload tlie waother users even when they are not
required to do so. Systems like gnutella and Kazaa were lmseliruism. These systems eventually suffer
from freeloading, which degrades the quality of the netwsarkstantially. More importantly, these systems
do not have an incentive model and thus are more useful ferdrdlegal content distribution instead of a
commercial system.

Bartering is the exchange of goods or services between two people inwaftyubeneficial way. One
can use bartering based mechanisms to provide incentivéstéoaction. We categorize bartering systems
into two categories - lazy bartering and active (currenagdal) bartering. We use the tetiazy bartering”
for systems where people participate in the system only émrugigh to perform a particular transaction such
as downloading a song. As stated above, this leads to theuwiiidation of a node’s resources unless the
node’s administrator is altruistic. BitTorrent is basedlazy bartering To overcome this underutilization
problem, one may tractive bartering that is using bartering to maximally utilize availableoesces (not
just when a node needs some service in return). Using cueeas an intermediary in bartering provides
the necessary tool for achieving that. But it is still toughfind eligible users with whom to barter. One
is limited by the goods (e.g., music/movies) that one hasliaring and by the availability of other users
interested in paying currency for the objects one owns. #althlly the inherent untrusted and unreliable
nature of end nodes makes currency-based bartering riskgxXemnple, it is easy for a cracker to use a
currency-based bartering mechanism to acquire resoutcegléple nodes, and then use them for network
attacks. Also, individual nodes can provide only a limitedoaint of resources, so anyone interested in
building a service like a content distribution system wilg to find and make bartering agreements with
many end nodes. This process has to be repeated wheneversamase is built.

The collective model provides a useful approach to handisetiproblems in a simple but realistic
manner. First, in a collective, a participating nodes sh#ieeresources using a VM instance and provides
root access to that instance to the CM. Only the trusted atole manager has direct access to the VM
running on a participating node, so we do not need to worryualha unknown party using the nodes
for nefarious purposes, e.g., to launch network attack€or®k the collective system uses the long term
association with nodes and the presence of a CM to countéracintrusted and unreliable nature of PNs.
A collective manager provides a simple service model tomi@kpartners/customers, who do not have to
worry about inherent chaos of a system built out of end nodes.

Another way to think about a collective is by comparing it feesison having $10000 of savings. He/she
can either deposit their savings in a bank and get paid stteve he/she can lend it to other people, poten-
tially getting a higher rate of return than provided by barik&e bartering in P2P, personal lending suffers
from a trust problem; what if borrower does not return youmend Additionally one has to search for
potential borrowers and the savings remain unutilizedrdutine search period.

We can compare a collective to the formation of organizationreal life. As human civilization has
progressed, there has been a clear move towards formingipagjans - whether it is universities, banks,
manufacturing plants, or other commercial organizationhile we still have freelancers, the majority of
productive work is performed by well defined organizations.

In some ways, a collective resembles the collections of zemmiachines often used by malicious users
to launch distributed denial of service attacks. We diffenf “zombie nets” in that we only use the resources
of willing participants and allow PNs to limit how their ragees are used (e.g., no more than X kilobytes-
per-second of network bandwidth).

3 Related Work

Our collective model, while similar in certain aspects teypous work, differs in a number of important
ways. There are four main domains of related projects ttsat ékal with utilizing the resources of com-
puters distributed across the Internet. The first is peeet pystems like bittorrent [8], gnutella [11] etc.
The second is compute-only services like seti@home [25tppia [7] etc. The third is utility computing
systems like Xenoservers [23]. The fourth is grid compusgsgtems [9].

Peer to Peer Services:

Unlike typical P2P systems, we do not assume that PNs atastiltr(e.g., Kazaa [17] or Gnutella [11])
or willing to “barter” their resources in return for accegshe end service (e.g., BitTorrent [8]). Rather, PNs
make their resources available to CMs to build distributadises, in return for which they are compensated
by CMs.

Using idle resources to ruarbitrary services, rather than only services that the local user, uses
proves resource utilization. A node’s compute and netweskurces are perishable — if they are not used,
their potential value is lost. In an incentive model that ey bartering, e.g., BitTorrent, nodes typically
participate in the system only long enough to perform a @aldr transaction such as downloading a song.
At other times, that node’s idle resources are not utilizeldss the node’s administrator is altruistic. In the
collective, a CM will have much larger and more diverse padlg/ork than personal needs of individual
participants; thus a CM will be better able to consume théspable resources of PNs. PNs, in turn, will
accumulate credits for their work, which they can use in tiiare however they wish (e.qg., for cash or for
access to services provided by the CM). In a sense, we arengitive incentive model from a primitive
barter model to a more modern currency model.

Additionally in a collective the CM has direct control ovéret VMs running in participating nodes.
This control can be utilized to provide a predictable sertiwthe customers, e.g., the CM can dynamically
change the caching patterns in response to sudden demand.

Distributed Compute Intensive Services:

Unlike seti@home [25] and Entropia [7], the idle storage aativorking resources of PNs can be har-
nessed, in addition to idle processing resources. As ayesllectives can be used to implement distributed
services (e.g., content distribution or remote backup)diiitaon to compute-intensive services. These ser-
vices have different design chanllenges than computesiveservices.

First, seti@home or other compute-only services are emsingly parallel and does not require any in-
teraction between different nodes. Services like contestiilbution or backup services require cooperation
from multiple nodes to successfully cache/replicate ag@fccontent, and to provide service to the cus-
tomers. Handling these interactions (e.g., multiple naakision) while still being able to manage selfish
behaviors is a much different and tougher problem than vameéimbarrassingly parallel applications.

Second, applications like content distribution or rematekup require timely delivery of service to
customers — thus adding a real time response componente &hemo similar real-time requirements in
seti@home-like applications.

Third, applications like content distribution or remoteckap require different mechanisms and design
to detect selfish behaviors by participating nodes.

Utility Computing Systems:

Utility computing systems like Xenoservers [23], Planet[@0], and SHARP [10] deal with similar
problems, but these systems handle resource sharing atahelayity of VMs, and are not bothered about
the design and challenges of building a service using thessurces.

For example, unlike collective they do not provide solusidar service level selfish behaviors by the
participating nodes (or sites). Many of these assume ttustees. Projects like SHARP [10] assume that
the service managers have some external means to verifedbhtsite provides contracted resources and
that they function correctly (assumption 7 in their pap&i]1

The focus of these projects are dedicated powerful senfdrigb reliability. While in collective, our
main focus is to harness the idle resources of unreliablenedés.

Similar to these projects, PNs in a collective exploit VMHheology for safely running arbitrary un-
trusted code provided by CMs. But unlike utility computingjects like Xenoservers or SHARP, we do
not provide raw VMs to external clients. We allocate only &féd on a node, and run multiple services

inside that one VM. In other systems any untrusted thirdypaah acquire VMs and potentially use them for
nefarious activities like network attacks. In contrast; one VM per participating node is only controlled
by the trusted collective manager.

Grid Computing Systems:

Systems like Condor [18] manage the idle resources of dalex of nodes, but typically manage the re-
sources ofrustednodes that remain in the “pool” for substantial periodsofeti In contrast, we assume that
PNs are unreliable (frequently fail or leave the colledtimad are non-altruistic (will do as little productive
work as possible while maximizing their compensation).

Systems like computational grids [9] also deal with distt#nl resources at multiple sites, though again
their main focus is on trusted and dedicated servers.

4 Cost Analysis - Clusters, Utility Computing, and Collectve

Modern computers have become quite powerful over the yaadstypically have more processing, storage,
and communication resources than most user need, and remdgnutilized. A verification of this can be
seen from the success of systems like seti@home, Gnutedlzadl and BitTorrent. Based on data from
Jan 2004 to June 2004, CacheLogic reported that peer-tosgseems (P2P) consume 80% or more of the
traffic for last mile service providers [6]. Another studgiin CachelLogic put the P2P percentage of Internet
traffic at about 60% at the end of 2004 [5]. The same study teplat BitTorrent was responsible for as
much as 30% of all Internet traffic at the end of 2004 [5].

Our collective system intends to harness these unutiligedurces of already deployed computers. Our
target nodes can be either home desktops or computers dépioycommunities or enterprise environ-
ments. These nodes are bought and deployed to serve sonigcgp@pose, but their resources are not
utilized 100% all the time. The goal of the collective systerto harness these unutilized resources to build
commercial services, and distribute the profits back ta@pating nodes.

Instead of using unutilized resources of end-nodes, ongaotantially use a cluster of PCs to provide
similar resources. In this subsection, we do a quick quativie analysis to understand the opportunity cost
of a collective in comparison to the cluster approach. Wedistimate the resource capabilities of a collec-
tive system consisting of one million nodes. We then useelastimates to calculate the potential cost for
building an equivalent cluster using a self-managed andity @iomputing approach.

Assumptions: In this analysis, we assume that 10% resources of a givenaredavailable when the end-
user is actively using the node; 100% resources are awitgberwise. We assume that on average a node
is used actively for 10 hours per day by the end-user. Wedudbsume an average upload bandwidth of 50
KBps (i.e., what Comcast cable Internet provides curretatijon-commercial customers), which is quite
conservative considering that other broadband optiorsDigL, VVD Communication [30] or Utopia [28]
provide better bandwidth, and countries like South KorehJapan have broadband connections providing
Mbps of upload bandwidth. We assume that each node in thectigl contributes on average 5GB of
storage, which is a quite conservative estimate consiglehia sizes of modern hard disks. For processing
capabilities, we assume a 2GHz processor with 1GB of RAM.

4.1 Collective

A million nodes with 50 KBps of upload bandwidth means an latdé aggregate upload bandwidth of 50
GBps. Since we assume that on average only 10% of each negbeisity is available for 10 hours each day,
we can probabilistically estimate the available uploaddwédth as(5 * 10 + 50 x 14) /24, i.e., 31.25 GBps

at any instant, although not constant. Similarly we camestié that at any instant this collective will have

processing capabilities worf.2* 10+ 2% 14) /24 % 10° = 1.25 *10% GHz. For storage, disk space remains
available all the time irrespective of the node’s use by thd-@ser or not. Thus we estimaie: 10°GB of
available storage.

Typically there will be an overhead in terms of bandwidth atmtage to maintain service level proper-
ties. For example, bandwidth will be used to maintain caghma content distribution system. Similarly
there will be storage overhead to maintain durability (g®ither straightforward replication or erasure cod-
ing). Assuming 10% overhead for bandwidth, we are left w125 GBps of bandwidth. Assuming 80%
overhead for storage (required for 4 extra replicas), weedrevith 10° GB of storage available.

4.2 Self Managed Cluster

Assuming dual core 2*3GHz machines, we can build a compam@ihputing cluster using .25 x 10%) /6)

= 200K such machines. So let us use 100K machines as a coigemstimate for our analysis here.
Assuming each machine costs around $1000 including stotta@itial investments for such a cluster will
be around $100 million. Plus we will need to upgrade suchtetyseriodically to keep up with technology
advancements. Assuming a 5-year life cycle, we need to digpeeit at $40M per year, i.e, $1.66M per
month.

To estimate data center and bandwidth costs, we use theatiolocosts advertised on websites like
creativedata.netcolocation.comandapvio.netas a guide. For bandwidth, the typical costs advertised on
were around $45 per Mbps per month. Using that estimate 825 GBps we requirg8.125+ 8+ 100045
= $10.125 million per month. Typical cabinet prices for taelatacenters start at $650 for 40 units. Using
this as an estimate, we requii@x 1000« 650,/40 = $0.8125 million per month. Adding these two costs and
ignoring setup fees and related costs, we require $10.9®mjer month to operate.

As reflected in some of the TCO (total cost of ownership) stsidivailable on Internet, administrative
personal costs are one of the biggest part of overall costamiaging a cluster. For example, a TCO study
by the hostbasket web hosting company [27] puts the labdratd$4% of total cost, while Aruba.it [26]
puts the labor cost at 41% of the total cost. We do not have aag ay to quantify our costs here, so we
use a conservatively estimate of $3 million per month footatpsts.

Thus overall we will need around $15.5 M per month to build @st@r equivalent to a million node
collective.

4.3 Utility Computing Services from Amazon

Amazon web services [2] provides utility computing sersit@ computing, storage, and bandwidth through
Simple Storage Service (S3) and Edge Computing Service)(EEZ22 provides an instance of 1.7Ghz x86
processor, 1.75GB of RAM, 160GB of local disk, and 250Mb/s1efwork bandwidth. It has following
prices: $0.10 per instance-hour consumed, $0.20 per GBaf@ansferred into/out of Amazon (i.e., Internet
traffic). S3 has the following pricing: $0.15 per GB-Month sibrage used and $0.20 per GB of data
transferred.

Considering the computing resources of 1.28% GHz, we will require around 735K instances. Let's
take an conservative estimate of 300K instances for 24x8@shd will cost (300 * 1000 * 0.1 * 24 % 30)
= 21.6 million dollars per month. These machines will haveugh storage space available for matching
5%10° GB storage of collective. If we use S3 for storage, we willsieg/0.15 million dollars per month. For
bandwidth, costs are same for both EC2 and S3. Based on Z&BI25we will require 14.58 million dollars
per month for bandwidth. This is a very conservative estnas amazon does not promise a bandwidth of
28.125 GBps with that pricing.

Thus overall we will require around $36M per month to have stesy comparable to a million node
collective.

=
Clients Participating Nodes Service Providers

Figure 2: Main Players in Collective

4.4 Opportunity

Now that we have a quantitative idea of the cost of a colleetiguivalent cluster, we can use that to get
an estimate of potential rewards possible for particigatiodes. So from the raw resource point of view,
a collective can provide around $15 to $30 per month to ppatiing nodes having resources as defined in
above assumptions. From a service point of view, servicésdiucollective overlay may be worth much
more than raw resources, and hence it may be possible togvebetter returns. Additionally a collective
can provide return services to the PNs in addition to dirashgayout. This can increase the profit margins
even more.

Overall we are trying to monetize resources (cycles, stgragd network) that have already been paid
for to support something else (e.g., | already own a PC so suadrthe net; business already have machines
that they use to run their business). Thus a collective cavigie equivalent services at a more competitive
rate than a cluster based approach, while still providingpdereturn back to its participating nodes. Addi-
tionally a collective does not require huge amount of ihiti@estment that is needed for a setting up a big
cluster. It does not require the costly maintenance or pawests. End-nodes are upgraded in due time by
their users, thus it gets the advantage of technology adwaauts for free.

5 Collective Design

The collective system as a whole is a collection of disteligervices built by aggregating the idle resources
provided by willing end-nodes in return for compensatiohefie are four main players:

1. Participating Nodes (PNs)are end nodes that have idle compute, storage, or netwookinees.
They are typically connected to the Internet though some afdoroadband service. These nodes
have different compute/communication capabilities, gang down in unpredictable ways, and are
inherently untrusted.

2. Collective Managers (CMs)are service providers to whom individual nodes providertitde re-
sources. A CM uses these resources to provide a set of méalréegvices to clients and then com-
pensates the PNs. Multiple competing CMs can co-exist, paaviding different services and/or
pricing models.

3. Clients are individuals that wish to utilize the services offereddiys, e.g., using a collective remote
backup service or downloading a video from the collectiviatent distribution service.

4. Partners are commercial users of a CM, e.g., an online movie disiobutompany can utilize the
collective service for movie distribution, while managitig content acquisition and sales itself.

A service may not necessarily have both clients and partrersexample, a compute service may have
partners but no clients, while a remote backup service mag bhents but no partners. The Collective
Content Distribution Service (CCDS) has both clients andneas. Figure 2 illustrates main players in a
collective. PNs can also be clients of services offered bycthllective overlay.

5.1 Participating Nodes

To provide resources to a CM, a PN runs a VM instance and peevigbot access to that instance to the CM.
The decision to use a virtual machine instance as the un@safurce allocation has several important ad-
vantages over alternative approaches. Virtual machiriet#agy provides greatésolation flexibility, and
resource controthan simply running application processes directly on tba standard Unix or Windows
box.

In terms of isolation, applications running on a virtual miae instance cannot directly interfere with
applications running on the host machine, nor can they ac@sources (e.g., the file system) reserved
for the host machine. VM technology makes it effectively amgible for rogue client software to access
resources to which it does not have access rights, instakbes, or “crack root”.

The virtual machine monitor can enforce resource contmlg.(disk quota, cpu share, and physical
memory allocation) on a per-VM basis. This design allowsmadrwork to proceed on the host machine
without undue impact by applications running on a VM. Thetgecton and resource controls provided by
VMs will make people more willing to make their machines asikle to a collective overlay, without fear
that they will be misused or infected.

Using VM technology also provides advantages to a collecthanager. A collective manager has
r oot access and can install and execute arbitrary software ditipating nodes. This design provides
tremendous flexibility — what a collective manager can dooislimited by what some middleware layer
supports. Programmers can use different middleware ldjer<CORBA, RPC, or SOAP based on their
needs, which enables our system to support a wide varietistritiited services and applications. For our
prototype, we use the free VMware Player [29] and Xen [3] fer VM layer.

In addition to the VM, each PN runs a smatide-agent Thenode-agenhandles the basic interaction
between the user and CM, e.g., to determine when the nodafisest idle resources to warrant joining
the CM’s collective or to start/stop the VM. Thode-agenprovides a simple Ul through which the user
can set limits on the resources provided to the collectivg. (éimits on disk/memory space or limits on
network bandwidth that may vary depending on the time of .da@e node-agentlso provides a way for
the host to temporarily suspend/resume the collective’s VM

5.2 Collective Manager

A typical distributed service built on a collective consistf components that run colocated on the CM
(calledservice managejsand other components that run on the PNs. A service managesponsible for
converting service requirements into small componentsdistdbuting these components to a set of PNs.
Typically each service component will be replicated to jmevavailability and scalability.

As an example, Figure 1 shows how we might provide a colleaantent distribution service (CCDS).
Here a content distribution partner collaborates with thvdtG provide a content distribution service. The
content distributor interfaces with the service managelistribute (probably encrypted) content. The ser-
vice manager divides the content into multiple chunks, aodgtively caches them across multiple PNs.

Clients run an application, e.g., an iTunes content dowhégaplication, that interacts directly with the
content distributor for browsing and sales. After a clientghases a particular song or video, the content
distributor sends it a signed certificate that gives thentlibe right to download the song/video from the

Service Agents

Service
Managers
Nodes
Schedul Internet Node
cheaaular Manager niarne Agent WM
‘ Collective Manager (CM) PN

Figure 3: System Architecture

CCDS overlay network and a contact list of PNs. The client th@wnloads the content directly from PNs,
with different chunks coming from different nodes.

Figure 3 shows the high level architecture of a collectivgpad from the service managers, the CM
consists of anode manageand ascheduler The node manager tracks the set of PNs currently registered
with the CM, including their available resources and reseuestrictions. The scheduler helps schedule the
resources on individual PNs. A given PN can run multiple ises:

5.2.1 Failure tracking and Liveness server

Node churning and failures are an inherent part of a systethflmm end-nodes distributed across the
Internet. We use multiple methods to detect node failurbsr(@ in a timely fashion. The techniques we
use to determine when a participating node has failed otHeftollective are as follows:

e Centralized liveness server Every node sends a join/leave message to a centralizeteBgeserver
whenever it joins the collective or shuts down gracefully.

e Application-level alertness mechanism The CM, other PNs, and clients regularly contact other
nodes as part of normal service operations. If they are ertaldontact a node, they inform liveness
server.

The liveness server (also called thede managégrkeeps track of all registered nodes, as well as cur-
rently active (online) nodes in the collective. Whenevegipipating node joins/rejoins the collective, it
pings thenode managewith an ’'I-came-online’ message. On receiving that, theenothnager adds that
node to the active node list. That node remains there ustihtide-manager receives a direct or indirect in-
dication of node’s not being online. A direct indication @sby a node-agent if a user temporarily disables
the node’s participation in collective or when a node shwitbgracefully (e.g. as part of node’s shutdown).
Indirect indications are reported either by service manadients or other PNs, whenever they happen to
contact the node for certain data, and does not get any resp@m direct indication, CM removes the node
from the active list. Indirect indications may be a genuihatdown or failure, but it can also result from
network partitioning, or due to wrong reporting by a maligcclient/PN. So on indirect indication, CM
adds the list to a check-alive list. CM pings the nodes onlcladive list few times (mostly when CM is free
from other work) before it removes the node from active list.

Apart from the active/non-active status, node managersaegorical record of each node. Basically
different node-agents running on PNs collect lot of usetfiibrimation - e.g. observed upload bandwidth,
node’s boot up timings etc., and send these informationdmtde-manager periodically (e.g. after every 3
days).

5.2.2 Scheduler

One of the biggest challenge of CM is to effectively utilize tresources of participating nodes towards
meaningful activities. CM need to understand the impogaaad resourcefulness of individual nodes, and
should try to maximize the utilization of its idle resourcég the same time, appropriate resources should
be made available to the different services to maintaingabée performance.

The scheduler helps schedule available resources ondodiMPNs to different services running on the
collective. The scheduler uses historical data availafileeanode manager to group PNs according to their
typical availability (when they typically enter/leave tlellective) and resources (how much processing,
storage, and network resources are available). These iggape then used to decide on which node a
given service component should be scheduled.

We can divide scheduler decision making process into twam wetiegories - past history based schedul-
ing and reactive scheduling.

Past History Based Scheduling

The collective incentive model rewards consistency ofiggeting nodes and hence it leads to nodes
staying for longer duration in the system. This provides ppoostunity to learn about participating nodes’
available resources and performance over an extendeddp#rimme. This information is used strategically
during scheduling of services.

A collective manager (CM) periodically collects histolliciata about all participating nodes in the sys-
tem. The historical data is collected with the help of a sragknt callechode-agenthat runs on every
node participating in a collective. Aode-agentollects lot of useful information - e.g. observed upload
bandwidth, node’s boot up timings etc., and send thesenrdtion to the collective manager periodically
(e.g. after every 3 days). Based on these information, thective manager has an idea about each par-
ticipating node resources, and its past history about &ctbn-active timings in the collective. Typically
the collective manager creates different clusters (in&diom lists) based on different desired behaviors -
e.g., nodes having longest active time during last 5 daysngllast month, or node having highest upload
bandwidth etc. These information lists are then used to ritdkemed decisions for various activities, e.g.,
to decide the caching pattern of a content. Nodes can be ggdugsed on a node’s up/down timings, a node
computing or storage or networking capabilities or a nodeokk location.

Reactive Scheduling

Apart from a proactive information based scheduling, aemtiVe system can reactively take actions
based on observed dynamic behaviors. Here we describe ddive mossible approaches towards reactive
scheduling.

e Service Demand A collective manager can monitor service demand rate vi¢hhelp of partners
(e.g. content distributor in CCDS) and then use that infeionato achieve better scheduling of
resources. For example, if a there is a rise in a particulatec demand (e.g., from a sale of 10 per
day to 1000 per day), the scheduler can increase replicatibandle the increased load.

e Churning Detection: Another technique is to detect failures/churning and tlaée actions to mask
those failures by creating more replicas when a previousceefails.

¢ Client Reports: Another approach to get feedback is based on performampaetsesent by client
application. For example, if a client downloading a contdaés not get sufficient bandwidth, it
can send a report to the collective manager. The collectizeager can then take actions to fix the
problem by creating more replicas or moving replicas todvetbdes.

5.3 Security

The basic security problems that must be addressed in atedlénfrastructure are (i) how to uniquely
identify and authenticate each entity, (ii) how to ensued ¢hWPN is not misused or corrupted as a side-effect
of participating in a collective, and (iii) how to handle f&gh or malicious behaviors.

5.3.1 Identity and Authentication

Each PN and each client is identified by a unique machinergtt ID and a unique public/private key
pair. The CM acts as the root of the public key infrastructif&l) employed by its collective. Each PN

and client is issued a certificate signed by the CM that aggexithe public key of the PN or client with

their unique IDs. Similarly each partner also is identifigdabunique public/private key pair. These keys
and certificates are used to create secure communicatiomelsaand to digitally sign the reports sent to
the CM.

5.3.2 Trust and Access Control at PNs

The collective uses a VM sandboxing environment where a PN alVM instance to provide resources to
a CM. This ensures that the collective software is isolattom the host PN. That is, applications running
inside the VM cannot directly interfere nor access resaitmeonging to the host PN. Additionally the
host PN can enforce resource controls such as disk quotahepe, and physical memory allocation for the
VM. This allows normal work to proceed on the host PN withautlue impact. The protection and resource
controls provided by VM technology will make people moreling to make their machines accessible to
the collective, without fear that they will be misused oreictied.

Even though VMs provides good isolation, a malicious user si#ll misuse the virtual machine to
launch network attacks [12]. This problem is handled thloagcess control, i.e., a VM instance on a PN
can only be directly controlled by the CM. We do not allow extd entities to run arbitrary code on VMs.
All entities other than the CM interact with VMs only througtwell defined application-level protocol.

On the flip side, a host PN has complete access to the VM rumming A selfish PN administrator can
potentially see or even modify files and data loaded on thealimachine. Selfish behaviors and prevention
mechanisms are discussed in the next section.

5.4 Incentive Model and Selfish Behaviors

Since collectives may include selfish nodes, it is importamitigate the negative effects of selfish behavior.
Selfish nodes strive to earn more than their fair share of emsgttion. Selfish behavior has been observed
extensively in distributed systems, e.g., free riding iru@ta [1] and software modifications to get more
credit than earned in SETI@home [16].

For a collective system to work, the system must discouragjedest behaviors (e.g., cheating users
who lie about how many resources they have provided) andueage nodes to stay in the collective for
extended periods of time.

To address these challenges, we have designed an inceygieensbased on game theory and the eco-
nomic theory behind law enforcement that motivates justéhgehaviors. In 1968, Becker [4] presented
an economic model of criminal behavior where actors comtiaexpected costs and expected benefits of
offending, and only commit crimes when the expected gaineex the expected costs. Since then there
has been significant research extending the work of BeckedirdRy et. al [21] provides a comprehen-
sive overview of the research dealing with deterrents indaforcement. In this section we describe our
incentive system and our mechanisms to discourage distyones

In a collective system, a PN’'s compensation is based on havhiitsiresources contribute to the success
of services running on the collective. A CM shares its praofiith PNs in proportion to their contribution
towards different services. For example, in the CCDS exanmNs will receive a fraction of the money
paid by the content distributor roughly proportional to frection of the total content that they deliver. The
basic unit of compensation is a CM-specific credit that asts kind of currency. Users can convert credits
to cash or use them to buy services from the CM or associattaeps.

For the incentive system to work, the CM needs an accuratmatag of each PN'’s contribution. The
CM cannot simply trust the contribution reported by eachepatince selfish nodes can exaggerate their
contributions. In this section we discuss how we discoussiish behavior economically.

5.4.1 Contribution Accounting and Accountability

Contribution accounting is mostly done at the service laral depends on the design of the service in-
volved. The basic idea is to collect information from mukigources (e.g., PNs, partners, clients, and the
CM) and do offline data analysis to decide the individual redentribution. We employ the following
mechanisms:

Credits Earned o< Work Performed: The work performed to support a service invocation, e gwrd
loading a movie, should be credited to the appropriate PNehEPN sends a detailed daily report of its
activities to the CM. In the absence of selfish/malicious Fdsh service activity can be credited to unique
contributing PNs. If nodes are selfish, more than one nodeeguest credit for the same work. To resolve
conflicts, the accounting system needs additional infdonat

Accountability: Each PN and each client is identified by a unique publicipenkey pair. The CM acts
as the root of the public key infrastructure (PKI) employgdtb collective. Each PN and client is issued a
certificate signed by the CM that associates the public kéfie@PN or client with their unique IDs. These
keys and certificates are used to create secure communicdizmnels and to digitally sign the reports sent
to the CM.

Offline Cheater Detection: To identify selfish nodes, the system collects data from EN&scheduling
records, service scheduling records, partners’ salesdgcand even completion reports by client applica-
tions (if available). This data is used to resolve confliggscbmparing what work nodes claim they did
against what other entities claim was done. Conflict reswluis done offline periodically (e.g., daily).
With multiple information sources, it is possible to deteetfish behaviors by PNs. However, we do not
assume that CMs will be able to detect all instances of sdi$taviors.

Collusion: Of course, PNs can collude with each other and with clientsllu€ion allows cheaters
to confuse the CMs by providing incorrect reports from npidtichannels. We counteract this by using
service-specific mechanisms to make it economically uaetve to collude.

5.4.2 Variable Pay Rates (Raises and Cuts)

To provide an incentive for nodes to provide stable resoléeels and to penalize node churn, the amount
of credits received by a node in return for work depends omudue’s long terntonsistency A node that
remains in the CM’s pool for long periods of time and that prleg continuous predictable performance
receives more credit for a unit of work than a node that flitarid out of the CM’s pool.

Credit-per-unit-work (pay) rates are divided into leva®\s enter the system at the lowest pay rate; a
node’s pay rate increases as it demonstrates stable @msisntributions to the collective. The number of
levels and the behavior required to get a “pay raise” are gordble parameters for any given service.

To discourage selfish behavior, the system can apply a payleen it identifies a node mis-reporting
the amount of work it performs. The size of the pay cut can b#igored on a per-service basis. Selfish
behavior in one service leads to pay cuts in other servigesmithat node. As an alternative, we could ban
PNs from the system when they are caught cheating, but doiljrminates nodes who might “learn their
lesson” after finding that cheating does not pay in the long fifia node continues to cheat, its pay rate
becomes negative (i.e., it accumulates debt that must beedaff before being paid), which has the same
effect as simply banning them.

Other factors can be applied to determine a particular sopay rate. For example, nodes that are
particularly important to a given service due to their lomator unique resources (e.g., a fat network pipe
or extremely high availability) may receive a bonus pay tatencourage them to remain part of the CM'’s
pool.

5.4.3 Summary

Our incentive model employs a currency-based system thatrds work performed, as well as the consis-
tency of the work. Further, it is a well known phenomenon imgaheory that repeated interactions give
rise to incentives that differ fundamentally from isolaieteractions [19]. Thus, the collective manager
employs offline analysis of data provided by participatimgl@s, partners, clients, and collective managers
to determine future pay rates for each node. Consistensiratde behavior leads to increased rewards,
e.g., the pay rate of nodes increases in response to pigditbag term availability. Undesirable behavior
results in decreased rewards, e.g., the pay rate of hodesades in response to being caught lying about
work done in an attempt to receive undeserved compensation.

In [13], we analyze the impact of our incentive model from anremic standpoint to derive key prop-
erties of our incentive system. We examine the impact ofsilmes made by selfish nodes and analyze the
gain vs loss possibilities for participating nodes as we ¥he likelihood of bad actors being caught. We
show that while we cannot prevent users from being dishpoasimechanisms mitigate dishonest behavior
by making it economically unattractive. We show that a smadbability of catching cheaters (under 4%) is
sufficient for creating a successful deterrence againfisiseéss. We further show that our incentive system
can be used successfully to motivate nodes to remain in sterayfor prolonged durations.

6 Conclusion and Future Work

In this paper, we present a nawsllectivemodel for exploiting the idle compute, storage, and netingyk
resources of unreliable and untrusted computers diséiibatound the world. Unlike previous efforts to
harness idle distributed resources, we propose a systezd basollective managerthat provide explicit
credits for work performed on behalf of services. To disager selfish behavior, we use a combination
of offline data analysis to detect selfishness and an ineentivdel that encourages stable, collusion-free,
unselfish behavior. Collectives provide a useful altewesttb the dominant pure P2P approach; they utilize
idle resources more effectively, have a more meaningfuh@eoc model, and are better suited to building
legal commercially interesting services.

We believe that a collective system centered around congp&Ms can grow to millions of nodes
and serve as an excellent infrastructure for building ned iateresting services that exploit otherwise
idle resources. We are currently developing a contentilligion service, a backup service, and a high-
performance computing service based on collectives.

References

[1] E. Adar and B. Huberman. Free riding on gnutelérst Monday 5(10), October 2000.

[2] Amazon Web Servicedhit t p: / / www. anazon. com aws/ .

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A&, R. Neugebauer, |. Pratt, and A. Warfield.
Xen and the art of virtualization. IRroceedings of the 19th Symposium on Operating Systema-Prin
ples (SOSR)October, 2003.

[4] G. S. Becker. Crime and punishment: An economic approddhme Journal of Political Economy
76(2):169-217, 1968.

[5] Cachelogic. P2p in 2005. http://ww. cachel ogi c. cont hone/ pages/resear ch/
p2p2005. php.

[6] Cachelogic. True picture of file sharing, 2004.t p: / / ww. cachel ogi c. com home/ pages/
resear ch/ p2p2004. php.

[7] B. Calder, A. Chien, J. Wang, and D. Yang. The entropiduair machine for desktop grids. In
International Conference on Virtual Execution Environm&05.

[8] B. Cohen. Incentives build robustness in bittorrentPhoceedings of the Workshop on Economics of
Peer-to-Peer System2003.

[9] I. Foster, C. Kesselman, and S. Tuecke. The anatomy dbtite- enabling scalable virtual organiza-
tion. Internation Journal of Supercomputer Applicatiois(3), 2001.

[10] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat. Sharparchitecture for secure resource
peering. InProceedings of the 19th ACM Symposium on Operating Systentighes 2003.

[11] Gnutella.htt p: // www. gnut el | a. com

[12] S. Goyal and J. Carter. Safely harnessing wide areagaite computing -or- how to avoid building the
perfect platform for network attacks. Proceedings of the First Workshop on Real Large Distributed
SystemgDec. 2004.

[13] S. Goyal and J. Carter. Ensuring prolonged partiograind deterring cheating behaviors in a collec-
tive. Technical Report UUCS-08-010, School of ComputingiMarsity of Utah, September 2008.

[14] S. Guha, N. Daswani, and R. Jain. An experimental stdfdhe skype peer-to-peer voip system. In
5th International Workshop on Peer-to-Peer Systdreb. 2006.

[15] lon Stoicaet al. Chord: A scalable peer-to-peer lookup service for inteapplications. IProceedings
of the ACM SIGCOMM ’'01 Conferencpages 149-160, Aug. 2001.

[16] L. Kahney. Cheaters bow to peer pressiigred 2001.
[17] Kazaahtt p: //ww. kazaa. com

[18] M. Litzkow, M. Livny, and M. Mutka. Condor — a hunter oflelworkstations. IfProceedings of the
8th International Conference on Distributed Computingt&ys pages 104-111, June 1988.

[19] G. J. Mailath and L. SamuelsoRepeated Games and Reputatio@xford University Press, 2006.
[20] PlanetLabhtt p: //wwv. pl anet - | ab. org.

[21] A. M. Polinsky and S. ShavellThe Theory of Public Enforcement of Lavolume 1 ofHandbook of
Law and EconomicsNorth Holland, Nov 2007.

[22] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and Sni&re A scalable content addressable net-
work. InProceedings of the ACM SIGCOMM Conferengeg. 2001.

[23] D.Reed, I. Pratt, P. Menage, S. Early, and N. Stratfehoservers: Accounted execution of untrusted
code. InIEEE Hot Topics in Operating Systems (HotOS), Wiar. 1999.

[24] A. Rowstron and P. Druschel. Pastry: Scalable, distetl object location and routing for large-scale
peer-to-peer systems. International Conference on Distributed Systems Plat&itov. 2001.

[25] SETI@homehttp://setiathone. ssl. berkel ey. edu.

[26] M. S. P. S. C. Study. Aruba.ithtt p:// downl oad. m crosoft. com downl oad/ 6/ b/ e/
6be5466b- 51a5- 4eaf - a7f c- 590f 32bc9ch3/ Aruba. i t %20Case%20St udy. doc.

[27] M. S. P. S. C. Study. Hostbaskett t p: / / downl oad. m crosoft. com downl oad/ b/ f/ 3/
bf 34b7be- 81e9- 46a8- a5e3- ccb648a98547/ Host basket %20Fi nal . doc.

[28] Utopia.htt p: // www. ut opi anet . org/.
[29] VMware Playerhtt p: // www. vimwar e. com pl ayer .
[30] VVD Communicationshtt p: // www. vvdconmmuni cati ons. com

[31] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Jdseand J. D. Kubiatowicz. Tapestry: A
resilient global-scale overlay for service deploymdBEE Journal on Selected Areas in Communica-
tions January 2004.

